Last updated: 2022-05-19
Checks: 5 2
Knit directory: cTWAS_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211220)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.
absolute | relative |
---|---|
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ | data |
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R | code/ctwas_config.R |
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 7d08c9b. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .ipynb_checkpoints/
Untracked files:
Untracked: G_list.RData
Untracked: Rplot.png
Untracked: SCZ_annotation.xlsx
Untracked: analysis/.ipynb_checkpoints/
Untracked: analysis/ttt.Rmd
Untracked: code/.ipynb_checkpoints/
Untracked: code/AF_out/
Untracked: code/Autism_out/
Untracked: code/BMI_S_out/
Untracked: code/BMI_out/
Untracked: code/Glucose_out/
Untracked: code/LDL_S_out/
Untracked: code/SCZ_2014_EUR_out/
Untracked: code/SCZ_2018_S_out/
Untracked: code/SCZ_2018_out/
Untracked: code/SCZ_2020_Single_out/
Untracked: code/SCZ_2020_out/
Untracked: code/SCZ_S_out/
Untracked: code/SCZ_out/
Untracked: code/T2D_out/
Untracked: code/ctwas_config.R
Untracked: code/mapping.R
Untracked: code/out/
Untracked: code/process_scz_2018_snps.R
Untracked: code/run_AF_analysis.sbatch
Untracked: code/run_AF_analysis.sh
Untracked: code/run_AF_ctwas_rss_LDR.R
Untracked: code/run_Autism_analysis.sbatch
Untracked: code/run_Autism_analysis.sh
Untracked: code/run_Autism_ctwas_rss_LDR.R
Untracked: code/run_BMI_analysis.sbatch
Untracked: code/run_BMI_analysis.sh
Untracked: code/run_BMI_analysis_S.sbatch
Untracked: code/run_BMI_analysis_S.sh
Untracked: code/run_BMI_ctwas_rss_LDR.R
Untracked: code/run_BMI_ctwas_rss_LDR_S.R
Untracked: code/run_Glucose_analysis.sbatch
Untracked: code/run_Glucose_analysis.sh
Untracked: code/run_Glucose_ctwas_rss_LDR.R
Untracked: code/run_LDL_analysis_S.sbatch
Untracked: code/run_LDL_analysis_S.sh
Untracked: code/run_LDL_ctwas_rss_LDR_S.R
Untracked: code/run_SCZ_2014_EUR_analysis.sbatch
Untracked: code/run_SCZ_2014_EUR_analysis.sh
Untracked: code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2018_analysis.sbatch
Untracked: code/run_SCZ_2018_analysis.sh
Untracked: code/run_SCZ_2018_analysis_S.sbatch
Untracked: code/run_SCZ_2018_analysis_S.sh
Untracked: code/run_SCZ_2018_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2018_ctwas_rss_LDR_S.R
Untracked: code/run_SCZ_2020_Single_analysis.sbatch
Untracked: code/run_SCZ_2020_Single_analysis.sh
Untracked: code/run_SCZ_2020_Single_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2020_analysis.sbatch
Untracked: code/run_SCZ_2020_analysis.sh
Untracked: code/run_SCZ_2020_ctwas_rss_LDR.R
Untracked: code/run_SCZ_analysis.sbatch
Untracked: code/run_SCZ_analysis.sh
Untracked: code/run_SCZ_analysis_S.sbatch
Untracked: code/run_SCZ_analysis_S.sh
Untracked: code/run_SCZ_ctwas_rss_LDR.R
