Last updated: 2022-05-19
Checks: 5 2
Knit directory: cTWAS_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211220)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.
absolute | relative |
---|---|
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ | data |
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R | code/ctwas_config.R |
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version be614ed. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .ipynb_checkpoints/
Untracked files:
Untracked: G_list.RData
Untracked: Rplot.png
Untracked: SCZ_annotation.xlsx
Untracked: analysis/.ipynb_checkpoints/
Untracked: code/.ipynb_checkpoints/
Untracked: code/AF_out/
Untracked: code/Autism_out/
Untracked: code/BMI_S_out/
Untracked: code/BMI_out/
Untracked: code/Glucose_out/
Untracked: code/LDL_S_out/
Untracked: code/SCZ_2014_EUR_out/
Untracked: code/SCZ_2018_S_out/
Untracked: code/SCZ_2018_out/
Untracked: code/SCZ_2020_Single_out/
Untracked: code/SCZ_2020_out/
Untracked: code/SCZ_S_out/
Untracked: code/SCZ_out/
Untracked: code/T2D_out/
Untracked: code/ctwas_config.R
Untracked: code/mapping.R
Untracked: code/out/
Untracked: code/process_scz_2018_snps.R
Untracked: code/run_AF_analysis.sbatch
Untracked: code/run_AF_analysis.sh
Untracked: code/run_AF_ctwas_rss_LDR.R
Untracked: code/run_Autism_analysis.sbatch
Untracked: code/run_Autism_analysis.sh
Untracked: code/run_Autism_ctwas_rss_LDR.R
Untracked: code/run_BMI_analysis.sbatch
Untracked: code/run_BMI_analysis.sh
Untracked: code/run_BMI_analysis_S.sbatch
Untracked: code/run_BMI_analysis_S.sh
Untracked: code/run_BMI_ctwas_rss_LDR.R
Untracked: code/run_BMI_ctwas_rss_LDR_S.R
Untracked: code/run_Glucose_analysis.sbatch
Untracked: code/run_Glucose_analysis.sh
Untracked: code/run_Glucose_ctwas_rss_LDR.R
Untracked: code/run_LDL_analysis_S.sbatch
Untracked: code/run_LDL_analysis_S.sh
Untracked: code/run_LDL_ctwas_rss_LDR_S.R
Untracked: code/run_SCZ_2014_EUR_analysis.sbatch
Untracked: code/run_SCZ_2014_EUR_analysis.sh
Untracked: code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2018_analysis.sbatch
Untracked: code/run_SCZ_2018_analysis.sh
Untracked: code/run_SCZ_2018_analysis_S.sbatch
Untracked: code/run_SCZ_2018_analysis_S.sh
Untracked: code/run_SCZ_2018_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2018_ctwas_rss_LDR_S.R
Untracked: code/run_SCZ_2020_Single_analysis.sbatch
Untracked: code/run_SCZ_2020_Single_analysis.sh
Untracked: code/run_SCZ_2020_Single_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2020_analysis.sbatch
Untracked: code/run_SCZ_2020_analysis.sh
Untracked: code/run_SCZ_2020_ctwas_rss_LDR.R
Untracked: code/run_SCZ_analysis.sbatch
Untracked: code/run_SCZ_analysis.sh
Untracked: code/run_SCZ_analysis_S.sbatch
Untracked: code/run_SCZ_analysis_S.sh
Untracked: code/run_SCZ_ctwas_rss_LDR.R
