Last updated: 2021-12-23
Checks: 6 1
Knit directory: cTWAS_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211220)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.
absolute | relative |
---|---|
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ | data |
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R | code/ctwas_config.R |
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version d35d121. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: analysis/figure/
Untracked files:
Untracked: code/ctwas_config.R
Untracked: code/run_AF_analysis.sbatch
Untracked: code/run_AF_analysis.sh
Untracked: code/run_AF_ctwas_rss_LDR.R
Untracked: data/AF/
Untracked: data/mashr_Heart_Atrial_Appendage.db
Untracked: data/summary_known_genes_annotations.xlsx
Unstaged changes:
Modified: analysis/Atrial_Fibrillation_Heart_Left_Ventricle.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Atrial_Fibrillation_Heart_Atrial_Appendage.Rmd
) and HTML (docs/Atrial_Fibrillation_Heart_Atrial_Appendage.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | d35d121 | sq-96 | 2021-12-23 | update analysis |
html | 1f785cf | sq-96 | 2021-12-22 | Build site. |
Rmd | 7784da6 | sq-96 | 2021-12-22 | Start my new project |
html | 82c68fd | sq-96 | 2021-12-22 | Build site. |
Rmd | 7e05bbc | sq-96 | 2021-12-22 | Start my new project |
html | 9cf0e70 | sq-96 | 2021-12-22 | Build site. |
Rmd | fbe71b7 | sq-96 | 2021-12-22 | Start my new project |
html | 77de9fb | sq-96 | 2021-12-22 | Build site. |
Rmd | c22d2e9 | sq-96 | 2021-12-22 | Start my new project |
html | 6b46de7 | sq-96 | 2021-12-22 | Build site. |
Rmd | 374327b | sq-96 | 2021-12-22 | Start my new project |
html | e22d0c9 | sq-96 | 2021-12-21 | Build site. |
html | a8dbae0 | sq-96 | 2021-12-21 | Build site. |
Rmd | 37c4593 | sq-96 | 2021-12-21 | publish files |
html | e080e7b | sq-96 | 2021-12-20 | Build site. |
Rmd | 0b4a886 | sq-96 | 2021-12-20 | Start my new project |
html | 9b1bb6e | sq-96 | 2021-12-20 | Build site. |
html | 773dcb5 | sq-96 | 2021-12-20 | Build site. |
html | 3052d49 | sq-96 | 2021-12-20 | Build site. |
Rmd | 12069cf | sq-96 | 2021-12-20 | Publish the files |
qclist_all <- list()
qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))
for (i in 1:length(qc_files)){
load(qc_files[i])
chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}
qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"
rm(qclist, wgtlist, z_gene_chr)
#number of imputed weights
nrow(qclist_all)
[1] 10862
#number of imputed weights by chromosome
table(qclist_all$chr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1103 776 625 427 501 624 518 377 399 423 648 611 203 368 356 495
17 18 19 20 21 22
676 177 840 318 126 271
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.6548518
library(ggplot2)
library(cowplot)
********************************************************
Note: As of version 1.0.0, cowplot does not change the
default ggplot2 theme anymore. To recover the previous
behavior, execute:
theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
value = c(group_prior_rec[1,], group_prior_rec[2,]),
group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)
df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument
p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
geom_line(aes(color=group)) +
geom_point(aes(color=group)) +
xlab("Iteration") + ylab(bquote(pi)) +
ggtitle("Prior mean") +
theme_cowplot()
df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
geom_line(aes(color=group)) +
geom_point(aes(color=group)) +
xlab("Iteration") + ylab(bquote(sigma^2)) +
ggtitle("Prior variance") +
theme_cowplot()
plot_grid(p_pi, p_sigma2)
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
gene snp
0.0208487453 0.0001927855
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
gene snp
9.646456 8.679052
#report sample size
print(sample_size)
[1] 1030836
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1] 10862 6839050
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
gene snp
0.00211918 0.01110076
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.01225055 0.12523867
#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
genename region_tag susie_pip mu2 PVE z
2293 CAV1 7_70 1.0000000 622.84815 6.042165e-04 15.567870
3275 PRRX1 1_84 0.9998808 119.34663 1.157627e-04 14.667578
4009 DEK 6_14 0.9925129 63.47784 6.111795e-05 -9.000000
3527 CCND2 12_4 0.9906174 27.01637 2.596231e-05 -5.283784
1310 PXN 12_75 0.9826498 29.47170 2.809405e-05 -5.328302
12836 RP11-325L7.2 5_82 0.9826020 1993.73789 1.900449e-03 12.356322
9257 AGAP5 10_49 0.9779202 48.91516 4.640420e-05 11.518590
3523 KLF12 13_36 0.9770829 26.00017 2.464439e-05 -5.072464
6621 AKAP6 14_8 0.9721549 76.81846 7.244551e-05 -9.197368
6914 JAM2 21_9 0.9640543 22.19279 2.075505e-05 4.563232
9639 DLEU1 13_21 0.9586468 23.59091 2.193885e-05 4.697095
11818 DPF3 14_34 0.9574312 33.35512 3.097993e-05 6.264960
10521 FAM43A 3_120 0.9569176 29.69898 2.756935e-05 -5.487179
2444 SEC23IP 10_74 0.9517809 22.38862 2.067163e-05 -4.565228
13075 LINC01629 14_36 0.9471613 31.88580 2.929757e-05 -5.695652
2138 AES 19_4 0.9403219 20.20438 1.843030e-05 4.182804
4658 POPDC3 6_70 0.9252511 25.19514 2.261449e-05 -4.758170
10290 NKX2-5 5_103 0.9228745 61.55975 5.511247e-05 -9.391892
7515 TNFSF13 17_7 0.9135188 34.26969 3.036953e-05 -5.883117
5185 GYPC 2_74 0.9068050 38.95864 3.427111e-05 -6.380531
8248 CMTM5 14_3 0.9067300 30.09803 2.647442e-05 -5.472727
10548 SCN10A 3_28 0.8867624 77.72022 6.685774e-05 -8.814286
13967 RP5-890E16.5 17_28 0.8660551 23.11200 1.941751e-05 -4.761194
712 SP100 2_135 0.8658723 18.73540 1.573719e-05 -3.671335
9012 MTSS1 8_82 0.8594108 20.87861 1.740655e-05 4.402634
8992 MURC 9_50 0.8478869 23.34736 1.920376e-05 4.911964
5223 PSMB7 9_64 0.8430652 25.30057 2.069197e-05 -4.820896
6114 STK11IP 2_130 0.8406381 18.96825 1.546845e-05 -3.868022
10416 PGP 16_2 0.8298586 28.51218 2.295329e-05 5.943820
9691 BOK 2_144 0.8255975 19.18259 1.536335e-05 3.910125
8420 MARS 12_36 0.8180336 17.81958 1.414097e-05 -3.366197
3088 GNB4 3_110 0.8097696 30.34628 2.383842e-05 -5.583333
num_eqtl
2293 3
3275 2
4009 1
3527 1
1310 1
12836 1
9257 2
3523 1
6621 1
6914 2
9639 1
11818 3
10521 1
2444 2
13075 1
2138 3
4658 1
10290 1
7515 1
5185 1
8248 1
10548 1
13967 1
712 2
9012 2
8992 2
5223 1
6114 2
10416 1
9691 3
8420 1
3088 1
#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
genename region_tag susie_pip mu2 PVE z
3250 WIPF1 2_105 0.000000e+00 2852.2491 0.000000e+00 8.4415584
12836 RP11-325L7.2 5_82 9.826020e-01 1993.7379 1.900449e-03 12.3563218
1487 SIRT1 10_44 3.337242e-01 1299.2406 4.206179e-04 -5.0538462
7413 IL6R 1_75 5.862422e-12 1273.1807 7.240649e-15 -4.9784946
6444 HERC4 10_44 1.013394e-01 1220.9395 1.200281e-04 -5.3595598
11106 NACA 12_35 5.127731e-03 1179.0569 5.865032e-06 -6.2408092
960 BAZ2A 12_35 2.047295e-03 1162.5562 2.308898e-06 -5.9428571
7986 SLC35A1 6_59 0.000000e+00 804.8763 0.000000e+00 -5.0724638
2507 WNT3 17_27 3.707228e-05 797.4584 2.867925e-08 -4.3894024
2292 CAV2 7_70 0.000000e+00 689.1121 0.000000e+00 14.5349429
2293 CAV1 7_70 1.000000e+00 622.8482 6.042165e-04 15.5678701
4999 ORC3 6_59 0.000000e+00 597.6005 0.000000e+00 4.1666667
10616 ARL17A 17_27 7.713881e-06 488.6853 3.656896e-09 -0.5399498
3687 KDM3B 5_82 5.275983e-06 436.2575 2.232835e-09 -6.6287277
7728 GPR155 2_105 0.000000e+00 371.9331 0.000000e+00 -1.4546586
7276 ARHGAP27 17_27 5.875984e-06 189.4420 1.079860e-09 0.1576482
10739 MAPT 17_27 2.791224e-04 166.5127 4.508711e-08 3.8724621
7729 PMVK 1_76 9.693335e-05 161.1464 1.515319e-08 -12.1029412
7730 PBXIP1 1_76 9.335873e-05 156.1414 1.414111e-08 -11.8676471
341 FAM13B 5_82 1.826415e-01 153.9825 2.728233e-05 7.6009242
num_eqtl
3250 1
12836 1
1487 1
7413 1
6444 2
11106 2
960 1
7986 1
2507 2
2292 2
2293 3
4999 1
10616 2
3687 2
7728 2
7276 2
10739 2
7729 1
7730 1
341 2
#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
genename region_tag susie_pip mu2 PVE z