Untracked: code/run_SCZ_ctwas_rss_LDR_S.R
Untracked: code/run_T2D_analysis.sbatch
Untracked: code/run_T2D_analysis.sh
Untracked: code/run_T2D_ctwas_rss_LDR.R
Untracked: code/wflow_build.R
Untracked: code/wflow_build.sbatch
Untracked: data/.ipynb_checkpoints/
Untracked: data/GO_Terms/
Untracked: data/PGC3_SCZ_wave3_public.v2.tsv
Untracked: data/SCZ/
Untracked: data/SCZ_2014_EUR/
Untracked: data/SCZ_2018/
Untracked: data/SCZ_2018_S/
Untracked: data/SCZ_2020/
Untracked: data/SCZ_S/
Untracked: data/Supplementary Table 15 - MAGMA.xlsx
Untracked: data/Supplementary Table 20 - Prioritised Genes.xlsx
Untracked: data/T2D/
Untracked: data/UKBB/
Untracked: data/UKBB_SNPs_Info.text
Untracked: data/gene_OMIM.txt
Untracked: data/gene_pip_0.8.txt
Untracked: data/mashr_Heart_Atrial_Appendage.db
Untracked: data/mashr_sqtl/
Untracked: data/scz_2018.RDS
Untracked: data/summary_known_genes_annotations.xlsx
Untracked: data/untitled.txt
Untracked: top_genes_32.txt
Untracked: top_genes_37.txt
Untracked: top_genes_43.txt
Untracked: top_genes_81.txt
Untracked: z_snp_pos_SCZ.RData
Untracked: z_snp_pos_SCZ_2014_EUR.RData
Untracked: z_snp_pos_SCZ_2018.RData
Untracked: z_snp_pos_SCZ_2020.RData
Unstaged changes:
Deleted: analysis/BMI_S_results.Rmd
Modified: analysis/SCZ_2018_Brain_Amygdala_S.Rmd
Modified: analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
Modified: analysis/SCZ_2018_Brain_Caudate_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cerebellar_Hemisphere_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cerebellum_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cortex_S.Rmd
Modified: analysis/SCZ_2018_Brain_Frontal_Cortex_BA9_S.Rmd
Modified: analysis/SCZ_2018_Brain_Hippocampus_S.Rmd
Modified: analysis/SCZ_2018_Brain_Hypothalamus_S.Rmd
Modified: analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Putamen_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1_S.Rmd
Modified: analysis/SCZ_2018_Brain_Substantia_nigra_S.Rmd
Modified: analysis/SCZ_Annotation_Analysis.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Amygdala_S.Rmd
) and HTML (docs/SCZ_2018_Brain_Amygdala_S.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 7d08c9b | sq-96 | 2022-05-18 | update |
html | 7d08c9b | sq-96 | 2022-05-18 | update |
Rmd | 2749be9 | sq-96 | 2022-05-12 | update |
html | 2749be9 | sq-96 | 2022-05-12 | update |
html | 011327d | sq-96 | 2022-05-12 | update |
Rmd | 6c6abbd | sq-96 | 2022-05-12 | update |
library(reticulate)
use_python("/scratch/midway2/shengqian/miniconda3/envs/PythonForR/bin/python",required=T)
#number of imputed weights
nrow(qclist_all)
[1] 15774
#number of imputed weights by chromosome
table(qclist_all$chr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1480 1078 891 631 654 819 931 556 642 735 948 858 322 583 532 618
17 18 19 20 21 22
1087 198 1146 543 34 488