Untracked: code/run_SCZ_ctwas_rss_LDR_S.R
Untracked: code/run_T2D_analysis.sbatch
Untracked: code/run_T2D_analysis.sh
Untracked: code/run_T2D_ctwas_rss_LDR.R
Untracked: code/wflow_build.R
Untracked: code/wflow_build.sbatch
Untracked: data/.ipynb_checkpoints/
Untracked: data/GO_Terms/
Untracked: data/PGC3_SCZ_wave3_public.v2.tsv
Untracked: data/SCZ/
Untracked: data/SCZ_2014_EUR/
Untracked: data/SCZ_2018/
Untracked: data/SCZ_2018_S/
Untracked: data/SCZ_2020/
Untracked: data/SCZ_S/
Untracked: data/Supplementary Table 15 - MAGMA.xlsx
Untracked: data/Supplementary Table 20 - Prioritised Genes.xlsx
Untracked: data/T2D/
Untracked: data/UKBB/
Untracked: data/UKBB_SNPs_Info.text
Untracked: data/gene_OMIM.txt
Untracked: data/gene_pip_0.8.txt
Untracked: data/mashr_Heart_Atrial_Appendage.db
Untracked: data/mashr_sqtl/
Untracked: data/scz_2018.RDS
Untracked: data/summary_known_genes_annotations.xlsx
Untracked: data/untitled.txt
Untracked: top_genes_32.txt
Untracked: top_genes_37.txt
Untracked: top_genes_43.txt
Untracked: top_genes_54.txt
Untracked: top_genes_81.txt
Untracked: z_snp_pos_SCZ.RData
Untracked: z_snp_pos_SCZ_2014_EUR.RData
Untracked: z_snp_pos_SCZ_2018.RData
Untracked: z_snp_pos_SCZ_2020.RData
Unstaged changes:
Deleted: analysis/BMI_S_results.Rmd
Modified: analysis/SCZ_2018_Brain_Amygdala_S.Rmd
Modified: analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
Modified: analysis/SCZ_2018_Brain_Caudate_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cerebellar_Hemisphere_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cerebellum_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cortex_S.Rmd
Modified: analysis/SCZ_2018_Brain_Frontal_Cortex_BA9_S.Rmd
Modified: analysis/SCZ_2018_Brain_Hippocampus_S.Rmd
Modified: analysis/SCZ_2018_Brain_Hypothalamus_S.Rmd
Modified: analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Putamen_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1_S.Rmd
Modified: analysis/SCZ_2018_Brain_Substantia_nigra_S.Rmd
Modified: analysis/ttt.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
) and HTML (docs/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | be614ed | sq-96 | 2022-05-19 | update |
html | be614ed | sq-96 | 2022-05-19 | update |
Rmd | 7d08c9b | sq-96 | 2022-05-18 | update |
html | 7d08c9b | sq-96 | 2022-05-18 | update |
Rmd | 2749be9 | sq-96 | 2022-05-12 | update |
html | 2749be9 | sq-96 | 2022-05-12 | update |
html | 011327d | sq-96 | 2022-05-12 | update |
Rmd | 6c6abbd | sq-96 | 2022-05-12 | update |
library(reticulate)
use_python("/scratch/midway2/shengqian/miniconda3/envs/PythonForR/bin/python",required=T)
#number of imputed weights
nrow(qclist_all)
[1] 21642
#number of imputed weights by chromosome
table(qclist_all$chr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1929 1532 1343 876 885 1118 1258 748 873 1021 1288 1205 442 765 754 863
