Last updated: 2022-05-19

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 7d08c9b. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .ipynb_checkpoints/

Untracked files:
    Untracked:  G_list.RData
    Untracked:  Rplot.png
    Untracked:  SCZ_annotation.xlsx
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/ttt.Rmd
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2018_S_out/
    Untracked:  code/SCZ_2018_out/
    Untracked:  code/SCZ_2020_Single_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/process_scz_2018_snps.R
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_analysis.sbatch
    Untracked:  code/run_SCZ_2018_analysis.sh
    Untracked:  code/run_SCZ_2018_analysis_S.sbatch
    Untracked:  code/run_SCZ_2018_analysis_S.sh
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2020_Single_analysis.sbatch
    Untracked:  code/run_SCZ_2020_Single_analysis.sh
    Untracked:  code/run_SCZ_2020_Single_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/GO_Terms/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2018/
    Untracked:  data/SCZ_2018_S/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/Supplementary Table 15 - MAGMA.xlsx
    Untracked:  data/Supplementary Table 20 - Prioritised Genes.xlsx
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/scz_2018.RDS
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt
    Untracked:  top_genes_32.txt
    Untracked:  top_genes_37.txt
    Untracked:  top_genes_43.txt
    Untracked:  top_genes_81.txt
    Untracked:  z_snp_pos_SCZ.RData
    Untracked:  z_snp_pos_SCZ_2014_EUR.RData
    Untracked:  z_snp_pos_SCZ_2018.RData
    Untracked:  z_snp_pos_SCZ_2020.RData

Unstaged changes:
    Deleted:    analysis/BMI_S_results.Rmd
    Modified:   analysis/SCZ_2018_Brain_Amygdala_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Caudate_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellar_Hemisphere_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellum_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cortex_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Frontal_Cortex_BA9_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hippocampus_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hypothalamus_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Putamen_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Substantia_nigra_S.Rmd
    Modified:   analysis/SCZ_Annotation_Analysis.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Putamen_basal_ganglia_S.Rmd) and HTML (docs/SCZ_2018_Brain_Putamen_basal_ganglia_S.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 7d08c9b sq-96 2022-05-18 update
html 7d08c9b sq-96 2022-05-18 update
Rmd 2749be9 sq-96 2022-05-12 update
html 2749be9 sq-96 2022-05-12 update
html 011327d sq-96 2022-05-12 update
Rmd 6c6abbd sq-96 2022-05-12 update

library(reticulate)
use_python("/scratch/midway2/shengqian/miniconda3/envs/PythonForR/bin/python",required=T)

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 18714
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1715 1341 1135  747  753  935 1084  644  764  833 1148 1001  362  676  630  762 
  17   18   19   20   21   22 
1314  271 1307  672   31  589 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 16516
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8825
INFO:numexpr.utils:Note: NumExpr detected 56 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
finish

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union

Check convergence of parameters

Version Author Date
2749be9 sq-96 2022-05-12
     gene       snp 
0.0072380 0.0003126 
 gene   snp 
10.69 10.43 
[1] 105318
[1]    6949 6309950
    gene      snp 
0.005105 0.195372 
[1] 0.01403 1.07231

Genes with highest PIPs

Version Author Date
2749be9 sq-96 2022-05-12
      genename region_tag susie_pip   mu2       PVE      z num_intron num_sqtl
3297      LRP8       1_33    1.1442 32.81 0.0003081 -4.820          6        6
3201 LINC00320       21_6    1.0821 28.61 0.0003052 -5.336          5        5
2149  FAM177A1       14_9    1.0339 23.94 0.0002097 -4.872         12       15
669       BDNF      11_19    0.9001 22.57 0.0001719 -4.348          3        3
3135     LAMA5      20_36    0.8624 24.08 0.0001561 -4.335          9       12
5376     SF3B1      2_117    0.8398 44.94 0.0002906 -7.053          4        4
138     ACTR1B       2_57    0.8262 19.35 0.0001232 -3.978          6        6
4411     PLCB2      15_14    0.8102 24.79 0.0001286 -4.470          5        5
1823    DPYSL3       5_86    0.7896 22.79 0.0001349 -4.157          1        1
402     APOPT1      14_54    0.7860 46.84 0.0002658 -7.431          6        9
256       AKT3      1_128    0.7846 34.91 0.0001953 -6.350          5        6
608     B3GAT1      11_84    0.7836 22.65 0.0001170  4.265          7       10
4751   PYROXD2      10_62    0.7830 21.51 0.0001164  3.718         10       11
2982      KAT5      11_36    0.7775 24.18 0.0001362  4.491          7        7
4063     NTRK3      15_41    0.7498 23.92 0.0001194 -4.457          3        3
2431    GIGYF1       7_62    0.7342 27.41 0.0001384  5.266          2        2
4052     NT5C2      10_66    0.7314 47.24 0.0002278 -8.668          9       11
3350      LY6H       8_94    0.7233 22.36 0.0001059 -4.186          4        4
5640    SNRPA1      15_50    0.7159 22.06 0.0001057 -3.967          2        3
4522     PP2D1       3_14    0.7018 24.44 0.0001075  4.056          3        4

