Last updated: 2022-05-19

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version be614ed. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .ipynb_checkpoints/

Untracked files:
    Untracked:  G_list.RData
    Untracked:  Rplot.png
    Untracked:  SCZ_annotation.xlsx
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2018_S_out/
    Untracked:  code/SCZ_2018_out/
    Untracked:  code/SCZ_2020_Single_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/process_scz_2018_snps.R
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_analysis.sbatch
    Untracked:  code/run_SCZ_2018_analysis.sh
    Untracked:  code/run_SCZ_2018_analysis_S.sbatch
    Untracked:  code/run_SCZ_2018_analysis_S.sh
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2020_Single_analysis.sbatch
    Untracked:  code/run_SCZ_2020_Single_analysis.sh
    Untracked:  code/run_SCZ_2020_Single_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/GO_Terms/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2018/
    Untracked:  data/SCZ_2018_S/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/Supplementary Table 15 - MAGMA.xlsx
    Untracked:  data/Supplementary Table 20 - Prioritised Genes.xlsx
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/scz_2018.RDS
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt
    Untracked:  top_genes_32.txt
    Untracked:  top_genes_37.txt
    Untracked:  top_genes_43.txt
    Untracked:  top_genes_54.txt
    Untracked:  top_genes_81.txt
    Untracked:  z_snp_pos_SCZ.RData
    Untracked:  z_snp_pos_SCZ_2014_EUR.RData
    Untracked:  z_snp_pos_SCZ_2018.RData
    Untracked:  z_snp_pos_SCZ_2020.RData

Unstaged changes:
    Deleted:    analysis/BMI_S_results.Rmd
    Modified:   analysis/SCZ_2018_Brain_Amygdala_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Caudate_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellar_Hemisphere_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellum_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cortex_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Frontal_Cortex_BA9_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hippocampus_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hypothalamus_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Putamen_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Substantia_nigra_S.Rmd
    Modified:   analysis/ttt.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd) and HTML (docs/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd be614ed sq-96 2022-05-19 update
html be614ed sq-96 2022-05-19 update
Rmd 7d08c9b sq-96 2022-05-18 update
html 7d08c9b sq-96 2022-05-18 update
Rmd 2749be9 sq-96 2022-05-12 update
html 2749be9 sq-96 2022-05-12 update
html 011327d sq-96 2022-05-12 update
Rmd 6c6abbd sq-96 2022-05-12 update

library(reticulate)
use_python("/scratch/midway2/shengqian/miniconda3/envs/PythonForR/bin/python",required=T)

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 21642
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1929 1532 1343  876  885 1118 1258  748  873 1021 1288 1205  442  765  754  863 
  17   18   19   20   21   22 
1460  296 1534  750   40  662 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 18965
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8763
INFO:numexpr.utils:Note: NumExpr detected 56 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
finish

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union

Check convergence of parameters

Version Author Date
2749be9 sq-96 2022-05-12
     gene       snp 
0.0063107 0.0003111 
 gene   snp 
10.20 10.34 
[1] 105318
[1]    7622 6309950
   gene     snp 
0.00466 0.19277 
[1] 0.007924 1.106847