17 18 19 20 21 22
1460 296 1534 750 40 662
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 18965
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8763
INFO:numexpr.utils:Note: NumExpr detected 56 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
finish
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
Version | Author | Date |
---|---|---|
2749be9 | sq-96 | 2022-05-12 |
gene snp
0.0063107 0.0003111
gene snp
10.20 10.34
[1] 105318
[1] 7622 6309950
gene snp
0.00466 0.19277
[1] 0.007924 1.106847
genename region_tag susie_pip mu2 PVE z num_intron num_sqtl
811 BUB1B-PAK6 15_14 0.8434 29.84 2.023e-04 5.588 2 2
3570 LPCAT4 15_10 0.7808 26.23 1.539e-04 4.892 3 5
1985 DPYSL3 5_86 0.7575 23.63 1.287e-04 4.157 1 1
4279 NGEF 2_137 0.7147 30.69 1.496e-04 7.036 3 3
731 BDNF 11_19 0.6805 23.22 1.159e-04 4.348 3 4
2244 ESAM 11_77 0.6623 35.97 1.292e-04 5.889 2 2
292 AKT3 1_128 0.6552 34.93 1.575e-04 -6.350 7 8
1856 DHPS 19_10 0.6472 25.49 1.014e-04 -4.396 1 1
3953 MPHOSPH9 12_75 0.6448 60.79 2.542e-04 -8.201 2 4
5804 SDCCAG8 1_128 0.5945 26.04 8.897e-05 -5.177 4 7
7379 ZDHHC20 13_2 0.5718 24.49 1.139e-04 -4.784 5 6
6179 SNRPA1 15_50 0.5395 20.85 8.954e-05 -4.098 4 6
1066 CASP2 7_89 0.5091 21.51 5.294e-05 -3.889 1 1
6559 TECR 19_12 0.4810 20.26 4.712e-05 4.009 3 3
7105 UQCRC2 16_19 0.4809 22.74 4.993e-05 4.716 1 1
675 B9D1 17_16 0.4770 28.29 6.531e-05 5.282 2 2
6859 TRANK1 3_27 0.4735 38.35 8.288e-05 -6.365 3 3
3585 LRP8 1_33 0.4705 32.85 1.241e-04 -4.820 5 5
1850 DGKZ 11_28 0.4470 46.79 8.990e-05 7.216 3 3
1250 CECR2 22_2 0.4310 20.59 3.633e-05 3.928 1 1
genename region_tag susie_pip mu2 PVE z num_intron
3953 MPHOSPH9 12_75 0.6448 60.79 2.542e-04 -8.201 2
811 BUB1B-PAK6 15_14 0.8434 29.84 2.023e-04 5.588 2
3622 LSM2 6_26 0.1619 635.43 1.581e-04 -11.599 1
292 AKT3 1_128 0.6552 34.93 1.575e-04 -6.350 7
3570 LPCAT4 15_10 0.7808 26.23 1.539e-04 4.892 3
4279 NGEF 2_137 0.7147 30.69 1.496e-04 7.036 3
7159 VARS 6_26 0.1563 629.91 1.462e-04 -11.620 1
2244 ESAM 11_77 0.6623 35.97 1.292e-04 5.889 2
1985 DPYSL3 5_86 0.7575 23.63 1.287e-04 4.157 1
459 APOM 6_26 0.1147 627.31 1.242e-04 11.590 3
3585 LRP8 1_33 0.4705 32.85 1.241e-04 -4.820 5
731 BDNF 11_19 0.6805 23.22 1.159e-04 4.348 3
7379 ZDHHC20 13_2 0.5718 24.49 1.139e-04 -4.784 5
1856 DHPS 19_10 0.6472 25.49 1.014e-04 -4.396 1
1850 DGKZ 11_28 0.4470 46.79 8.990e-05 7.216 3
6179 SNRPA1 15_50 0.5395 20.85 8.954e-05 -4.098 4
5804 SDCCAG8 1_128 0.5945 26.04 8.897e-05 -5.177 4
6923 TSNARE1 8_93 0.4078 27.20 8.686e-05 5.555 11
6859 TRANK1 3_27 0.4735 38.35 8.288e-05 -6.365 3
682 BAG6 6_26 0.1147 627.31 7.843e-05 -11.590 6
num_sqtl
3953 4
811 2
3622 1
292 8
3570 5
4279 3
7159 1
2244 2
1985 1
459 3
3585 5
731 4
7379 6
1856 1
1850 3
6179 6
5804 7
6923 11
6859 3
682 6
[1] 0.01719
genename region_tag susie_pip mu2 PVE z num_intron num_sqtl