12836 RP11-325L7.2 5_82 0.9826020 1993.73789 1.900449e-03 12.356322
2293 CAV1 7_70 1.0000000 622.84815 6.042165e-04 15.567870
1487 SIRT1 10_44 0.3337242 1299.24064 4.206179e-04 -5.053846
6444 HERC4 10_44 0.1013394 1220.93950 1.200281e-04 -5.359560
3275 PRRX1 1_84 0.9998808 119.34663 1.157627e-04 14.667578
6621 AKAP6 14_8 0.9721549 76.81846 7.244551e-05 -9.197368
10548 SCN10A 3_28 0.8867624 77.72022 6.685774e-05 -8.814286
12013 ZSWIM8 10_49 0.7522384 87.25963 6.367652e-05 -11.216495
4009 DEK 6_14 0.9925129 63.47784 6.111795e-05 -9.000000
8298 SYNPO2L 10_49 0.6265676 99.72467 6.061512e-05 -11.945652
10290 NKX2-5 5_103 0.9228745 61.55975 5.511247e-05 -9.391892
9257 AGAP5 10_49 0.9779202 48.91516 4.640420e-05 11.518590
5185 GYPC 2_74 0.9068050 38.95864 3.427111e-05 -6.380531
3665 KCNJ5 11_80 0.5037532 67.73277 3.309993e-05 -8.748092
11818 DPF3 14_34 0.9574312 33.35512 3.097993e-05 6.264960
10515 C5orf47 5_104 0.7661297 41.61108 3.092586e-05 6.680556
7515 TNFSF13 17_7 0.9135188 34.26969 3.036953e-05 -5.883117
13075 LINC01629 14_36 0.9471613 31.88580 2.929757e-05 -5.695652
1310 PXN 12_75 0.9826498 29.47170 2.809405e-05 -5.328302
10521 FAM43A 3_120 0.9569176 29.69898 2.756935e-05 -5.487179
num_eqtl
12836 1
2293 3
1487 1
6444 2
3275 2
6621 1
10548 1
12013 1
4009 1
8298 1
10290 1
9257 2
5185 1
3665 1
11818 3
10515 1
7515 1
13075 1
1310 1
10521 1
#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
genename region_tag susie_pip mu2 PVE z
2293 CAV1 7_70 1.000000e+00 622.84815 6.042165e-04 15.567870
3275 PRRX1 1_84 9.998808e-01 119.34663 1.157627e-04 14.667578
2292 CAV2 7_70 0.000000e+00 689.11215 0.000000e+00 14.534943
12836 RP11-325L7.2 5_82 9.826020e-01 1993.73789 1.900449e-03 12.356322
7729 PMVK 1_76 9.693335e-05 161.14638 1.515319e-08 -12.102941
8298 SYNPO2L 10_49 6.265676e-01 99.72467 6.061512e-05 -11.945652
7730 PBXIP1 1_76 9.335873e-05 156.14141 1.414111e-08 -11.867647
9805 MYOZ1 10_49 3.497772e-03 88.98387 3.019349e-07 11.759348
9257 AGAP5 10_49 9.779202e-01 48.91516 4.640420e-05 11.518590
12013 ZSWIM8 10_49 7.522384e-01 87.25963 6.367652e-05 -11.216495
6395 C9orf3 9_48 4.919856e-02 94.74228 4.521751e-06 10.671642
7407 ZBTB7B 1_76 9.636563e-05 122.09475 1.141378e-08 10.638889
13556 RP1-79C4.4 1_84 8.254209e-03 58.95140 4.720414e-07 9.586404
10290 NKX2-5 5_103 9.228745e-01 61.55975 5.511247e-05 -9.391892
9719 SEC24C 10_49 9.597200e-04 46.26092 4.306945e-08 9.271945
6621 AKAP6 14_8 9.721549e-01 76.81846 7.244551e-05 -9.197368
4009 DEK 6_14 9.925129e-01 63.47784 6.111795e-05 -9.000000
10548 SCN10A 3_28 8.867624e-01 77.72022 6.685774e-05 -8.814286
3665 KCNJ5 11_80 5.037532e-01 67.73277 3.309993e-05 -8.748092
7733 DCST2 1_76 2.613168e-04 89.76014 2.275418e-08 -8.718310
num_eqtl
2293 3
3275 2
2292 2
12836 1
7729 1
8298 1
7730 1
9805 2
9257 2
12013 1
6395 1
7407 1
13556 2
10290 1
9719 2
6621 1
4009 1
10548 1
3665 1
7733 1
#set nominal signifiance threshold for z scores
alpha <- 0.05
#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)
#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))
plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.008654023
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
genename region_tag susie_pip mu2 PVE z
2293 CAV1 7_70 1.000000e+00 622.84815 6.042165e-04 15.567870
3275 PRRX1 1_84 9.998808e-01 119.34663 1.157627e-04 14.667578
2292 CAV2 7_70 0.000000e+00 689.11215 0.000000e+00 14.534943
12836 RP11-325L7.2 5_82 9.826020e-01 1993.73789 1.900449e-03 12.356322
7729 PMVK 1_76 9.693335e-05 161.14638 1.515319e-08 -12.102941
8298 SYNPO2L 10_49 6.265676e-01 99.72467 6.061512e-05 -11.945652
7730 PBXIP1 1_76 9.335873e-05 156.14141 1.414111e-08 -11.867647
9805 MYOZ1 10_49 3.497772e-03 88.98387 3.019349e-07 11.759348
9257 AGAP5 10_49 9.779202e-01 48.91516 4.640420e-05 11.518590
12013 ZSWIM8 10_49 7.522384e-01 87.25963 6.367652e-05 -11.216495
6395 C9orf3 9_48 4.919856e-02 94.74228 4.521751e-06 10.671642
7407 ZBTB7B 1_76 9.636563e-05 122.09475 1.141378e-08 10.638889
13556 RP1-79C4.4 1_84 8.254209e-03 58.95140 4.720414e-07 9.586404
10290 NKX2-5 5_103 9.228745e-01 61.55975 5.511247e-05 -9.391892
9719 SEC24C 10_49 9.597200e-04 46.26092 4.306945e-08 9.271945
6621 AKAP6 14_8 9.721549e-01 76.81846 7.244551e-05 -9.197368
4009 DEK 6_14 9.925129e-01 63.47784 6.111795e-05 -9.000000
10548 SCN10A 3_28 8.867624e-01 77.72022 6.685774e-05 -8.814286
3665 KCNJ5 11_80 5.037532e-01 67.73277 3.309993e-05 -8.748092
7733 DCST2 1_76 2.613168e-04 89.76014 2.275418e-08 -8.718310
num_eqtl
2293 3
3275 2
2292 2
12836 1
7729 1
8298 1
7730 1
9805 2
9257 2
12013 1
6395 1
7407 1
13556 2
10290 1
9719 2
6621 1
4009 1
10548 1
3665 1
7733 1
ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]
report_cols_region <- report_cols[!(report_cols %in% c("num_eqtl"))]
n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
ctwas_res_region <- ctwas_res[ctwas_res$region_tag==region_tag_plot,]
start <- min(ctwas_res_region$pos)
end <- max(ctwas_res_region$pos)
ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
#region name
print(paste0("Region: ", region_tag_plot))
#table of genes in region
print(ctwas_res_region_gene[,report_cols_region])
par(mfrow=c(4,1))
#gene z scores
plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
main=paste0("Region: ", region_tag_plot))
abline(h=sig_thresh,col="red",lty=2)
#significance threshold for SNPs
alpha_snp <- 5*10^(-8)
sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
#snp z scores
plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
abline(h=sig_thresh_snp,col="purple",lty=2)
#gene pips
plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
abline(h=0.8,col="blue",lty=2)
#snp pips
plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 7_70"
genename region_tag susie_pip mu2 PVE z
9316 LRRN3 7_70 0 4.798139 0.0000000000 -0.2554113
10486 IMMP2L 7_70 0 9.726840 0.0000000000 -1.1251408
10096 LSMEM1 7_70 0 4.653263 0.0000000000 0.1730349
6325 TMEM168 7_70 0 13.129092 0.0000000000 1.4473363
8015 GPR85 7_70 0 59.638319 0.0000000000 3.6640335
8014 BMT2 7_70 0 14.144825 0.0000000000 1.5304348
12439 HRAT17 7_70 0 10.070641 0.0000000000 -1.1617647
11985 LINC00998 7_70 0 9.138407 0.0000000000 -1.0595238
6892 PPP1R3A 7_70 0 11.619381 0.0000000000 -1.3141517
4991 MDFIC 7_70 0 9.711018 0.0000000000 1.1940299
4990 TES 7_70 0 5.365475 0.0000000000 0.2279955
2292 CAV2 7_70 0 689.112146 0.0000000000 14.5349429
2293 CAV1 7_70 1 622.848152 0.0006042165 15.5678701
11541 CAPZA2 7_70 0 4.817249 0.0000000000 -0.5522388
[1] "Region: 1_84"
genename region_tag susie_pip mu2 PVE z
3275 PRRX1 1_84 0.999880773 119.346630 1.157627e-04 14.6675780
13556 RP1-79C4.4 1_84 0.008254209 58.951404 4.720414e-07 9.5864041
132 FMO3 1_84 0.007235866 6.979886 4.899472e-08 0.7058824
1450 FMO2 1_84 0.005819057 4.561901 2.575187e-08 -0.1257130
964 FMO4 1_84 0.006067492 5.455974 3.211382e-08 0.8619618
364 MYOC 1_84 0.005790338 4.650929 2.612486e-08 0.2537313
3427 VAMP4 1_84 0.024556213 14.423816 3.435991e-07 -1.8006622
11344 DNM3 1_84 0.028756639 18.635294 5.198581e-07 1.9131944
5075 PIGC 1_84 0.009407288 9.222146 8.416022e-08 -1.1709099
10093 C1orf105 1_84 0.006032874 4.956744 2.900889e-08 -0.5632184
1451 SUCO 1_84 0.010489256 9.463884 9.629961e-08 0.9829060
Version | Author | Date |
---|---|---|
77de9fb | sq-96 | 2021-12-22 |
[1] "Region: 5_82"
genename region_tag susie_pip mu2 PVE z
1029 PKD2L2 5_82 1.074133e-06 44.303563 4.616439e-11 -3.01646091
12836 RP11-325L7.2 5_82 9.826020e-01 1993.737895 1.900449e-03 12.35632184
341 FAM13B 5_82 1.826415e-01 153.982522 2.728233e-05 7.60092424
2972 NME5 5_82 8.035979e-08 7.216916 5.626015e-13 -0.78899083
3687 KDM3B 5_82 5.275983e-06 436.257478 2.232835e-09 -6.62872770
4678 REEP2 5_82 3.273136e-07 34.258854 1.087795e-11 -2.33668342
3688 EGR1 5_82 1.582507e-07 28.468689 4.370424e-12 -0.46666667
2975 HSPA9 5_82 1.191309e-07 15.195222 1.756070e-12 -1.47659574
425 CTNNA1 5_82 8.323910e-08 55.376623 4.471614e-12 -0.68493151