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 14087
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8931
INFO:numexpr.utils:Note: NumExpr detected 56 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
finish
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
Version | Author | Date |
---|---|---|
2749be9 | sq-96 | 2022-05-12 |
gene snp
0.0048321 0.0003214
gene snp
9.84 10.49
[1] 105318
[1] 6393 6309950
gene snp
0.002886 0.202078
[1] 0.007093 1.090103
Version | Author | Date |
---|---|---|
2749be9 | sq-96 | 2022-05-12 |
genename region_tag susie_pip mu2 PVE z num_intron num_sqtl
2889 LINC00320 21_6 1.0610 28.32 2.926e-04 5.336 6 6
2984 LRP8 1_33 0.9257 24.92 1.962e-04 -4.820 3 3
371 APOPT1 14_54 0.8221 43.94 2.808e-04 -7.429 5 6
6193 ZDHHC20 13_2 0.7562 24.63 1.313e-04 -4.784 3 4
2836 LAMA5 20_37 0.7084 30.04 1.381e-04 -4.371 10 14
1662 DPYSL3 5_86 0.7025 25.41 1.190e-04 -4.157 1 1
611 BDNF 11_19 0.6948 23.25 1.066e-04 -4.348 1 1
4020 PLCB2 15_14 0.6903 25.17 9.585e-05 -4.470 5 5
1554 DGKZ 11_28 0.6889 46.65 2.102e-04 7.216 2 2
552 B3GAT1 11_84 0.6636 25.37 9.490e-05 4.345 7 11
4326 PYROXD2 10_62 0.6365 24.28 8.561e-05 3.755 10 10
122 ACTR1B 2_57 0.6179 21.59 7.826e-05 3.978 3 3
1482 DBF4B 17_26 0.5949 20.61 6.733e-05 -3.890 4 4
3695 NTRK3 15_41 0.5946 22.72 7.628e-05 -4.457 1 1
5579 TMED4 7_32 0.5724 22.25 6.781e-05 -4.862 3 3
781 C2orf80 2_123 0.5393 25.65 5.402e-05 -3.011 10 12
235 AKT3 1_128 0.5277 34.14 8.384e-05 6.266 5 5
6256 ZNF211 19_39 0.5206 22.95 5.737e-05 -3.624 4 5
510 ATP2B2 3_8 0.4886 31.83 6.736e-05 4.229 3 3
1213 CNIH3 1_114 0.4872 21.03 4.196e-05 -3.852 7 9
genename region_tag susie_pip mu2 PVE z num_intron num_sqtl
2889 LINC00320 21_6 1.0610 28.32 2.926e-04 5.336 6 6
371 APOPT1 14_54 0.8221 43.94 2.808e-04 -7.429 5 6
1554 DGKZ 11_28 0.6889 46.65 2.102e-04 7.216 2 2
2984 LRP8 1_33 0.9257 24.92 1.962e-04 -4.820 3 3
2836 LAMA5 20_37 0.7084 30.04 1.381e-04 -4.371 10 14
6193 ZDHHC20 13_2 0.7562 24.63 1.313e-04 -4.784 3 4
1662 DPYSL3 5_86 0.7025 25.41 1.190e-04 -4.157 1 1
611 BDNF 11_19 0.6948 23.25 1.066e-04 -4.348 1 1
4020 PLCB2 15_14 0.6903 25.17 9.585e-05 -4.470 5 5
552 B3GAT1 11_84 0.6636 25.37 9.490e-05 4.345 7 11
4326 PYROXD2 10_62 0.6365 24.28 8.561e-05 3.755 10 10
3686 NT5C2 10_66 0.4472 46.77 8.490e-05 -8.511 7 9
235 AKT3 1_128 0.5277 34.14 8.384e-05 6.266 5 5
4906 SF3B1 2_117 0.4467 43.83 8.117e-05 7.002 2 2
122 ACTR1B 2_57 0.6179 21.59 7.826e-05 3.978 3 3
3695 NTRK3 15_41 0.5946 22.72 7.628e-05 -4.457 1 1
5579 TMED4 7_32 0.5724 22.25 6.781e-05 -4.862 3 3
510 ATP2B2 3_8 0.4886 31.83 6.736e-05 4.229 3 3
1482 DBF4B 17_26 0.5949 20.61 6.733e-05 -3.890 4 4
3636 NPEPL1 20_34 0.4865 34.73 6.584e-05 3.996 13 15
Version | Author | Date |
---|---|---|
2749be9 | sq-96 | 2022-05-12 |
Version | Author | Date |
---|---|---|
2749be9 | sq-96 | 2022-05-12 |
[1] 0.01611