7159 VARS 6_26 0.156331 629.91 1.462e-04 -11.620 1 1
3622 LSM2 6_26 0.161872 635.43 1.581e-04 -11.599 1 1
459 APOM 6_26 0.114749 627.31 1.242e-04 11.590 3 3
682 BAG6 6_26 0.114749 627.31 7.843e-05 -11.590 6 6
1732 CYP21A2 6_26 0.015115 659.18 1.430e-06 -11.340 1 1
7160 VARS2 6_25 0.055828 101.38 3.000e-06 -11.137 1 1
941 C6orf136 6_24 0.030346 79.63 1.393e-06 -11.031 2 2
2501 FLOT1 6_24 0.025114 78.29 2.701e-06 10.981 6 7
808 BTN3A2 6_20 0.063266 90.16 1.901e-06 -10.659 3 3
2949 HLA-B 6_25 0.008376 76.72 1.414e-07 10.150 11 21
805 BTN2A1 6_20 0.029015 82.29 1.169e-06 10.110 5 6
1153 CCHCR1 6_25 0.008703 62.58 1.614e-07 -9.358 10 14
1799 DDR1 6_25 0.011011 67.83 7.808e-08 9.016 1 1
2950 HLA-DMA 6_27 0.026771 65.16 5.043e-07 8.596 4 7
4405 NT5C2 10_66 0.222075 46.04 5.448e-05 -8.511 11 15
3664 MAD1L1 7_3 0.221318 63.77 3.308e-05 -8.215 3 3
3953 MPHOSPH9 12_75 0.644846 60.79 2.542e-04 -8.201 2 4
554 AS3MT 10_66 0.208779 44.51 1.862e-05 8.051 6 7
4030 MSH5 6_26 0.000000 236.73 0.000e+00 -7.892 3 3
841 C12orf65 12_75 0.039488 54.18 8.608e-07 -7.754 2 2
#number of genes for gene set enrichment
length(genes)
[1] 13
Uploading data to Enrichr... Done.
Querying GO_Biological_Process_2021... Done.
Querying GO_Cellular_Component_2021... Done.
Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
Term
1 acyltransferase activity, transferring groups other than amino-acyl groups (GO:0016747)
2 U2 snRNA binding (GO:0030620)
3 1-acylglycerophosphocholine O-acyltransferase activity (GO:0047184)
4 dihydropyrimidinase activity (GO:0004157)
5 lysophospholipid acyltransferase activity (GO:0071617)
6 O-acetyltransferase activity (GO:0016413)
7 hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in cyclic amides (GO:0016812)
8 cysteine-type endopeptidase activity involved in apoptotic signaling pathway (GO:0097199)
9 filamin binding (GO:0031005)
10 cysteine-type endopeptidase activity involved in execution phase of apoptosis (GO:0097200)
11 death receptor binding (GO:0005123)
12 cysteine-type endopeptidase activity involved in apoptotic process (GO:0097153)
13 cell adhesion mediator activity (GO:0098631)
14 protein-cysteine S-palmitoyltransferase activity (GO:0019706)
15 palmitoyltransferase activity (GO:0016409)
16 O-acyltransferase activity (GO:0008374)
Overlap Adjusted.P.value Genes
1 2/76 0.02614 ZDHHC20;LPCAT4
2 1/5 0.02614 SNRPA1
3 1/6 0.02614 LPCAT4
4 1/6 0.02614 DPYSL3
5 1/8 0.02614 LPCAT4
6 1/8 0.02614 LPCAT4
7 1/10 0.02614 DPYSL3
8 1/10 0.02614 CASP2
9 1/11 0.02614 DPYSL3
10 1/13 0.02670 CASP2
11 1/15 0.02670 BDNF
12 1/15 0.02670 CASP2
13 1/24 0.03803 ESAM
14 1/25 0.03803 ZDHHC20
15 1/29 0.03987 ZDHHC20
16 1/30 0.03987 LPCAT4
Description FDR
136 Intellectual Disability 0.009241
58 Electroencephalogram abnormal 0.018429
133 SENIOR-LOKEN SYNDROME 7 0.018429