6256 LRRTM2 5_82 8.644342e-08 53.238157 4.464423e-12 -0.57534247
8964 SLC23A1 5_82 7.435045e-08 9.459617 6.822878e-13 -0.45945946
12284 PROB1 5_82 7.443824e-08 7.340816 5.300915e-13 -0.37662338
8961 SPATA24 5_82 7.971111e-08 12.023543 9.297404e-13 0.74647887
8959 DNAJC18 5_82 7.430306e-08 6.843115 4.932544e-13 0.07692308
10457 TMEM173 5_82 1.052563e-07 9.743512 9.948880e-13 0.52710454
Version | Author | Date |
---|---|---|
77de9fb | sq-96 | 2021-12-22 |
[1] "Region: 1_76"
genename region_tag susie_pip mu2 PVE z
7729 PMVK 1_76 9.693335e-05 161.146376 1.515319e-08 -12.1029412
7730 PBXIP1 1_76 9.335873e-05 156.141409 1.414111e-08 -11.8676471
7409 SHC1 1_76 1.029606e-04 12.706941 1.269178e-09 -0.5945946
7407 ZBTB7B 1_76 9.636563e-05 122.094754 1.141378e-08 10.6388889
6001 ADAM15 1_76 1.054076e-04 19.807533 2.025408e-09 3.0000000
7733 DCST2 1_76 2.613168e-04 89.760135 2.275418e-08 -8.7183099
6011 EFNA3 1_76 1.089596e-04 11.240179 1.188089e-09 -2.2724138
8787 EFNA1 1_76 1.606785e-04 11.329113 1.765892e-09 -1.8067354
8786 SLC50A1 1_76 1.003646e-04 6.652241 6.476776e-10 0.8410502
10571 MUC1 1_76 2.518113e-04 20.984333 5.126026e-09 -0.9716981
9323 MTX1 1_76 1.791435e-04 16.586200 2.882427e-09 0.5555556
9782 GBA 1_76 1.026910e-04 7.311893 7.284044e-10 -0.5299145
3310 SCAMP3 1_76 2.912632e-04 23.792281 6.722520e-09 -3.3289474
7735 YY1AP1 1_76 2.425271e-04 16.618716 3.909923e-09 -1.9970399
4695 DAP3 1_76 2.664936e-04 29.575646 7.645948e-09 -3.5890411
3313 GON4L 1_76 2.496430e-03 41.586291 1.007117e-07 -3.9452055
4703 SYT11 1_76 2.496430e-03 41.586291 1.007117e-07 3.9452055
6015 RIT1 1_76 2.304738e-04 20.358641 4.551775e-09 2.5915493
4696 KIAA0907 1_76 1.475526e-04 7.222145 1.033769e-09 0.5050776
3314 ARHGEF2 1_76 2.545536e-03 38.509404 9.509474e-08 3.1323529
7755 SSR2 1_76 1.009922e-04 10.918250 1.069673e-09 1.8503401
3315 LAMTOR2 1_76 2.403669e-04 11.662362 2.719390e-09 0.7234637
11033 SEMA4A 1_76 3.065448e-04 12.239053 3.639588e-09 -0.4358974
7419 SLC25A44 1_76 1.133154e-04 6.396866 7.031801e-10 0.9130609
12648 BGLAP 1_76 1.086835e-04 12.509241 1.318879e-09 2.3348238
7418 PAQR6 1_76 1.717449e-04 10.265336 1.710281e-09 0.2561399
7754 TMEM79 1_76 9.629572e-05 9.278082 8.667136e-10 2.2625000
11561 SMG5 1_76 9.629572e-05 9.278082 8.667136e-10 -2.2625000
Version | Author | Date |
---|---|---|
77de9fb | sq-96 | 2021-12-22 |
[1] "Region: 10_49"
genename region_tag susie_pip mu2 PVE z
2448 PALD1 10_49 6.930061e-05 10.464471 7.035011e-10 1.2023810
5427 ADAMTS14 10_49 4.041175e-05 5.577877 2.186689e-10 -0.5051546
8279 SGPL1 10_49 4.383695e-05 6.314746 2.685386e-10 0.6594096
8282 PCBD1 10_49 3.637634e-05 4.624703 1.631974e-10 -0.1515152
2449 UNC5B 10_49 4.079184e-05 5.662476 2.240733e-10 0.5252525
2450 CDH23 10_49 5.372325e-05 8.157613 4.251437e-10 -0.9400479
2451 VSIR 10_49 4.235290e-05 5.884211 2.417585e-10 -0.4533295
12014 C10orf105 10_49 3.693800e-05 4.763447 1.706889e-10 0.2383178
11301 PSAP 10_49 4.143656e-05 5.328503 2.141901e-10 0.6926829
3840 CHST3 10_49 3.920994e-05 6.023333 2.291097e-10 -1.2205882
2452 SPOCK2 10_49 3.803373e-05 5.050485 1.863427e-10 0.5000000
8296 ANAPC16 10_49 7.630441e-05 11.415357 8.449861e-10 1.5096021
5424 ASCC1 10_49 3.691548e-05 5.519486 1.976595e-10 -0.3622163
8632 DDIT4 10_49 4.114673e-05 6.155464 2.457008e-10 0.4788732
6453 DNAJB12 10_49 3.871607e-05 7.240038 2.719209e-10 -1.2362964
7004 MCU 10_49 3.659951e-05 5.173114 1.836698e-10 0.6527778
5426 OIT3 10_49 4.946253e-05 8.617426 4.134894e-10 -0.6470588
13645 RP11-344N10.5 10_49 3.675546e-05 4.856516 1.731638e-10 0.8848495
8299 NUDT13 10_49 4.246247e-05 16.333612 6.728184e-10 -4.1574570
10190 MRPS16 10_49 8.192817e-05 15.875112 1.261713e-09 2.4854195
11923 DNAJC9 10_49 1.447809e-04 21.802775 3.062200e-09 -2.9593023
7006 CFAP70 10_49 4.129670e-05 16.906306 6.772897e-10 -4.3161765
5422 ANXA7 10_49 4.129111e-05 16.129161 6.460689e-10 -4.2137405
13668 RP11-464F9.22 10_49 5.378631e-05 19.460835 1.015415e-09 4.8622754
9805 MYOZ1 10_49 3.497772e-03 88.983867 3.019349e-07 11.7593478
9257 AGAP5 10_49 9.779202e-01 48.915157 4.640420e-05 11.5185898
8298 SYNPO2L 10_49 6.265676e-01 99.724672 6.061512e-05 -11.9456522
13589 RP11-574K11.29 10_49 5.552979e-05 15.390089 8.290441e-10 1.2828283
9719 SEC24C 10_49 9.597200e-04 46.260923 4.306945e-08 9.2719446
11176 FUT11 10_49 5.375832e-04 21.866281 1.140331e-08 -6.5522388
12013 ZSWIM8 10_49 7.522384e-01 87.259631 6.367652e-05 -11.2164948
3838 PLAU 10_49 2.066160e-04 15.107410 3.028060e-09 3.5310286
10503 AP3M1 10_49 3.334117e-04 23.844396 7.712187e-09 -2.0202020
7013 ADK 10_49 3.465243e-04 24.183065 8.129342e-09 2.0408163
1049 DUSP13 10_49 5.692456e-05 8.684736 4.795862e-10 -1.7916667
8167 COMTD1 10_49 1.542145e-04 10.638192 1.591489e-09 2.1111111
13481 RP11-399K21.11 10_49 2.039823e-04 18.379908 3.637025e-09 0.6792247
6445 C10orf11 10_49 4.685159e-05 6.813717 3.096841e-10 -1.0581482
13654 RP11-399K21.14 10_49 3.636678e-05 4.614057 1.627790e-10 -0.1324675
Version | Author | Date |
---|---|---|
77de9fb | sq-96 | 2021-12-22 |
#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
id region_tag susie_pip mu2 PVE z
28439 rs12404927 1_75 1.0000000 1437.87698 1.394865e-03 -1.5517241
28440 rs7536152 1_75 1.0000000 1473.01903 1.428956e-03 -6.4626866
28533 rs34515871 1_76 1.0000000 299.28422 2.903316e-04 17.0000000
32410 rs12142529 1_83 1.0000000 145.61337 1.412576e-04 12.0396040
32435 rs112797273 1_83 1.0000000 101.67077 9.862944e-05 9.4903846
183533 rs1906615 4_72 1.0000000 1756.73093 1.704181e-03 45.1604938
183538 rs7440714 4_72 1.0000000 992.10110 9.624238e-04 -9.2183406
272612 rs111990232 6_59 1.0000000 1710.90898 1.659730e-03 0.5392670
414968 rs76106073 10_44 1.0000000 1273.72173 1.235620e-03 0.6572238
550561 rs140798119 15_35 1.0000000 285.26104 2.767279e-04 3.9950739
550564 rs74022964 15_35 1.0000000 342.92230 3.326643e-04 12.5777778
681435 rs4972703 2_105 1.0000000 4299.78452 4.171163e-03 -0.7842670
739005 rs9770220 7_70 1.0000000 835.76918 8.107683e-04 -5.2814815
788780 rs61937778 12_35 1.0000000 1668.54978 1.618637e-03 -1.3056995
28537 rs2878412 1_76 1.0000000 105.57502 1.024169e-04 5.4250000
586354 rs62056842 17_27 1.0000000 1130.21900 1.096410e-03 1.1269036
28535 rs11576820 1_76 1.0000000 133.71597 1.297160e-04 8.0243902
422177 rs60469668 10_66 1.0000000 172.10824 1.669599e-04 16.9647059
110779 rs9852222 3_9 1.0000000 83.84308 8.133503e-05 8.3823529
339255 rs373983 8_21 0.9999998 67.64329 6.561982e-05 8.5588235
298378 rs12112152 7_15 0.9999995 45.13406 4.378392e-05 6.9358974
422175 rs7094488 10_66 0.9999992 110.01432 1.067233e-04 14.1060606
28540 rs10908445 1_76 0.9999991 193.56990 1.877794e-04 -13.1470588
570907 rs6499606 16_39 0.9999990 103.94144 1.008321e-04 12.6376812
826958 rs8005417 14_9 0.9999978 427.56249 4.147716e-04 0.9863946
852634 rs140185678 16_2 0.9999910 45.86064 4.448839e-05 7.6100917
97513 rs1975584 2_118 0.9999847 71.76048 6.961280e-05 1.2311828
580602 rs72811292 17_11 0.9999789 40.04445 3.884576e-05 -6.5233645
279525 rs11756438 6_79 0.9999723 47.69440 4.626641e-05 -8.2089552
117531 rs116202356 3_27 0.9999305 36.10604 3.502355e-05 6.0813559
176218 rs1458038 4_54 0.9998791 34.99562 3.394467e-05 6.0277778
121102 rs12330500 3_40 0.9997290 519.11865 5.034535e-04 0.5641026
396844 rs1886296 9_73 0.9995279 34.54923 3.349992e-05 5.9863014
39581 rs6427989 1_102 0.9993189 36.39724 3.528442e-05 -4.4142857
653873 rs464901 22_4 0.9992684 43.84562 4.250292e-05 -7.0555556
708945 rs574293775 5_82 0.9987918 1853.69252 1.796069e-03 6.2411765
39582 rs12353975 1_102 0.9982647 35.87479 3.474126e-05 -4.3000000
184120 rs7700110 4_73 0.9979235 45.19125 4.374839e-05 7.0666667
232199 rs199992924 5_68 0.9969497 1340.40151 1.296339e-03 -0.6309524
655632 rs133902 22_7 0.9963501 31.05883 3.001978e-05 6.1617647
232019 rs338623 5_68 0.9953592 67.12738 6.481716e-05 -7.9855072
414975 rs12360521 10_44 0.9953399 1283.59990 1.239400e-03 5.3740458
696421 rs7374540 3_28 0.9939021 45.86079 4.421764e-05 4.7794118