Genes with highest PIPs

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
       genename region_tag susie_pip   mu2       PVE      z num_intron num_sqtl
811  BUB1B-PAK6      15_14    0.8434 29.84 2.023e-04  5.588          2        2
3570     LPCAT4      15_10    0.7808 26.23 1.539e-04  4.892          3        5
1985     DPYSL3       5_86    0.7575 23.63 1.287e-04  4.157          1        1
4279       NGEF      2_137    0.7147 30.69 1.496e-04  7.036          3        3
731        BDNF      11_19    0.6805 23.22 1.159e-04  4.348          3        4
2244       ESAM      11_77    0.6623 35.97 1.292e-04  5.889          2        2
292        AKT3      1_128    0.6552 34.93 1.575e-04 -6.350          7        8
1856       DHPS      19_10    0.6472 25.49 1.014e-04 -4.396          1        1
3953   MPHOSPH9      12_75    0.6448 60.79 2.542e-04 -8.201          2        4
5804    SDCCAG8      1_128    0.5945 26.04 8.897e-05 -5.177          4        7
7379    ZDHHC20       13_2    0.5718 24.49 1.139e-04 -4.784          5        6
6179     SNRPA1      15_50    0.5395 20.85 8.954e-05 -4.098          4        6
1066      CASP2       7_89    0.5091 21.51 5.294e-05 -3.889          1        1
6559       TECR      19_12    0.4810 20.26 4.712e-05  4.009          3        3
7105     UQCRC2      16_19    0.4809 22.74 4.993e-05  4.716          1        1
675        B9D1      17_16    0.4770 28.29 6.531e-05  5.282          2        2
6859     TRANK1       3_27    0.4735 38.35 8.288e-05 -6.365          3        3
3585       LRP8       1_33    0.4705 32.85 1.241e-04 -4.820          5        5
1850       DGKZ      11_28    0.4470 46.79 8.990e-05  7.216          3        3
1250      CECR2       22_2    0.4310 20.59 3.633e-05  3.928          1        1

Genes with highest PVE

       genename region_tag susie_pip    mu2       PVE       z num_intron
3953   MPHOSPH9      12_75    0.6448  60.79 2.542e-04  -8.201          2
811  BUB1B-PAK6      15_14    0.8434  29.84 2.023e-04   5.588          2
3622       LSM2       6_26    0.1619 635.43 1.581e-04 -11.599          1
292        AKT3      1_128    0.6552  34.93 1.575e-04  -6.350          7
3570     LPCAT4      15_10    0.7808  26.23 1.539e-04   4.892          3
4279       NGEF      2_137    0.7147  30.69 1.496e-04   7.036          3
7159       VARS       6_26    0.1563 629.91 1.462e-04 -11.620          1
2244       ESAM      11_77    0.6623  35.97 1.292e-04   5.889          2
1985     DPYSL3       5_86    0.7575  23.63 1.287e-04   4.157          1
459        APOM       6_26    0.1147 627.31 1.242e-04  11.590          3
3585       LRP8       1_33    0.4705  32.85 1.241e-04  -4.820          5
731        BDNF      11_19    0.6805  23.22 1.159e-04   4.348          3
7379    ZDHHC20       13_2    0.5718  24.49 1.139e-04  -4.784          5
1856       DHPS      19_10    0.6472  25.49 1.014e-04  -4.396          1
1850       DGKZ      11_28    0.4470  46.79 8.990e-05   7.216          3
6179     SNRPA1      15_50    0.5395  20.85 8.954e-05  -4.098          4
5804    SDCCAG8      1_128    0.5945  26.04 8.897e-05  -5.177          4
6923    TSNARE1       8_93    0.4078  27.20 8.686e-05   5.555         11
6859     TRANK1       3_27    0.4735  38.35 8.288e-05  -6.365          3
682        BAG6       6_26    0.1147 627.31 7.843e-05 -11.590          6
     num_sqtl
3953        4
811         2
3622        1
292         8
3570        5
4279        3
7159        1
2244        2
1985        1
459         3
3585        5
731         4
7379        6
1856        1
1850        3
6179        6
5804        7
6923       11
6859        3
682         6