138 BARDET-BIEDL SYNDROME 16 0.018429
140 MEGALENCEPHALY-POLYMICROGYRIA-POLYDACTYLY-HYDROCEPHALUS SYNDROME 2 0.018429
20 Tonic-Clonic Epilepsy 0.033835
23 Heroin Dependence 0.033835
24 Profound Mental Retardation 0.033835
27 Cystic kidney 0.033835
32 Mental Retardation, Psychosocial 0.033835
Ratio BgRatio
136 4/6 447/9703
58 1/6 1/9703
133 1/6 1/9703
138 1/6 1/9703
140 1/6 1/9703
20 1/6 10/9703
23 1/6 9/9703
24 2/6 139/9703
27 1/6 6/9703
32 2/6 139/9703
Warning: replacing previous import 'lifecycle::last_warnings' by
'rlang::last_warnings' when loading 'hms'
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL
#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 51
#significance threshold for TWAS
print(sig_thresh)
[1] 4.507
#number of ctwas genes
length(ctwas_genes)
[1] 1
#number of TWAS genes
length(twas_genes)
[1] 131
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
[1] genename region_tag susie_pip mu2 PVE z num_intron
[8] num_sqtl
<0 rows> (or 0-length row.names)
#sensitivity / recall
print(sensitivity)
ctwas TWAS
0.0 0.1
#specificity
print(specificity)
ctwas TWAS
0.9999 0.9844
#precision / PPV
print(precision)
ctwas TWAS
0.00000 0.09924
sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] readxl_1.4.0 forcats_0.5.1 stringr_1.4.0 purrr_0.3.4
[5] readr_1.4.0 tidyr_1.1.3 tidyverse_1.3.1 tibble_3.1.7
[9] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0 cowplot_1.1.1
[13] ggplot2_3.3.5 dplyr_1.0.7 reticulate_1.25 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] fs_1.5.0 lubridate_1.7.10 doParallel_1.0.16 httr_1.4.2
[5] rprojroot_2.0.2 tools_4.1.0 backports_1.2.1 doRNG_1.8.2
[9] bslib_0.2.5.1 utf8_1.2.1 R6_2.5.0 vipor_0.4.5
[13] DBI_1.1.1 colorspace_2.0-2 withr_2.4.2 ggrastr_1.0.1
[17] tidyselect_1.1.1 processx_3.5.2 curl_4.3.2 compiler_4.1.0
[21] git2r_0.28.0 rvest_1.0.0 cli_3.0.0 Cairo_1.5-15
[25] xml2_1.3.2 labeling_0.4.2 sass_0.4.0 scales_1.1.1
[29] callr_3.7.0 systemfonts_1.0.4 apcluster_1.4.9 digest_0.6.27
[33] rmarkdown_2.9 svglite_2.0.0 pkgconfig_2.0.3 htmltools_0.5.1.1
[37] dbplyr_2.1.1 highr_0.9 rlang_1.0.2 rstudioapi_0.13
[41] jquerylib_0.1.4 farver_2.1.0 generics_0.1.0 jsonlite_1.7.2
[45] magrittr_2.0.1 Matrix_1.3-3 ggbeeswarm_0.6.0 Rcpp_1.0.7
[49] munsell_0.5.0 fansi_0.5.0 lifecycle_1.0.0 stringi_1.6.2
[53] whisker_0.4 yaml_2.2.1 plyr_1.8.6 grid_4.1.0
[57] ggrepel_0.9.1 parallel_4.1.0 promises_1.2.0.1 crayon_1.4.1
[61] lattice_0.20-44 haven_2.4.1 hms_1.1.0 knitr_1.33
[65] ps_1.6.0 pillar_1.7.0 igraph_1.2.6 rjson_0.2.20
[69] rngtools_1.5 reshape2_1.4.4 codetools_0.2-18 reprex_2.0.0
[73] glue_1.4.2 evaluate_0.14 getPass_0.2-2 modelr_0.1.8
[77] data.table_1.14.0 png_0.1-7 vctrs_0.3.8 httpuv_1.6.1
[81] foreach_1.5.1 cellranger_1.1.0 gtable_0.3.0 assertthat_0.2.1
[85] xfun_0.24 broom_0.7.8 later_1.2.0 iterators_1.0.13
[89] beeswarm_0.4.0 ellipsis_0.3.2 here_1.0.1