570915 rs876727 16_39 0.9926586 48.82838 4.702000e-05 -10.0000000
275680 rs9496567 6_67 0.9918710 26.51232 2.551017e-05 5.1125000
586570 rs75230966 17_27 0.9917637 49.43748 4.756362e-05 6.0582524
183553 rs4631108 4_72 0.9915393 306.03072 2.943645e-04 -17.6376812
40258 rs4951023 1_104 0.9906227 31.13453 2.991996e-05 5.5970149
238444 rs6894302 5_84 0.9877503 34.35180 3.291601e-05 -7.2933333
666039 rs2885697 1_25 0.9874950 44.28194 4.242013e-05 -6.2714286
570920 rs60602157 16_39 0.9854801 38.72262 3.701885e-05 10.4415584
339226 rs403894 8_19 0.9793925 56.27052 5.346236e-05 6.8529412
650809 rs7282237 21_16 0.9782270 25.00237 2.372636e-05 -4.7605634
529120 rs2738413 14_29 0.9782089 112.52732 1.067825e-04 -11.6119403
570912 rs4788691 16_39 0.9747904 40.13308 3.795108e-05 -1.6900000
329588 rs35760656 7_94 0.9746629 35.32804 3.340291e-05 -6.3536585
470281 rs17380837 12_18 0.9737999 44.42786 4.196967e-05 -6.9583333
366399 rs7460121 8_88 0.9725824 24.19453 2.282727e-05 4.7500000
2727 rs284278 1_7 0.9713320 35.00958 3.298869e-05 -6.0857143
826964 rs8011559 14_9 0.9693907 435.54854 4.095867e-04 5.6913580
283467 rs958747 6_89 0.9688123 24.37662 2.290992e-05 -4.9710145
556130 rs12898337 15_48 0.9643924 35.44339 3.315885e-05 -6.0579710
279482 rs77435894 6_78 0.9642414 28.80796 2.694690e-05 6.1111111
549931 rs745636 15_33 0.9571831 25.61925 2.378876e-05 -5.0740741
25783 rs4839174 1_69 0.9569309 33.97079 3.153528e-05 5.9459459
183505 rs1823291 4_72 0.9568146 286.06204 2.655207e-04 -19.4520548
604563 rs17794590 18_24 0.9550117 24.59348 2.278448e-05 -4.8242424
100283 rs35880620 2_125 0.9544571 39.77143 3.682460e-05 -6.2168675
58743 rs7578482 2_16 0.9542037 32.14647 2.975670e-05 5.7435897
738958 rs1633714 7_70 0.9499686 778.22440 7.171740e-04 11.7536232
97488 rs11889306 2_118 0.9487414 45.59873 4.196730e-05 6.7391304
826887 rs73241997 14_9 0.9472521 276.10117 2.537139e-04 7.8817204
681445 rs1367220 2_105 0.9467808 4303.78606 3.952852e-03 7.2207792
784225 rs2291437 12_17 0.9462388 66.11326 6.068757e-05 9.1826923
32457 rs7522387 1_83 0.9460866 59.86066 5.493926e-05 6.6375000
696586 rs7373065 3_28 0.9355464 65.79596 5.971384e-05 -8.0637450
28495 rs906280 1_75 0.9353945 59.57170 5.405616e-05 7.9111111
490521 rs12425471 12_69 0.9303264 41.49244 3.744680e-05 -5.2500000
614935 rs7256735 19_3 0.9241700 23.45925 2.103180e-05 4.4952381
279432 rs89107 6_78 0.9189049 47.36791 4.222457e-05 -9.5606061
372071 rs1594768 9_9 0.9139999 24.21822 2.147330e-05 -4.6911765
5627 rs10917072 1_15 0.9043759 33.53922 2.942472e-05 5.8235294
217602 rs114414434 5_31 0.8994692 26.16276 2.282866e-05 -4.9718310
232192 rs4073838 5_68 0.8923424 1368.92743 1.185011e-03 -5.9545455
272609 rs371814 6_59 0.8922509 1722.76723 1.491159e-03 6.1911765
252160 rs73724866 6_13 0.8855608 94.00847 8.075990e-05 -10.4141414
479761 rs776211 12_43 0.8831880 28.12821 2.409937e-05 -6.3424658
550553 rs519946 15_34 0.8819650 34.47055 2.949239e-05 5.9242424
494561 rs6560886 12_82 0.8817026 28.94415 2.475673e-05 5.6666667
28531 rs12128882 1_76 0.8779576 32.56646 2.773668e-05 1.0731707
68039 rs243080 2_40 0.8749115 24.16683 2.051135e-05 -4.5522388
467254 rs12821447 12_12 0.8716947 24.08112 2.036346e-05 4.5128205
615414 rs73919353 19_5 0.8614285 28.38347 2.371894e-05 5.4076433
453904 rs565449 11_55 0.8575434 28.38859 2.361622e-05 -5.2535211
123427 rs1091584 3_45 0.8532454 30.27502 2.505929e-05 5.5882353
244628 rs62377226 5_100 0.8422335 33.87890 2.768039e-05 5.8493151
113948 rs73032373 3_18 0.8375231 33.29814 2.705373e-05 -5.9178082
369034 rs72693377 8_94 0.8312985 24.72583 1.993968e-05 4.2762431
659021 rs11705586 22_15 0.8290134 26.32683 2.117242e-05 4.8988764
121105 rs6924 3_40 0.8277296 522.73041 4.197364e-04 4.2133333
304278 rs145593380 7_26 0.8170209 29.74581 2.357596e-05 5.3333333
495691 rs7321083 13_3 0.8149736 24.65878 1.949510e-05 4.8292683
#plot PIP vs effect size
#plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")
#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
id region_tag susie_pip mu2 PVE z
681445 rs1367220 2_105 9.467808e-01 4303.786 3.952852e-03 7.220779
681435 rs4972703 2_105 1.000000e+00 4299.785 4.171163e-03 -0.784267
681446 rs1367219 2_105 2.069799e-01 4294.507 8.622874e-04 7.103896
681441 rs10168156 2_105 3.312313e-01 4292.416 1.379252e-03 7.233766
681439 rs6713018 2_105 9.687858e-02 4291.538 4.033213e-04 7.168831
681430 rs1864453 2_105 1.876497e-01 4289.961 7.809293e-04 7.207792
681422 rs2033315 2_105 1.145049e-01 4287.502 4.762543e-04 7.064935
681433 rs6707162 2_105 3.496928e-02 4279.920 1.451887e-04 7.090909
681434 rs6735680 2_105 2.455791e-02 4279.461 1.019509e-04 7.077922
681423 rs2033314 2_105 2.432678e-02 4278.387 1.009660e-04 7.155844
681425 rs28485554 2_105 8.747105e-03 4277.770 3.629879e-05 7.000000
681456 rs10803884 2_105 7.083440e-03 4217.525 2.898093e-05 7.285714
681464 rs6738901 2_105 7.743316e-03 4201.159 3.155778e-05 -7.272727
681449 rs12466643 2_105 3.135672e-04 4196.140 1.276412e-06 7.272727
681480 rs35368253 2_105 1.998443e-04 4178.444 8.100592e-07 -7.256410
681466 rs10197521 2_105 1.763290e-11 4171.648 7.135785e-14 -6.547619
681468 rs34661753 2_105 3.194389e-08 4119.395 1.276532e-10 -7.076923
681419 rs7590328 2_105 2.272449e-11 4103.428 9.045890e-14 6.784810
681417 rs6433497 2_105 0.000000e+00 3465.041 0.000000e+00 6.345679
681418 rs2115874 2_105 0.000000e+00 3462.201 0.000000e+00 6.419753
681410 rs1430185 2_105 0.000000e+00 3387.075 0.000000e+00 6.185185
681397 rs1991601 2_105 0.000000e+00 3363.058 0.000000e+00 5.950617
681395 rs6759870 2_105 0.000000e+00 2978.209 0.000000e+00 5.987342
681486 rs35215597 2_105 0.000000e+00 2793.497 0.000000e+00 -8.441558
681506 rs56181519 2_105 0.000000e+00 2703.083 0.000000e+00 -8.597403
681308 rs13032076 2_105 0.000000e+00 2402.122 0.000000e+00 -5.250000
681408 rs13024657 2_105 0.000000e+00 2366.705 0.000000e+00 -5.258065
681509 rs2358891 2_105 0.000000e+00 2265.703 0.000000e+00 -7.500000
681526 rs35808589 2_105 0.000000e+00 2030.164 0.000000e+00 -5.229885
681558 rs1376875 2_105 0.000000e+00 2019.770 0.000000e+00 -5.000000
681541 rs35444726 2_105 0.000000e+00 2016.551 0.000000e+00 -5.172414
681550 rs13420492 2_105 0.000000e+00 1989.902 0.000000e+00 -4.908046
681552 rs71417497 2_105 0.000000e+00 1980.143 0.000000e+00 -4.772727
708976 rs2040862 5_82 1.932759e-01 1961.536 3.677770e-04 12.459770
708860 rs17171711 5_82 5.061870e-02 1958.969 9.619419e-05 12.482759
708884 rs13355516 5_82 4.398123e-03 1956.728 8.348495e-06 12.379310
708835 rs9327807 5_82 2.294241e-03 1953.970 4.348779e-06 12.367816
708869 rs77915370 5_82 3.425950e-04 1952.684 6.489682e-07 12.356322
708740 rs78081438 5_82 6.691465e-04 1951.053 1.266487e-06 12.390805
708691 rs73300168 5_82 3.565820e-04 1950.786 6.748068e-07 12.298851
708817 rs11959181 5_82 9.541911e-05 1949.634 1.804674e-07 12.241379
708671 rs10076361 5_82 2.676249e-04 1949.238 5.060598e-07 12.298851
708836 rs113331339 5_82 8.891833e-05 1949.202 1.681352e-07 12.241379
708789 rs73299268 5_82 8.169862e-05 1949.085 1.544742e-07 12.241379
708892 rs148378888 5_82 1.992837e-04 1948.655 3.767186e-07 12.344828
708714 rs73299210 5_82 5.888915e-05 1946.246 1.111843e-07 12.287356
708717 rs73299219 5_82 6.204555e-05 1945.825 1.171183e-07 12.287356
708737 rs13362264 5_82 2.545517e-05 1945.354 4.803802e-08 12.264368
681335 rs2303891 2_105 0.000000e+00 1921.675 0.000000e+00 -4.185185
708899 rs10479176 5_82 6.731608e-01 1866.560 1.218908e-03 6.931818
#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
id region_tag susie_pip mu2 PVE z
681435 rs4972703 2_105 1.00000000 4299.7845 0.0041711625 -0.7842670
681445 rs1367220 2_105 0.94678083 4303.7861 0.0039528520 7.2207792
708945 rs574293775 5_82 0.99879179 1853.6925 0.0017960693 6.2411765
183533 rs1906615 4_72 1.00000000 1756.7309 0.0017041808 45.1604938
272612 rs111990232 6_59 1.00000000 1710.9090 0.0016597296 0.5392670
788780 rs61937778 12_35 1.00000000 1668.5498 0.0016186375 -1.3056995