Comparing z scores and PIPs

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
[1] 0.01719
     genename region_tag susie_pip    mu2       PVE       z num_intron num_sqtl
7159     VARS       6_26  0.156331 629.91 1.462e-04 -11.620          1        1
3622     LSM2       6_26  0.161872 635.43 1.581e-04 -11.599          1        1
459      APOM       6_26  0.114749 627.31 1.242e-04  11.590          3        3
682      BAG6       6_26  0.114749 627.31 7.843e-05 -11.590          6        6
1732  CYP21A2       6_26  0.015115 659.18 1.430e-06 -11.340          1        1
7160    VARS2       6_25  0.055828 101.38 3.000e-06 -11.137          1        1
941  C6orf136       6_24  0.030346  79.63 1.393e-06 -11.031          2        2
2501    FLOT1       6_24  0.025114  78.29 2.701e-06  10.981          6        7
808    BTN3A2       6_20  0.063266  90.16 1.901e-06 -10.659          3        3
2949    HLA-B       6_25  0.008376  76.72 1.414e-07  10.150         11       21
805    BTN2A1       6_20  0.029015  82.29 1.169e-06  10.110          5        6
1153   CCHCR1       6_25  0.008703  62.58 1.614e-07  -9.358         10       14
1799     DDR1       6_25  0.011011  67.83 7.808e-08   9.016          1        1
2950  HLA-DMA       6_27  0.026771  65.16 5.043e-07   8.596          4        7
4405    NT5C2      10_66  0.222075  46.04 5.448e-05  -8.511         11       15
3664   MAD1L1        7_3  0.221318  63.77 3.308e-05  -8.215          3        3
3953 MPHOSPH9      12_75  0.644846  60.79 2.542e-04  -8.201          2        4
554     AS3MT      10_66  0.208779  44.51 1.862e-05   8.051          6        7
4030     MSH5       6_26  0.000000 236.73 0.000e+00  -7.892          3        3
841  C12orf65      12_75  0.039488  54.18 8.608e-07  -7.754          2        2

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 13
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
                                                                                                   Term
1               acyltransferase activity, transferring groups other than amino-acyl groups (GO:0016747)
2                                                                         U2 snRNA binding (GO:0030620)
3                                   1-acylglycerophosphocholine O-acyltransferase activity (GO:0047184)
4                                                             dihydropyrimidinase activity (GO:0004157)
5                                                lysophospholipid acyltransferase activity (GO:0071617)
6                                                             O-acetyltransferase activity (GO:0016413)
7  hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in cyclic amides (GO:0016812)
8             cysteine-type endopeptidase activity involved in apoptotic signaling pathway (GO:0097199)
9                                                                          filamin binding (GO:0031005)
10           cysteine-type endopeptidase activity involved in execution phase of apoptosis (GO:0097200)
11                                                                  death receptor binding (GO:0005123)
12                      cysteine-type endopeptidase activity involved in apoptotic process (GO:0097153)
13                                                         cell adhesion mediator activity (GO:0098631)
14                                        protein-cysteine S-palmitoyltransferase activity (GO:0019706)
15                                                           palmitoyltransferase activity (GO:0016409)
16                                                              O-acyltransferase activity (GO:0008374)
   Overlap Adjusted.P.value          Genes
1     2/76          0.02614 ZDHHC20;LPCAT4
2      1/5          0.02614         SNRPA1
3      1/6          0.02614         LPCAT4
4      1/6          0.02614         DPYSL3
5      1/8          0.02614         LPCAT4
6      1/8          0.02614         LPCAT4
7     1/10          0.02614         DPYSL3
8     1/10          0.02614          CASP2
9     1/11          0.02614         DPYSL3
10    1/13          0.02670          CASP2
11    1/15          0.02670           BDNF
12    1/15          0.02670          CASP2
13    1/24          0.03803           ESAM
14    1/25          0.03803        ZDHHC20
15    1/29          0.03987        ZDHHC20
16    1/30          0.03987         LPCAT4