Genes with highest PVE

      genename region_tag susie_pip   mu2       PVE      z num_intron num_sqtl
3297      LRP8       1_33    1.1442 32.81 0.0003081 -4.820          6        6
3201 LINC00320       21_6    1.0821 28.61 0.0003052 -5.336          5        5
5376     SF3B1      2_117    0.8398 44.94 0.0002906 -7.053          4        4
402     APOPT1      14_54    0.7860 46.84 0.0002658 -7.431          6        9
4052     NT5C2      10_66    0.7314 47.24 0.0002278 -8.668          9       11
2149  FAM177A1       14_9    1.0339 23.94 0.0002097 -4.872         12       15
256       AKT3      1_128    0.7846 34.91 0.0001953 -6.350          5        6
669       BDNF      11_19    0.9001 22.57 0.0001719 -4.348          3        3
3135     LAMA5      20_36    0.8624 24.08 0.0001561 -4.335          9       12
1704      DGKZ      11_28    0.5830 47.17 0.0001522  7.216          1        1
2431    GIGYF1       7_62    0.7342 27.41 0.0001384  5.266          2        2
2982      KAT5      11_36    0.7775 24.18 0.0001362  4.491          7        7
3373    MAD1L1        7_3    0.5571 54.63 0.0001359  7.478          4        4
1823    DPYSL3       5_86    0.7896 22.79 0.0001349 -4.157          1        1
4411     PLCB2      15_14    0.8102 24.79 0.0001286 -4.470          5        5
138     ACTR1B       2_57    0.8262 19.35 0.0001232 -3.978          6        6
4063     NTRK3      15_41    0.7498 23.92 0.0001194 -4.457          3        3
5295   SDCCAG8      1_128    0.6962 27.40 0.0001191  5.377          6        9
608     B3GAT1      11_84    0.7836 22.65 0.0001170  4.265          7       10
4751   PYROXD2      10_62    0.7830 21.51 0.0001164  3.718         10       11

Comparing z scores and PIPs

Version Author Date
2749be9 sq-96 2022-05-12

Version Author Date
2749be9 sq-96 2022-05-12
[1] 0.01597
         genename region_tag susie_pip    mu2       PVE       z num_intron
401          APOM       6_26 1.884e-04 215.80 7.023e-11  11.590          3
623          BAG6       6_26 9.194e-05 215.80 1.679e-11 -11.590          5
6535        VARS2       6_25 6.847e-02 101.95 4.538e-06 -11.137          1
868      C6orf136       6_24 7.194e-02  79.99 3.931e-06  11.031          2
2294        FLOT1       6_24 1.607e-01  78.65 1.917e-05 -10.981          6
1602      CYP21A2       6_26 3.944e-06 179.01 2.643e-14 -10.736          1
741        BTN3A2       6_20 6.252e-02  91.47 1.705e-06 -10.717          4
2555        GPSM3       6_26 3.863e-06 120.46 1.706e-14  -9.377          2
1061       CCHCR1       6_25 6.850e-02  61.89 1.309e-06  -9.272         10
1655         DDR1       6_25 1.253e-02  68.37 1.019e-07   9.016          1
1915        EGFL8       6_26 1.227e-05 121.04 1.708e-13  -8.953          2
4052        NT5C2      10_66 7.314e-01  47.24 2.278e-04  -8.668          9
3383        MAIP1      2_118 2.500e-01  44.44 2.637e-05  -7.980          1
494         AS3MT      10_66 3.678e-01  40.78 5.194e-05   7.907          4
5139 RP5-874C20.8       6_22 2.458e-02  37.09 1.450e-07  -7.603          3
3373       MAD1L1        7_3 5.571e-01  54.63 1.359e-04   7.478          4
6941      ZSCAN16       6_22 2.837e-02  53.72 1.616e-07  -7.468          3
402        APOPT1      14_54 7.860e-01  46.84 2.658e-04  -7.431          6
3081         KLC1      14_54 2.052e-01  49.40 1.648e-05   7.382          6
1704         DGKZ      11_28 5.830e-01  47.17 1.522e-04   7.216          1
     num_sqtl
401         3
623         5
6535        1
868         2
2294        6
1602        2
741         5
2555        2
1061       15
1655        1
1915        3
4052       11
3383        1
494         5
5139        4
3373        4
6941        3
402         9
3081        6
1704        1

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 48
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

Version Author Date
2749be9 sq-96 2022-05-12
                                                               Term Overlap
1 positive regulation of neuron projection development (GO:0010976)    4/88
2      positive regulation of phospholipase C activity (GO:0010863)    3/43
  Adjusted.P.value                  Genes
1          0.03183 BDNF;NTRK3;DPYSL3;LRP8
2          0.04056       BDNF;NTRK3;PLCB2
[1] "GO_Cellular_Component_2021"

Version Author Date
2749be9 sq-96 2022-05-12
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