272609 rs371814 6_59 0.89225093 1722.7672 0.0014911593 6.1911765
28440 rs7536152 1_75 1.00000000 1473.0190 0.0014289557 -6.4626866
28439 rs12404927 1_75 1.00000000 1437.8770 0.0013948649 -1.5517241
681441 rs10168156 2_105 0.33123129 4292.4155 0.0013792517 7.2337662
232199 rs199992924 5_68 0.99694972 1340.4015 0.0012963390 -0.6309524
414975 rs12360521 10_44 0.99533986 1283.5999 0.0012394000 5.3740458
414968 rs76106073 10_44 1.00000000 1273.7217 0.0012356201 0.6572238
708899 rs10479176 5_82 0.67316075 1866.5597 0.0012189085 6.9318182
232192 rs4073838 5_68 0.89234244 1368.9274 0.0011850110 -5.9545455
586354 rs62056842 17_27 1.00000000 1130.2190 0.0010964101 1.1269036
788720 rs2860482 12_35 0.64493512 1697.2111 0.0010618479 -7.1052632
788775 rs7313074 12_35 0.58220672 1705.1065 0.0009630285 -6.9868421
183538 rs7440714 4_72 1.00000000 992.1011 0.0009624238 -9.2183406
681446 rs1367219 2_105 0.20697994 4294.5073 0.0008622874 7.1038961
739005 rs9770220 7_70 1.00000000 835.7692 0.0008107683 -5.2814815
681430 rs1864453 2_105 0.18764974 4289.9609 0.0007809293 7.2077922
738958 rs1633714 7_70 0.94996864 778.2244 0.0007171740 11.7536232
788778 rs4759256 12_35 0.41979796 1704.6254 0.0006941921 -6.9736842
272613 rs384318 6_59 0.37976257 1721.2083 0.0006340975 6.1029412
738995 rs10255816 7_70 0.78914390 709.0714 0.0005428210 -9.7123288
121102 rs12330500 3_40 0.99972902 519.1187 0.0005034535 0.5641026
681422 rs2033315 2_105 0.11450492 4287.5023 0.0004762543 7.0649351
272614 rs1145714 6_59 0.26478699 1717.6032 0.0004411943 6.1029412
121105 rs6924 3_40 0.82772961 522.7304 0.0004197364 4.2133333
826958 rs8005417 14_9 0.99999777 427.5625 0.0004147716 0.9863946
826964 rs8011559 14_9 0.96939072 435.5485 0.0004095867 5.6913580
681439 rs6713018 2_105 0.09687858 4291.5379 0.0004033213 7.1688312
232191 rs4235764 5_68 0.29136909 1367.2078 0.0003864457 -5.8787879
708976 rs2040862 5_82 0.19327595 1961.5362 0.0003677770 12.4597701
788715 rs7978685 12_35 0.21731446 1694.8625 0.0003573004 -7.0657895
550564 rs74022964 15_35 1.00000000 342.9223 0.0003326643 12.5777778
232194 rs4235768 5_68 0.24121476 1367.3620 0.0003199616 -5.8030303
272571 rs9444476 6_59 0.19008883 1698.6999 0.0003132447 -6.3088235
183553 rs4631108 4_72 0.99153932 306.0307 0.0002943645 -17.6376812
28533 rs34515871 1_76 1.00000000 299.2842 0.0002903316 17.0000000
272596 rs9444488 6_59 0.16974071 1703.6881 0.0002805347 -6.2647059
550561 rs140798119 15_35 1.00000000 285.2610 0.0002767279 3.9950739
183505 rs1823291 4_72 0.95681461 286.0620 0.0002655207 -19.4520548
826887 rs73241997 14_9 0.94725212 276.1012 0.0002537139 7.8817204
708944 rs191830974 5_82 0.12101272 1865.7774 0.0002190288 6.9206349
121104 rs1554125 3_40 0.38957721 520.5125 0.0001967139 4.1333333
28540 rs10908445 1_76 0.99999905 193.5699 0.0001877794 -13.1470588
272583 rs9444481 6_59 0.10849613 1701.3375 0.0001790668 -6.2500000
422177 rs60469668 10_66 1.00000000 172.1082 0.0001669599 16.9647059
#histogram of (abs) SNP z scores
hist(abs(ctwas_snp_res$z))
Version | Author | Date |
---|---|---|
77de9fb | sq-96 | 2021-12-22 |
#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
id region_tag susie_pip mu2 PVE z
183533 rs1906615 4_72 1.000000e+00 1756.7309 1.704181e-03 45.16049
183534 rs75725917 4_72 0.000000e+00 588.7458 0.000000e+00 42.33663
183532 rs1906611 4_72 0.000000e+00 526.9126 0.000000e+00 40.97143
183531 rs28521134 4_72 0.000000e+00 512.6248 0.000000e+00 40.22772
183527 rs10019689 4_72 0.000000e+00 508.5039 0.000000e+00 40.11000
183528 rs76013973 4_72 0.000000e+00 502.3963 0.000000e+00 40.04902
183530 rs12639820 4_72 0.000000e+00 499.7947 0.000000e+00 40.03922
183526 rs12647393 4_72 0.000000e+00 500.8094 0.000000e+00 39.98020
183529 rs74496596 4_72 0.000000e+00 484.7331 0.000000e+00 39.75728
183525 rs12647316 4_72 0.000000e+00 476.7021 0.000000e+00 39.55882
183524 rs4529121 4_72 0.000000e+00 480.5177 0.000000e+00 39.55340
183518 rs12650829 4_72 0.000000e+00 450.0533 0.000000e+00 31.54444
183541 rs3866831 4_72 0.000000e+00 919.4634 0.000000e+00 -30.10000
183540 rs6533530 4_72 0.000000e+00 904.8879 0.000000e+00 -29.91429
183523 rs12644107 4_72 0.000000e+00 153.0712 0.000000e+00 25.98851
183521 rs2723318 4_72 0.000000e+00 365.6985 0.000000e+00 -25.45833
183516 rs2218698 4_72 0.000000e+00 337.5178 0.000000e+00 -25.09589
183519 rs2197814 4_72 0.000000e+00 339.8970 0.000000e+00 24.59722
183517 rs1448799 4_72 0.000000e+00 339.2379 0.000000e+00 24.56944
183515 rs112927894 4_72 0.000000e+00 320.7713 0.000000e+00 24.50685
183505 rs1823291 4_72 9.568146e-01 286.0620 2.655207e-04 -19.45205
183509 rs2723296 4_72 4.318269e-02 278.0630 1.164832e-05 -19.02740
183514 rs11724067 4_72 0.000000e+00 321.1887 0.000000e+00 -18.94059
183508 rs2044674 4_72 2.641186e-06 253.4848 6.494734e-10 18.58108
183553 rs4631108 4_72 9.915393e-01 306.0307 2.943645e-04 -17.63768
183552 rs1906613 4_72 8.460684e-03 295.1509 2.422479e-06 17.34783
28533 rs34515871 1_76 1.000000e+00 299.2842 2.903316e-04 17.00000
422177 rs60469668 10_66 1.000000e+00 172.1082 1.669599e-04 16.96471
183513 rs13111704 4_72 0.000000e+00 393.8288 0.000000e+00 -16.91743
28536 rs12058931 1_76 1.643627e-04 221.4339 3.530676e-08 16.54054
183537 rs4124159 4_72 0.000000e+00 1159.1777 0.000000e+00 -16.14414
183535 rs1906606 4_72 0.000000e+00 1154.4323 0.000000e+00 -16.02703
183542 rs4032974 4_72 0.000000e+00 1146.0129 0.000000e+00 -15.86726
739346 rs11773845 7_70 0.000000e+00 555.7324 0.000000e+00 15.73134
183562 rs17513625 4_72 0.000000e+00 176.0291 0.000000e+00 15.71130
183539 rs10006881 4_72 0.000000e+00 1136.3170 0.000000e+00 -15.68750
739366 rs1997571 7_70 0.000000e+00 553.9040 0.000000e+00 15.68657
739329 rs3807989 7_70 0.000000e+00 551.5677 0.000000e+00 15.62687
422173 rs12572965 10_66 2.273800e-04 132.7631 2.928466e-08 15.27059
422172 rs56965730 10_66 2.300323e-04 131.7918 2.940950e-08 15.21176
739367 rs1997572 7_70 0.000000e+00 525.1335 0.000000e+00 14.50685
739223 rs2270188 7_70 0.000000e+00 711.6787 0.000000e+00 14.43939
739224 rs2270189 7_70 0.000000e+00 711.6066 0.000000e+00 14.43939
739272 rs2109514 7_70 0.000000e+00 687.7806 0.000000e+00 14.42424
739276 rs55883210 7_70 0.000000e+00 687.5295 0.000000e+00 14.42424
739239 rs10271007 7_70 0.000000e+00 707.4203 0.000000e+00 14.39394
739256 rs6466579 7_70 0.000000e+00 703.1231 0.000000e+00 14.33333
739267 rs7795510 7_70 0.000000e+00 696.7170 0.000000e+00 14.22727
183507 rs12642151 4_72 2.282285e-12 237.6299 5.261159e-16 14.14286
422175 rs7094488 10_66 9.999992e-01 110.0143 1.067233e-04 14.10606
#GO enrichment analysis
library(enrichR)
Welcome to enrichR
Checking connection ...
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]
#number of genes for gene set enrichment
length(genes)
[1] 32
if (length(genes)>0){
GO_enrichment <- enrichr(genes, dbs)
for (db in dbs){
print(db)
df <- GO_enrichment[[db]]
print(plotEnrich(GO_enrichment[[db]]))
df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
print(df)
}
#DisGeNET enrichment
# devtools::install_bitbucket("ibi_group/disgenet2r")
library(disgenet2r)
disgenet_api_key <- get_disgenet_api_key(
email = "wesleycrouse@gmail.com",
password = "uchicago1" )
Sys.setenv(DISGENET_API_KEY= disgenet_api_key)
res_enrich <-disease_enrichment(entities=genes, vocabulary = "HGNC",
database = "CURATED" )
df <- res_enrich@qresult[1:10, c("Description", "FDR", "Ratio", "BgRatio")]
print(df)
#WebGestalt enrichment
library(WebGestaltR)
background <- ctwas_gene_res$genename
#listGeneSet()
databases <- c("pathway_KEGG", "disease_GLAD4U", "disease_OMIM")
enrichResult <- WebGestaltR(enrichMethod="ORA", organism="hsapiens",
interestGene=genes, referenceGene=background,
enrichDatabase=databases, interestGeneType="genesymbol",
referenceGeneType="genesymbol", isOutput=F)
print(enrichResult[,c("description", "size", "overlap", "FDR", "database", "userId")])
}
Uploading data to Enrichr... Done.
Querying GO_Biological_Process_2021... Done.
Querying GO_Cellular_Component_2021... Done.
Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
Version | Author | Date |
---|---|---|
77de9fb | sq-96 | 2021-12-22 |
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"
Version | Author | Date |
---|---|---|
77de9fb | sq-96 | 2021-12-22 |
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
SP100 gene(s) from the input list not found in DisGeNET CURATEDDLEU1 gene(s) from the input list not found in DisGeNET CURATEDLINC01629 gene(s) from the input list not found in DisGeNET CURATEDBOK gene(s) from the input list not found in DisGeNET CURATEDPOPDC3 gene(s) from the input list not found in DisGeNET CURATEDRP11-325L7.2 gene(s) from the input list not found in DisGeNET CURATEDJAM2 gene(s) from the input list not found in DisGeNET CURATEDMURC gene(s) from the input list not found in DisGeNET CURATEDSTK11IP gene(s) from the input list not found in DisGeNET CURATEDAES gene(s) from the input list not found in DisGeNET CURATEDCMTM5 gene(s) from the input list not found in DisGeNET CURATEDRP5-890E16.5 gene(s) from the input list not found in DisGeNET CURATEDMARS gene(s) from the input list not found in DisGeNET CURATEDAGAP5 gene(s) from the input list not found in DisGeNET CURATEDSEC23IP gene(s) from the input list not found in DisGeNET CURATED
Description
5 Atrial Fibrillation
85 Paroxysmal atrial fibrillation
156 Persistent atrial fibrillation
171 familial atrial fibrillation
37 Cardiomegaly
130 Cardiac Hypertrophy
58 Congenital retrognathism
157 HYPOTHYROIDISM, CONGENITAL, NONGOITROUS, 5 (disorder)
158 Lipodystrophy, Congenital Generalized, Type 3
167 ATRIAL SEPTAL DEFECT 7 WITH OR WITHOUT ATRIOVENTRICULAR CONDUCTION DEFECTS
FDR Ratio BgRatio
5 7.915974e-11 9/17 160/9703
85 7.915974e-11 9/17 156/9703
156 7.915974e-11 9/17 156/9703
171 7.915974e-11 9/17 156/9703
37 1.217805e-02 3/17 82/9703
130 1.217805e-02 3/17 82/9703
58 1.467481e-02 1/17 1/9703
157 1.467481e-02 1/17 1/9703
158 1.467481e-02 1/17 1/9703
167 1.467481e-02 1/17 1/9703
******************************************
* *
* Welcome to WebGestaltR ! *
* *
******************************************
Version | Author | Date |
---|---|---|
77de9fb | sq-96 | 2021-12-22 |
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
description size overlap FDR database
1 Isaacs Syndrome 55 5 0.001525439 disease_GLAD4U
2 Atrial Fibrillation 52 4 0.022003754 disease_GLAD4U
3 Atrioventricular block NOS 22 3 0.031360061 disease_GLAD4U
userId
1 SCN10A;GNB4;NKX2-5;CCND2;KLF12
2 PRRX1;SCN10A;NKX2-5;CAV1
3 SCN10A;NKX2-5;POPDC3
library("readxl")
known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
* `` -> ...4
* `` -> ...5
known_annotations <- unique(known_annotations$`Gene Symbol`)
unrelated_genes <- ctwas_gene_res$genename[!(ctwas_gene_res$genename %in% known_annotations)]
#number of genes in known annotations
print(length(known_annotations))
[1] 69
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 44
#assign ctwas, TWAS, and bystander genes
ctwas_genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]
twas_genes <- ctwas_gene_res$genename[abs(ctwas_gene_res$z)>sig_thresh]
novel_genes <- ctwas_genes[!(ctwas_genes %in% twas_genes)]
#significance threshold for TWAS
print(sig_thresh)
[1] 4.582104
#number of ctwas genes
length(ctwas_genes)
[1] 32
#number of TWAS genes
length(twas_genes)
[1] 94
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
genename region_tag susie_pip mu2 PVE z num_eqtl
6114 STK11IP 2_130 0.8406381 18.96825 1.546845e-05 -3.868022 2
712 SP100 2_135 0.8658723 18.73540 1.573719e-05 -3.671335 2
9691 BOK 2_144 0.8255975 19.18259 1.536335e-05 3.910125 3
9012 MTSS1 8_82 0.8594108 20.87861 1.740655e-05 4.402634 2
2444 SEC23IP 10_74 0.9517809 22.38862 2.067163e-05 -4.565228 2
8420 MARS 12_36 0.8180336 17.81958 1.414097e-05 -3.366197 1
2138 AES 19_4 0.9403219 20.20438 1.843030e-05 4.182804 3
6914 JAM2 21_9 0.9640543 22.19279 2.075505e-05 4.563232 2
#sensitivity / recall
sensitivity <- rep(NA,2)
names(sensitivity) <- c("ctwas", "TWAS")
sensitivity["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
sensitivity["TWAS"] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
sensitivity
ctwas TWAS
0 0
#specificity
specificity <- rep(NA,2)
names(specificity) <- c("ctwas", "TWAS")
specificity["ctwas"] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
specificity["TWAS"] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
specificity
ctwas TWAS
0.9970420 0.9913108
#precision / PPV
precision <- rep(NA,2)
names(precision) <- c("ctwas", "TWAS")
precision["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
precision["TWAS"] <- sum(twas_genes %in% known_annotations)/length(twas_genes)
precision
ctwas TWAS
0 0
#ROC curves
pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))
for (index in 1:length(pip_range)){
pip <- pip_range[index]
ctwas_genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>=pip]
sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}
plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1))
sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res$z)), length.out=length(pip_range))
for (index in 1:length(sig_thresh_range)){
sig_thresh_plot <- sig_thresh_range[index]
twas_genes <- ctwas_gene_res$genename[abs(ctwas_gene_res$z)>=sig_thresh_plot]
sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}
lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=2)
Version | Author | Date |
---|---|---|
9cf0e70 | sq-96 | 2021-12-22 |
This section first uses imputed silver standard genes to identify bystander genes within 1Mb. The bystander gene list is then subset to only genes with imputed expression in this analysis. Then, the ctwas and TWAS gene lists from this analysis are subset to only genes that are in the (subset) silver standard and bystander genes. These gene lists are then used to compute sensitivity, specificity and precision for ctwas and TWAS.
# library(biomaRt)
# library(GenomicRanges)
#
# ensembl <- useEnsembl(biomart="ENSEMBL_MART_ENSEMBL", dataset="hsapiens_gene_ensembl")
# G_list <- getBM(filters= "chromosome_name", attributes= c("hgnc_symbol","chromosome_name","start_position","end_position","gene_biotype"), values=1:22, mart=ensembl)
# G_list <- G_list[G_list$hgnc_symbol!="",]
# G_list <- G_list[G_list$gene_biotype %in% c("protein_coding","lncRNA"),]
# G_list$start <- G_list$start_position
# G_list$end <- G_list$end_position
# G_list_granges <- makeGRangesFromDataFrame(G_list, keep.extra.columns=T)
#
# #remove genes without imputed expression from gene lists
# known_annotations <- known_annotations[known_annotations %in% ctwas_gene_res$genename]
#
# known_annotations_positions <- G_list[G_list$hgnc_symbol %in% known_annotations,]
# half_window <- 1000000
# known_annotations_positions$start <- known_annotations_positions$start_position - half_window
# known_annotations_positions$end <- known_annotations_positions$end_position + half_window
# known_annotations_positions$start[known_annotations_positions$start<1] <- 1
# known_annotations_granges <- makeGRangesFromDataFrame(known_annotations_positions, keep.extra.columns=T)
#
# bystanders <- findOverlaps(known_annotations_granges,G_list_granges)
# bystanders <- unique(subjectHits(bystanders))
# bystanders <- G_list$hgnc_symbol[bystanders]
# bystanders <- unique(bystanders[!(bystanders %in% known_annotations)])
# unrelated_genes <- bystanders
#
# #save gene lists
# save(known_annotations, file=paste0(results_dir, "/known_annotations.Rd"))
# save(unrelated_genes, file=paste0(results_dir, "/bystanders.Rd"))
load(paste0(results_dir, "/known_annotations.Rd"))
load(paste0(results_dir, "/bystanders.Rd"))
#remove genes without imputed expression from bystander list
unrelated_genes <- unrelated_genes[unrelated_genes %in% ctwas_gene_res$genename]
#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 44
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 605
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]
#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]
#significance threshold for TWAS
print(sig_thresh)
[1] 4.582104
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 1
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 2
#sensitivity / recall
sensitivity <- rep(NA,2)
names(sensitivity) <- c("ctwas", "TWAS")
sensitivity["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
sensitivity["TWAS"] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
sensitivity
ctwas TWAS
0 0
#specificity / (1 - False Positive Rate)
specificity <- rep(NA,2)
names(specificity) <- c("ctwas", "TWAS")
specificity["ctwas"] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
specificity["TWAS"] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
specificity
ctwas TWAS
0.9983471 0.9966942
#precision / PPV / (1 - False Discovery Rate)
precision <- rep(NA,2)
names(precision) <- c("ctwas", "TWAS")
precision["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
precision["TWAS"] <- sum(twas_genes %in% known_annotations)/length(twas_genes)
precision
ctwas TWAS
0 0
#store sensitivity and specificity calculations for plots
sensitivity_plot <- sensitivity
specificity_plot <- specificity
#precision / PPV by PIP bin
pip_range <- c(0.2, 0.4, 0.6, 0.8, 1)
precision_range <- rep(NA, length(pip_range))
for (i in 1:length(pip_range)){
pip_upper <- pip_range[i]
if (i==1){
pip_lower <- 0
} else {
pip_lower <- pip_range[i-1]
}
#assign ctwas genes in PIP bin
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip_lower & ctwas_gene_res_subset$susie_pip<pip_upper]
precision_range[i] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
}
names(precision_range) <- paste(c(0, pip_range[-length(pip_range)]), pip_range,sep=" - ")
barplot(precision_range, ylim=c(0,1), main="Precision by PIP Range", xlab="PIP Range", ylab="Precision")
abline(h=0.2, lty=2)
abline(h=0.4, lty=2)
abline(h=0.6, lty=2)
abline(h=0.8, lty=2)
barplot(precision_range, add=T, col="darkgrey")
Version | Author | Date |
---|---|---|
82c68fd | sq-96 | 2021-12-22 |
#precision / PPV by PIP threshold
#pip_range <- c(0.2, 0.4, 0.6, 0.8, 1)
pip_range <- c(0.5, 0.8, 1)
precision_range <- rep(NA, length(pip_range))
number_detected <- rep(NA, length(pip_range))
for (i in 1:length(pip_range)){
pip_upper <- pip_range[i]
if (i==1){
pip_lower <- 0
} else {
pip_lower <- pip_range[i-1]
}
#assign ctwas genes using PIP threshold
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip_lower]
number_detected[i] <- length(ctwas_genes)
precision_range[i] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
}
names(precision_range) <- paste0(">= ", c(0, pip_range[-length(pip_range)]))
precision_range <- precision_range*100