genename region_tag susie_pip mu2 PVE z num_intron
3933 PGBD1 6_22 1.867e-02 157.22 2.841e-07 -13.087 2
370 APOM 6_26 2.029e-01 123.81 4.840e-05 11.541 2
1506 DDR1 6_26 1.524e-02 119.73 2.641e-07 -11.175 2
480 ATAT1 6_24 2.265e-02 79.41 3.868e-07 11.039 1
795 C6orf136 6_24 4.367e-02 79.12 1.433e-06 -11.031 2
2082 FLOT1 6_24 1.053e-01 77.80 8.177e-06 -10.981 6
568 BAG6 6_26 5.880e-04 108.10 3.549e-10 -10.247 4
4565 RNF5 6_26 6.016e-05 96.37 3.312e-12 -9.714 1
968 CCHCR1 6_26 8.126e-10 89.72 5.578e-22 -9.376 8
3686 NT5C2 10_66 4.472e-01 46.77 8.490e-05 -8.511 7
3043 MAD1L1 7_3 2.348e-01 63.35 2.501e-05 -8.215 3
2468 HLA-F 6_23 3.791e-02 61.03 6.413e-07 -8.066 2
2209 GIGYF2 2_137 3.745e-01 50.80 5.226e-05 -7.841 4
4685 RP5-874C20.8 6_22 2.206e-02 37.39 1.296e-07 7.631 4
6384 ZSCAN16 6_22 1.933e-02 52.88 1.201e-07 7.468 3
371 APOPT1 14_54 8.221e-01 43.94 2.808e-04 -7.429 5
1554 DGKZ 11_28 6.889e-01 46.65 2.102e-04 7.216 2
4968 SKIV2L 6_26 2.813e-08 77.27 5.804e-19 7.101 4
4906 SF3B1 2_117 4.467e-01 43.83 8.117e-05 7.002 2
485 ATG13 11_28 1.646e-01 43.02 1.107e-05 6.977 2
num_sqtl
3933 3
370 2
1506 2
480 1
795 2
2082 6
568 6
4565 1
968 12
3686 9
3043 3
2468 3
2209 4
4685 4
6384 3
371 6
1554 2
4968 5
4906 2
485 2
#number of genes for gene set enrichment
length(genes)
[1] 18
Uploading data to Enrichr... Done.
Querying GO_Biological_Process_2021... Done.
Querying GO_Cellular_Component_2021... Done.
Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
Version | Author | Date |
---|---|---|
2749be9 | sq-96 | 2022-05-12 |
Term Overlap
1 positive regulation of neuron projection development (GO:0010976) 4/88
2 positive regulation of phospholipase C activity (GO:0010863) 3/43
3 modulation of chemical synaptic transmission (GO:0050804) 3/109
4 positive regulation of cell projection organization (GO:0031346) 3/117
5 cellular response to nerve growth factor stimulus (GO:1990090) 2/22
6 activation of phospholipase C activity (GO:0007202) 2/32
7 regulation of neuron projection development (GO:0010975) 3/165
8 regulation of trans-synaptic signaling (GO:0099177) 2/35
9 positive regulation of protein tyrosine kinase activity (GO:0061098) 2/42
Adjusted.P.value Genes
1 0.0002400 BDNF;NTRK3;DPYSL3;LRP8
2 0.0008678 BDNF;NTRK3;PLCB2
3 0.0082176 BDNF;DGKZ;LRP8
4 0.0082176 BDNF;NTRK3;DPYSL3
5 0.0082176 BDNF;NTRK3
6 0.0131378 BDNF;PLCB2
7 0.0131378 BDNF;NTRK3;DPYSL3
8 0.0131378 BDNF;LRP8
9 0.0168359 BDNF;LRP8
[1] "GO_Cellular_Component_2021"
Version | Author | Date |
---|---|---|
2749be9 | sq-96 | 2022-05-12 |
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
Version | Author | Date |
---|---|---|
2749be9 | sq-96 | 2022-05-12 |
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
Description FDR
49 Status Epilepticus 0.01491
53 Unipolar Depression 0.01491
75 Petit mal status 0.01491
82 Grand Mal Status Epilepticus 0.01491