DisGeNET enrichment analysis for genes with PIP>0.5

                                                           Description      FDR
136                                            Intellectual Disability 0.009241
58                                       Electroencephalogram abnormal 0.018429
133                                            SENIOR-LOKEN SYNDROME 7 0.018429
138                                           BARDET-BIEDL SYNDROME 16 0.018429
140 MEGALENCEPHALY-POLYMICROGYRIA-POLYDACTYLY-HYDROCEPHALUS SYNDROME 2 0.018429
20                                               Tonic-Clonic Epilepsy 0.033835
23                                                   Heroin Dependence 0.033835
24                                         Profound Mental Retardation 0.033835
27                                                       Cystic kidney 0.033835
32                                    Mental Retardation, Psychosocial 0.033835
    Ratio  BgRatio
136   4/6 447/9703
58    1/6   1/9703
133   1/6   1/9703
138   1/6   1/9703
140   1/6   1/9703
20    1/6  10/9703
23    1/6   9/9703
24    2/6 139/9703
27    1/6   6/9703
32    2/6 139/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Warning: replacing previous import 'lifecycle::last_warnings' by
'rlang::last_warnings' when loading 'hms'
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 51
#significance threshold for TWAS
print(sig_thresh)
[1] 4.507
#number of ctwas genes
length(ctwas_genes)
[1] 1
#number of TWAS genes
length(twas_genes)
[1] 131
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
[1] genename   region_tag susie_pip  mu2        PVE        z          num_intron
[8] num_sqtl  
<0 rows> (or 0-length row.names)
#sensitivity / recall
print(sensitivity)
ctwas  TWAS 
  0.0   0.1 
#specificity
print(specificity)
 ctwas   TWAS 
0.9999 0.9844 
#precision / PPV
print(precision)
  ctwas    TWAS 
0.00000 0.09924 

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.4.0      forcats_0.5.1     stringr_1.4.0     purrr_0.3.4      
 [5] readr_1.4.0       tidyr_1.1.3       tidyverse_1.3.1   tibble_3.1.7     
 [9] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.1.1    
[13] ggplot2_3.3.5     dplyr_1.0.7       reticulate_1.25   workflowr_1.7.0  

loaded via a namespace (and not attached):
 [1] fs_1.5.0          lubridate_1.7.10  doParallel_1.0.16 httr_1.4.2       
 [5] rprojroot_2.0.2   tools_4.1.0       backports_1.2.1   doRNG_1.8.2      
 [9] bslib_0.2.5.1     utf8_1.2.1        R6_2.5.0          vipor_0.4.5      
[13] DBI_1.1.1         colorspace_2.0-2  withr_2.4.2       ggrastr_1.0.1    
[17] tidyselect_1.1.1  processx_3.5.2    curl_4.3.2        compiler_4.1.0   
[21] git2r_0.28.0      rvest_1.0.0       cli_3.0.0         Cairo_1.5-15     
[25] xml2_1.3.2        labeling_0.4.2    sass_0.4.0        scales_1.1.1     
[29] callr_3.7.0       systemfonts_1.0.4 apcluster_1.4.9   digest_0.6.27    
[33] rmarkdown_2.9     svglite_2.0.0     pkgconfig_2.0.3   htmltools_0.5.1.1
[37] dbplyr_2.1.1      highr_0.9         rlang_1.0.2       rstudioapi_0.13  
[41] jquerylib_0.1.4   farver_2.1.0      generics_0.1.0    jsonlite_1.7.2   
[45] magrittr_2.0.1    Matrix_1.3-3      ggbeeswarm_0.6.0  Rcpp_1.0.7       
[49] munsell_0.5.0     fansi_0.5.0       lifecycle_1.0.0   stringi_1.6.2    
[53] whisker_0.4       yaml_2.2.1        plyr_1.8.6        grid_4.1.0       
[57] ggrepel_0.9.1     parallel_4.1.0    promises_1.2.0.1  crayon_1.4.1     
[61] lattice_0.20-44   haven_2.4.1       hms_1.1.0         knitr_1.33       
[65] ps_1.6.0          pillar_1.7.0      igraph_1.2.6      rjson_0.2.20     
[69] rngtools_1.5      reshape2_1.4.4    codetools_0.2-18  reprex_2.0.0     
[73] glue_1.4.2        evaluate_0.14     getPass_0.2-2     modelr_0.1.8     
[77] data.table_1.14.0 png_0.1-7         vctrs_0.3.8       httpuv_1.6.1     
[81] foreach_1.5.1     cellranger_1.1.0  gtable_0.3.0      assertthat_0.2.1 
[85] xfun_0.24         broom_0.7.8       later_1.2.0       iterators_1.0.13 
[89] beeswarm_0.4.0    ellipsis_0.3.2    here_1.0.1