precision_range <- c(precision_range, precision["TWAS"]*100)
names(precision_range)[4] <- "TWAS Bonferroni"
number_detected <- c(number_detected, length(twas_genes))
barplot(precision_range, ylim=c(0,100), main="Precision for Distinguishing Silver Standard and Bystander Genes", xlab="PIP Threshold for Detection", ylab="% of Detected Genes in Silver Standard")
abline(h=20, lty=2)
abline(h=40, lty=2)
abline(h=60, lty=2)
abline(h=80, lty=2)
xx <- barplot(precision_range, add=T, col=c(rep("darkgrey",3), "white"))
text(x = xx, y = rep(0, length(number_detected)), label = paste0(number_detected, " detected"), pos = 3, cex=0.8)
Version | Author | Date |
---|---|---|
82c68fd | sq-96 | 2021-12-22 |
#text(x = xx, y = precision_range, label = paste0(round(precision_range,1), "%"), pos = 3, cex=0.8, offset = 1.5)
#false discovery rate by PIP threshold
barplot(100-precision_range, ylim=c(0,100), main="False Discovery Rate for Distinguishing Silver Standard and Bystander Genes", xlab="PIP Threshold for Detection", ylab="% Bystanders in Detected Genes")
abline(h=20, lty=2)
abline(h=40, lty=2)
abline(h=60, lty=2)
abline(h=80, lty=2)
xx <- barplot(100-precision_range, add=T, col=c(rep("darkgrey",3), "white"))
text(x = xx, y = rep(0, length(number_detected)), label = paste0(number_detected, " detected"), pos = 3, cex=0.8)
Version | Author | Date |
---|---|---|
82c68fd | sq-96 | 2021-12-22 |
#text(x = xx, y = precision_range, label = paste0(round(precision_range,1), "%"), pos = 3, cex=0.8, offset = 1.5)
#ROC curves
pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))
for (index in 1:length(pip_range)){
pip <- pip_range[index]
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}
plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")
sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))
for (index in 1:length(sig_thresh_range)){
sig_thresh_plot <- sig_thresh_range[index]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}
lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)
abline(a=0,b=1,lty=3)
#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]
points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")
Version | Author | Date |
---|---|---|
82c68fd | sq-96 | 2021-12-22 |
library(tibble)
library(tidyverse)
── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
✔ tidyr 1.1.4 ✔ dplyr 1.0.7
✔ readr 2.1.1 ✔ stringr 1.4.0
✔ purrr 0.3.4 ✔ forcats 0.5.1
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ tidyr::extract() masks disgenet2r::extract()
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
full.gene.pip.summary <- data.frame(gene_name = ctwas_gene_res$genename,
gene_pip = ctwas_gene_res$susie_pip,
gene_id = ctwas_gene_res$id,
chr = as.integer(ctwas_gene_res$chrom),
start = ctwas_gene_res$pos / 1e3,
is_highlight = F, stringsAsFactors = F) %>% as_tibble()
full.gene.pip.summary$is_highlight <- full.gene.pip.summary$gene_pip > 0.80
don <- full.gene.pip.summary %>%
# Compute chromosome size
group_by(chr) %>%
summarise(chr_len=max(start)) %>%
# Calculate cumulative position of each chromosome
mutate(tot=cumsum(chr_len)-chr_len) %>%
dplyr::select(-chr_len) %>%
# Add this info to the initial dataset
left_join(full.gene.pip.summary, ., by=c("chr"="chr")) %>%
# Add a cumulative position of each SNP
arrange(chr, start) %>%
mutate( BPcum=start+tot)
axisdf <- don %>% group_by(chr) %>% summarize(center=( max(BPcum) + min(BPcum) ) / 2 )
x_axis_labels <- axisdf$chr
x_axis_labels[seq(1,21,2)] <- ""
ggplot(don, aes(x=BPcum, y=gene_pip)) +
# Show all points
ggrastr::geom_point_rast(aes(color=as.factor(chr)), size=2) +
scale_color_manual(values = rep(c("grey", "skyblue"), 22 )) +
# custom X axis:
# scale_x_continuous(label = axisdf$chr,
# breaks= axisdf$center,
# guide = guide_axis(n.dodge = 2)) +
scale_x_continuous(label = x_axis_labels,
breaks = axisdf$center) +
scale_y_continuous(expand = c(0, 0), limits = c(0,1.25), breaks=(1:5)*0.2, minor_breaks=(1:10)*0.1) + # remove space between plot area and x axis
# Add highlighted points
ggrastr::geom_point_rast(data=subset(don, is_highlight==T), color="orange", size=2) +
# Add label using ggrepel to avoid overlapping
ggrepel::geom_label_repel(data=subset(don, is_highlight==T),
aes(label=gene_name),
size=4,
min.segment.length = 0,
label.size = NA,
fill = alpha(c("white"),0)) +
# Custom the theme:
theme_bw() +
theme(
text = element_text(size = 14),
legend.position="none",
panel.border = element_blank(),
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank()
) +
xlab("Chromosome") +
ylab("cTWAS PIP")
Version | Author | Date |
---|---|---|
1f785cf | sq-96 | 2021-12-22 |
library(ctwas)
Attaching package: 'ctwas'
The following object is masked _by_ '.GlobalEnv':
z_snp
locus_plot <- function(region_tag, rerun_ctwas = F, plot_eqtl = T, label="cTWAS"){
region_tag1 <- unlist(strsplit(region_tag, "_"))[1]
region_tag2 <- unlist(strsplit(region_tag, "_"))[2]
a <- ctwas_res[ctwas_res$region_tag==region_tag,]
regionlist <- readRDS(paste0(results_dir, "/", analysis_id, "_ctwas.regionlist.RDS"))
region <- regionlist[[as.numeric(region_tag1)]][[region_tag2]]
R_snp_info <- do.call(rbind, lapply(region$regRDS, function(x){data.table::fread(paste0(tools::file_path_sans_ext(x), ".Rvar"))}))
if (isTRUE(rerun_ctwas)){
ld_exprfs <- paste0(results_dir, "/", analysis_id, "_expr_chr", 1:22, ".expr.gz")
temp_reg <- data.frame("chr" = paste0("chr",region_tag1), "start" = region$start, "stop" = region$stop)
write.table(temp_reg,
#file= paste0(results_dir, "/", analysis_id, "_ctwas.temp.reg.txt") ,
file= "temp_reg.txt",
row.names=F, col.names=T, sep="\t", quote = F)
load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))
z_gene_temp <- z_gene[z_gene$id %in% a$id[a$type=="gene"],]
z_snp_temp <- z_snp[z_snp$id %in% R_snp_info$id,]
ctwas_rss(z_gene_temp, z_snp_temp, ld_exprfs, ld_pgenfs = NULL,
ld_R_dir = dirname(region$regRDS)[1],
ld_regions_custom = "temp_reg.txt", thin = 1,
outputdir = ".", outname = "temp", ncore = 1, ncore.rerun = 1, prob_single = 0,
group_prior = estimated_group_prior, group_prior_var = estimated_group_prior_var,
estimate_group_prior = F, estimate_group_prior_var = F)
a <- data.table::fread("temp.susieIrss.txt", header = T)
rownames(z_snp_temp) <- z_snp_temp$id
z_snp_temp <- z_snp_temp[a$id[a$type=="SNP"],]
z_gene_temp <- z_gene_temp[a$id[a$type=="gene"],]
a$z <- NA
a$z[a$type=="SNP"] <- z_snp_temp$z
a$z[a$type=="gene"] <- z_gene_temp$z
}
a$ifcausal <- 0
focus <- a$id[a$type=="gene"][which.max(abs(a$z[a$type=="gene"]))]
a$ifcausal <- as.numeric(a$id==focus)
a$PVALUE <- (-log(2) - pnorm(abs(a$z), lower.tail=F, log.p=T))/log(10)
R_gene <- readRDS(region$R_g_file)
R_snp_gene <- readRDS(region$R_sg_file)
R_snp <- as.matrix(Matrix::bdiag(lapply(region$regRDS, readRDS)))
rownames(R_gene) <- region$gid
colnames(R_gene) <- region$gid
rownames(R_snp_gene) <- R_snp_info$id
colnames(R_snp_gene) <- region$gid
rownames(R_snp) <- R_snp_info$id
colnames(R_snp) <- R_snp_info$id
a$r2max <- NA
a$r2max[a$type=="gene"] <- R_gene[focus,a$id[a$type=="gene"]]
a$r2max[a$type=="SNP"] <- R_snp_gene[a$id[a$type=="SNP"],focus]
r2cut <- 0.4
colorsall <- c("#7fc97f", "#beaed4", "#fdc086")
layout(matrix(1:2, ncol = 1), widths = 1, heights = c(1.5,1.5), respect = FALSE)
par(mar = c(0, 4.1, 4.1, 2.1))
plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 19, xlab=paste0("Chromosome ", region_tag1, " Position"),frame.plot=FALSE, col = "white", ylim= c(-0.1,1.1), ylab = "cTWAS PIP", xaxt = 'n')
grid()
points(a$pos[a$type=="SNP"], a$susie_pip[a$type == "SNP"], pch = 21, xlab="Genomic position", bg = colorsall[1])
points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$susie_pip[a$type == "SNP" & a$r2max >r2cut], pch = 21, bg = "purple")
points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$susie_pip[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
points(a$pos[a$type=="gene"], a$susie_pip[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
points(a$pos[a$type=="gene" & a$r2max > r2cut], a$susie_pip[a$type == "gene" & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
points(a$pos[a$type=="gene" & a$ifcausal == 1], a$susie_pip[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
if (isTRUE(plot_eqtl)){
for (cgene in a[a$type=="gene" & a$ifcausal == 1, ]$id){
load(paste0(results_dir, "/",analysis_id, "_expr_chr", region_tag1, ".exprqc.Rd"))
eqtls <- rownames(wgtlist[[cgene]])
points(a[a$id %in% eqtls,]$pos, rep( -0.15, nrow(a[a$id %in% eqtls,])), pch = "|", col = "salmon", cex = 1.5)
}
}
legend(min(a$pos), y= 1.1 ,c("Gene", "SNP"), pch = c(22,21), title="Shape Legend", bty ='n', cex=0.6, title.adj = 0)
legend(min(a$pos), y= 0.7 ,c("Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = 19, col = c("salmon", "purple", colorsall[1]), title="Color Legend", bty ='n', cex=0.6, title.adj = 0)
if (label=="cTWAS"){
text(a$pos[a$id==focus], a$susie_pip[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
}
par(mar = c(4.1, 4.1, 0.5, 2.1))
plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 21, xlab=paste0("Chromosome ", region_tag1, " Position"), frame.plot=FALSE, bg = colorsall[1], ylab = "TWAS -log10(p value)", panel.first = grid(), ylim =c(0, max(a$PVALUE)*1.2))
points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$PVALUE[a$type == "SNP" & a$r2max > r2cut], pch = 21, bg = "purple")
points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$PVALUE[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
points(a$pos[a$type=="gene"], a$PVALUE[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
points(a$pos[a$type=="gene" & a$r2max > r2cut], a$PVALUE[a$type == "gene" & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
points(a$pos[a$type=="gene" & a$ifcausal == 1], a$PVALUE[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
abline(h=-log10(alpha/nrow(ctwas_gene_res)), col ="red", lty = 2)
if (label=="TWAS"){
text(a$pos[a$id==focus], a$PVALUE[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
}
}
locus_plot("5_45", label="TWAS")
locus_plot4 <- function(region_tag, rerun_ctwas = F, plot_eqtl = T, label="cTWAS"){
region_tag1 <- unlist(strsplit(region_tag, "_"))[1]
region_tag2 <- unlist(strsplit(region_tag, "_"))[2]
a <- ctwas_res[ctwas_res$region_tag==region_tag,]
regionlist <- readRDS(paste0(results_dir, "/", analysis_id, "_ctwas.regionlist.RDS"))
region <- regionlist[[as.numeric(region_tag1)]][[region_tag2]]
R_snp_info <- do.call(rbind, lapply(region$regRDS, function(x){data.table::fread(paste0(tools::file_path_sans_ext(x), ".Rvar"))}))
if (isTRUE(rerun_ctwas)){
ld_exprfs <- paste0(results_dir, "/", analysis_id, "_expr_chr", 1:22, ".expr.gz")
temp_reg <- data.frame("chr" = paste0("chr",region_tag1), "start" = region$start, "stop" = region$stop)