87 Complex Partial Status Epilepticus 0.01491
119 Status Epilepticus, Subclinical 0.01491
120 Non-Convulsive Status Epilepticus 0.01491
121 Simple Partial Status Epilepticus 0.01491
124 Major Depressive Disorder 0.01491
142 MEGALENCEPHALY-POLYMICROGYRIA-POLYDACTYLY-HYDROCEPHALUS SYNDROME 2 0.01491
Ratio BgRatio
49 2/7 68/9703
53 3/7 259/9703
75 2/7 67/9703
82 2/7 67/9703
87 2/7 67/9703
119 2/7 67/9703
120 2/7 67/9703
121 2/7 67/9703
124 3/7 243/9703
142 1/7 1/9703
Warning: replacing previous import 'lifecycle::last_warnings' by
'rlang::last_warnings' when loading 'hms'
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL
#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 49
#significance threshold for TWAS
print(sig_thresh)
[1] 4.47
#number of ctwas genes
length(ctwas_genes)
[1] 3
#number of TWAS genes
length(twas_genes)
[1] 103
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
[1] genename region_tag susie_pip mu2 PVE z num_intron
[8] num_sqtl
<0 rows> (or 0-length row.names)
#sensitivity / recall
print(sensitivity)
ctwas TWAS
0.007692 0.100000
#specificity
print(specificity)
ctwas TWAS
0.9997 0.9858
#precision / PPV
print(precision)
ctwas TWAS
0.3333 0.1262
sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] readxl_1.4.0 forcats_0.5.1 stringr_1.4.0 purrr_0.3.4
[5] readr_1.4.0 tidyr_1.1.3 tidyverse_1.3.1 tibble_3.1.7
[9] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0 cowplot_1.1.1
[13] ggplot2_3.3.5 dplyr_1.0.7 reticulate_1.25 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] fs_1.5.0 lubridate_1.7.10 doParallel_1.0.16 httr_1.4.2
[5] rprojroot_2.0.2 tools_4.1.0 backports_1.2.1 doRNG_1.8.2
[9] bslib_0.2.5.1 utf8_1.2.1 R6_2.5.0 vipor_0.4.5
[13] DBI_1.1.1 colorspace_2.0-2 withr_2.4.2 ggrastr_1.0.1
[17] tidyselect_1.1.1 processx_3.5.2 curl_4.3.2 compiler_4.1.0
[21] git2r_0.28.0 rvest_1.0.0 cli_3.0.0 Cairo_1.5-15
[25] xml2_1.3.2 labeling_0.4.2 sass_0.4.0 scales_1.1.1
[29] callr_3.7.0 systemfonts_1.0.4 apcluster_1.4.9 digest_0.6.27
[33] rmarkdown_2.9 svglite_2.0.0 pkgconfig_2.0.3 htmltools_0.5.1.1
[37] dbplyr_2.1.1 highr_0.9 rlang_1.0.2 rstudioapi_0.13
[41] jquerylib_0.1.4 farver_2.1.0 generics_0.1.0 jsonlite_1.7.2
[45] magrittr_2.0.1 Matrix_1.3-3 ggbeeswarm_0.6.0 Rcpp_1.0.7
[49] munsell_0.5.0 fansi_0.5.0 lifecycle_1.0.0 stringi_1.6.2
[53] whisker_0.4 yaml_2.2.1 plyr_1.8.6 grid_4.1.0
[57] ggrepel_0.9.1 parallel_4.1.0 promises_1.2.0.1 crayon_1.4.1
[61] lattice_0.20-44 haven_2.4.1 hms_1.1.0 knitr_1.33
[65] ps_1.6.0 pillar_1.7.0 igraph_1.2.6 rjson_0.2.20
[69] rngtools_1.5 reshape2_1.4.4 codetools_0.2-18 reprex_2.0.0
[73] glue_1.4.2 evaluate_0.14 getPass_0.2-2 modelr_0.1.8
[77] data.table_1.14.0 png_0.1-7 vctrs_0.3.8 httpuv_1.6.1
[81] foreach_1.5.1 cellranger_1.1.0 gtable_0.3.0 assertthat_0.2.1
[85] xfun_0.24 broom_0.7.8 later_1.2.0 iterators_1.0.13
[89] beeswarm_0.4.0 ellipsis_0.3.2 here_1.0.1