Version Author Date
2749be9 sq-96 2022-05-12
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                                              Description      FDR Ratio
78                                          Schizophrenia 0.002404 10/22
245                               Intellectual Disability 0.005414  7/22
15                             Adenocarcinoma of prostate 0.027112  2/22
56                                                Measles 0.027112  1/22
96                          Electroencephalogram abnormal 0.027112  1/22
208                             Sporadic Breast Carcinoma 0.027112  1/22
212                          Primary peritoneal carcinoma 0.027112  1/22
223 BREAST-OVARIAN CANCER, FAMILIAL, SUSCEPTIBILITY TO, 1 0.027112  1/22
224         BREAST CANCER, FAMILIAL, SUSCEPTIBILITY TO, 1 0.027112  1/22
225        OVARIAN CANCER, FAMILIAL, SUSCEPTIBILITY TO, 1 0.027112  1/22
     BgRatio
78  883/9703
245 447/9703
15   20/9703
56    1/9703
96    1/9703
208   1/9703
212   1/9703
223   1/9703
224   1/9703
225   1/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Warning: replacing previous import 'lifecycle::last_warnings' by
'rlang::last_warnings' when loading 'hms'
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Warning: ggrepel: 14 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Version Author Date
2749be9 sq-96 2022-05-12

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 53
#significance threshold for TWAS
print(sig_thresh)
[1] 4.488
#number of ctwas genes
length(ctwas_genes)
[1] 8
#number of TWAS genes
length(twas_genes)
[1] 111
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
     genename region_tag susie_pip   mu2       PVE      z num_intron num_sqtl
138    ACTR1B       2_57    0.8262 19.35 0.0001232 -3.978          6        6
669      BDNF      11_19    0.9001 22.57 0.0001719 -4.348          3        3
3135    LAMA5      20_36    0.8624 24.08 0.0001561 -4.335          9       12
4411    PLCB2      15_14    0.8102 24.79 0.0001286 -4.470          5        5
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.02308 0.10769 
#specificity
print(specificity)
 ctwas   TWAS 
0.9993 0.9859 
#precision / PPV
print(precision)
 ctwas   TWAS 
0.3750 0.1261 

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.4.0      forcats_0.5.1     stringr_1.4.0     purrr_0.3.4      
 [5] readr_1.4.0       tidyr_1.1.3       tidyverse_1.3.1   tibble_3.1.7     
 [9] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.1.1    
[13] ggplot2_3.3.5     dplyr_1.0.7       reticulate_1.25   workflowr_1.7.0  

loaded via a namespace (and not attached):
 [1] fs_1.5.0          lubridate_1.7.10  doParallel_1.0.16 httr_1.4.2       
 [5] rprojroot_2.0.2   tools_4.1.0       backports_1.2.1   doRNG_1.8.2      
 [9] bslib_0.2.5.1     utf8_1.2.1        R6_2.5.0          vipor_0.4.5      
[13] DBI_1.1.1         colorspace_2.0-2  withr_2.4.2       ggrastr_1.0.1    
[17] tidyselect_1.1.1  processx_3.5.2    curl_4.3.2        compiler_4.1.0   
[21] git2r_0.28.0      rvest_1.0.0       cli_3.0.0         Cairo_1.5-15     
[25] xml2_1.3.2        labeling_0.4.2    sass_0.4.0        scales_1.1.1     
[29] callr_3.7.0       systemfonts_1.0.4 apcluster_1.4.9   digest_0.6.27    
[33] rmarkdown_2.9     svglite_2.0.0     pkgconfig_2.0.3   htmltools_0.5.1.1
[37] dbplyr_2.1.1      highr_0.9         rlang_1.0.2       rstudioapi_0.13  
[41] jquerylib_0.1.4   farver_2.1.0      generics_0.1.0    jsonlite_1.7.2   
[45] magrittr_2.0.1    Matrix_1.3-3      ggbeeswarm_0.6.0  Rcpp_1.0.7       
[49] munsell_0.5.0     fansi_0.5.0       lifecycle_1.0.0   stringi_1.6.2    
[53] whisker_0.4       yaml_2.2.1        plyr_1.8.6        grid_4.1.0       
[57] ggrepel_0.9.1     parallel_4.1.0    promises_1.2.0.1  crayon_1.4.1     
[61] lattice_0.20-44   haven_2.4.1       hms_1.1.0         knitr_1.33       
[65] ps_1.6.0          pillar_1.7.0      igraph_1.2.6      rjson_0.2.20     
[69] rngtools_1.5      reshape2_1.4.4    codetools_0.2-18  reprex_2.0.0     
[73] glue_1.4.2        evaluate_0.14     getPass_0.2-2     modelr_0.1.8     
[77] data.table_1.14.0 png_0.1-7         vctrs_0.3.8       httpuv_1.6.1     
[81] foreach_1.5.1     cellranger_1.1.0  gtable_0.3.0      assertthat_0.2.1 
[85] xfun_0.24         broom_0.7.8       later_1.2.0       iterators_1.0.13 
[89] beeswarm_0.4.0    ellipsis_0.3.2    here_1.0.1