write.table(temp_reg,
#file= paste0(results_dir, "/", analysis_id, "_ctwas.temp.reg.txt") ,
file= "temp_reg.txt",
row.names=F, col.names=T, sep="\t", quote = F)
load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))
z_gene_temp <- z_gene[z_gene$id %in% a$id[a$type=="gene"],]
z_snp_temp <- z_snp[z_snp$id %in% R_snp_info$id,]
ctwas_rss(z_gene_temp, z_snp_temp, ld_exprfs, ld_pgenfs = NULL,
ld_R_dir = dirname(region$regRDS)[1],
ld_regions_custom = "temp_reg.txt", thin = 1,
outputdir = ".", outname = "temp", ncore = 1, ncore.rerun = 1, prob_single = 0,
group_prior = estimated_group_prior, group_prior_var = estimated_group_prior_var,
estimate_group_prior = F, estimate_group_prior_var = F)
a <- data.table::fread("temp.susieIrss.txt", header = T)
rownames(z_snp_temp) <- z_snp_temp$id
z_snp_temp <- z_snp_temp[a$id[a$type=="SNP"],]
z_gene_temp <- z_gene_temp[a$id[a$type=="gene"],]
a$z <- NA
a$z[a$type=="SNP"] <- z_snp_temp$z
a$z[a$type=="gene"] <- z_gene_temp$z
}
a$ifcausal <- 0
focus <- a$id[a$type=="gene"][which.max(abs(a$z[a$type=="gene"]))]
a$ifcausal <- as.numeric(a$id==focus)
a$PVALUE <- (-log(2) - pnorm(abs(a$z), lower.tail=F, log.p=T))/log(10)
R_gene <- readRDS(region$R_g_file)
R_snp_gene <- readRDS(region$R_sg_file)
R_snp <- as.matrix(Matrix::bdiag(lapply(region$regRDS, readRDS)))
rownames(R_gene) <- region$gid
colnames(R_gene) <- region$gid
rownames(R_snp_gene) <- R_snp_info$id
colnames(R_snp_gene) <- region$gid
rownames(R_snp) <- R_snp_info$id
colnames(R_snp) <- R_snp_info$id
a$r2max <- NA
a$r2max[a$type=="gene"] <- R_gene[focus,a$id[a$type=="gene"]]
a$r2max[a$type=="SNP"] <- R_snp_gene[a$id[a$type=="SNP"],focus]
r2cut <- 0.4
colorsall <- c("#7fc97f", "#beaed4", "#fdc086")
layout(matrix(1:2, ncol = 1), widths = 1, heights = c(1.5,1.5), respect = FALSE)
par(mar = c(0, 4.1, 4.1, 2.1))
plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 19, xlab=paste0("Chromosome ", region_tag1, " Position"),frame.plot=FALSE, col = "white", ylim= c(-0.1,1.1), ylab = "cTWAS PIP", xaxt = 'n')
grid()
points(a$pos[a$type=="SNP"], a$susie_pip[a$type == "SNP"], pch = 21, xlab="Genomic position", bg = colorsall[1])
points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$susie_pip[a$type == "SNP" & a$r2max >r2cut], pch = 21, bg = "purple")
points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$susie_pip[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
points(a$pos[a$type=="gene"], a$susie_pip[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
points(a$pos[a$type=="gene" & a$r2max > r2cut], a$susie_pip[a$type == "gene" & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
points(a$pos[a$type=="gene" & a$ifcausal == 1], a$susie_pip[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
if (isTRUE(plot_eqtl)){
for (cgene in a[a$type=="gene" & a$ifcausal == 1, ]$id){
load(paste0(results_dir, "/",analysis_id, "_expr_chr", region_tag1, ".exprqc.Rd"))
eqtls <- rownames(wgtlist[[cgene]])
points(a[a$id %in% eqtls,]$pos, rep( -0.15, nrow(a[a$id %in% eqtls,])), pch = "|", col = "salmon", cex = 1.5)
}
}
#legend(min(a$pos), y= 1.1 ,c("Gene", "SNP"), pch = c(22,21), title="Shape Legend", bty ='n', cex=0.6, title.adj = 0)
#legend(min(a$pos), y= 0.7 ,c("Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = 19, col = c("salmon", "purple", colorsall[1]), title="Color Legend", bty ='n', cex=0.6, title.adj = 0)
legend(max(a$pos)-0.2*(max(a$pos)-min(a$pos)), y= 1.1 ,c("Gene", "SNP"), pch = c(22,21), title="Shape Legend", bty ='n', cex=0.6, title.adj = 0)
legend(max(a$pos)-0.2*(max(a$pos)-min(a$pos)), y= 0.7 ,c("Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = 19, col = c("salmon", "purple", colorsall[1]), title="Color Legend", bty ='n', cex=0.6, title.adj = 0)
if (label=="cTWAS"){
text(a$pos[a$id==focus], a$susie_pip[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
}
par(mar = c(4.1, 4.1, 0.5, 2.1))
plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 21, xlab=paste0("Chromosome ", region_tag1, " Position"), frame.plot=FALSE, bg = colorsall[1], ylab = "TWAS -log10(p value)", panel.first = grid(), ylim =c(0, max(a$PVALUE)*1.2))
points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$PVALUE[a$type == "SNP" & a$r2max > r2cut], pch = 21, bg = "purple")
points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$PVALUE[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
points(a$pos[a$type=="gene"], a$PVALUE[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
points(a$pos[a$type=="gene" & a$r2max > r2cut], a$PVALUE[a$type == "gene" & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
points(a$pos[a$type=="gene" & a$ifcausal == 1], a$PVALUE[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
abline(h=-log10(alpha/nrow(ctwas_gene_res)), col ="red", lty = 2)
if (label=="TWAS"){
text(a$pos[a$id==focus], a$PVALUE[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
}
}
locus_plot4("8_12", label="cTWAS")
locus_plot5 <- function(region_tag, rerun_ctwas = F, plot_eqtl = T, label="cTWAS", focus){
region_tag1 <- unlist(strsplit(region_tag, "_"))[1]
region_tag2 <- unlist(strsplit(region_tag, "_"))[2]
a <- ctwas_res[ctwas_res$region_tag==region_tag,]
regionlist <- readRDS(paste0(results_dir, "/", analysis_id, "_ctwas.regionlist.RDS"))
region <- regionlist[[as.numeric(region_tag1)]][[region_tag2]]
R_snp_info <- do.call(rbind, lapply(region$regRDS, function(x){data.table::fread(paste0(tools::file_path_sans_ext(x), ".Rvar"))}))
if (isTRUE(rerun_ctwas)){
ld_exprfs <- paste0(results_dir, "/", analysis_id, "_expr_chr", 1:22, ".expr.gz")
temp_reg <- data.frame("chr" = paste0("chr",region_tag1), "start" = region$start, "stop" = region$stop)
write.table(temp_reg,
#file= paste0(results_dir, "/", analysis_id, "_ctwas.temp.reg.txt") ,
file= "temp_reg.txt",
row.names=F, col.names=T, sep="\t", quote = F)
load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))
z_gene_temp <- z_gene[z_gene$id %in% a$id[a$type=="gene"],]
z_snp_temp <- z_snp[z_snp$id %in% R_snp_info$id,]
ctwas_rss(z_gene_temp, z_snp_temp, ld_exprfs, ld_pgenfs = NULL,
ld_R_dir = dirname(region$regRDS)[1],
ld_regions_custom = "temp_reg.txt", thin = 1,
outputdir = ".", outname = "temp", ncore = 1, ncore.rerun = 1, prob_single = 0,
group_prior = estimated_group_prior, group_prior_var = estimated_group_prior_var,
estimate_group_prior = F, estimate_group_prior_var = F)
a <- data.table::fread("temp.susieIrss.txt", header = T)
rownames(z_snp_temp) <- z_snp_temp$id
z_snp_temp <- z_snp_temp[a$id[a$type=="SNP"],]
z_gene_temp <- z_gene_temp[a$id[a$type=="gene"],]
a$z <- NA
a$z[a$type=="SNP"] <- z_snp_temp$z
a$z[a$type=="gene"] <- z_gene_temp$z
}
a$ifcausal <- 0
focus <- a$id[which(a$genename==focus)]
a$ifcausal <- as.numeric(a$id==focus)
a$PVALUE <- (-log(2) - pnorm(abs(a$z), lower.tail=F, log.p=T))/log(10)
R_gene <- readRDS(region$R_g_file)
R_snp_gene <- readRDS(region$R_sg_file)
R_snp <- as.matrix(Matrix::bdiag(lapply(region$regRDS, readRDS)))
rownames(R_gene) <- region$gid
colnames(R_gene) <- region$gid
rownames(R_snp_gene) <- R_snp_info$id
colnames(R_snp_gene) <- region$gid
rownames(R_snp) <- R_snp_info$id
colnames(R_snp) <- R_snp_info$id
a$r2max <- NA
a$r2max[a$type=="gene"] <- R_gene[focus,a$id[a$type=="gene"]]
a$r2max[a$type=="SNP"] <- R_snp_gene[a$id[a$type=="SNP"],focus]
r2cut <- 0.4
colorsall <- c("#7fc97f", "#beaed4", "#fdc086")
layout(matrix(1:2, ncol = 1), widths = 1, heights = c(1.5,1.5), respect = FALSE)
par(mar = c(0, 4.1, 4.1, 2.1))
plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 19, xlab=paste0("Chromosome ", region_tag1, " Position"),frame.plot=FALSE, col = "white", ylim= c(-0.1,1.1), ylab = "cTWAS PIP", xaxt = 'n')
grid()
points(a$pos[a$type=="SNP"], a$susie_pip[a$type == "SNP"], pch = 21, xlab="Genomic position", bg = colorsall[1])
points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$susie_pip[a$type == "SNP" & a$r2max >r2cut], pch = 21, bg = "purple")
points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$susie_pip[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
points(a$pos[a$type=="gene"], a$susie_pip[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
points(a$pos[a$type=="gene" & a$r2max > r2cut], a$susie_pip[a$type == "gene" & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
points(a$pos[a$type=="gene" & a$ifcausal == 1], a$susie_pip[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
if (isTRUE(plot_eqtl)){
for (cgene in a[a$type=="gene" & a$ifcausal == 1, ]$id){
load(paste0(results_dir, "/",analysis_id, "_expr_chr", region_tag1, ".exprqc.Rd"))
eqtls <- rownames(wgtlist[[cgene]])
points(a[a$id %in% eqtls,]$pos, rep( -0.15, nrow(a[a$id %in% eqtls,])), pch = "|", col = "salmon", cex = 1.5)
}
}
legend(max(a$pos)-0.2*(max(a$pos)-min(a$pos)), y= 1.1 ,c("Gene", "SNP"), pch = c(22,21), title="Shape Legend", bty ='n', cex=0.6, title.adj = 0)
legend(max(a$pos)-0.2*(max(a$pos)-min(a$pos)), y= 0.7 ,c("Focal Gene", "R2 > 0.4", "R2 <= 0.4"), pch = 19, col = c("salmon", "purple", colorsall[1]), title="Color Legend", bty ='n', cex=0.6, title.adj = 0)
if (label=="cTWAS"){
text(a$pos[a$id==focus], a$susie_pip[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
}
par(mar = c(4.1, 4.1, 0.5, 2.1))
plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 21, xlab=paste0("Chromosome ", region_tag1, " Position"), frame.plot=FALSE, bg = colorsall[1], ylab = "TWAS -log10(p value)", panel.first = grid(), ylim =c(0, max(a$PVALUE)*1.2))
points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$PVALUE[a$type == "SNP" & a$r2max > r2cut], pch = 21, bg = "purple")
points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$PVALUE[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
points(a$pos[a$type=="gene"], a$PVALUE[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
points(a$pos[a$type=="gene" & a$r2max > r2cut], a$PVALUE[a$type == "gene" & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
points(a$pos[a$type=="gene" & a$ifcausal == 1], a$PVALUE[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
abline(h=-log10(alpha/nrow(ctwas_gene_res)), col ="red", lty = 2)
if (label=="TWAS"){
text(a$pos[a$id==focus], a$PVALUE[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
}
}
locus_plot5("19_33", focus="PRKD2")
locus_plot3 <- function(region_tag, rerun_ctwas = F, plot_eqtl = T, label="cTWAS", focus){
region_tag1 <- unlist(strsplit(region_tag, "_"))[1]
region_tag2 <- unlist(strsplit(region_tag, "_"))[2]
a <- ctwas_res[ctwas_res$region_tag==region_tag,]
regionlist <- readRDS(paste0(results_dir, "/", analysis_id, "_ctwas.regionlist.RDS"))
region <- regionlist[[as.numeric(region_tag1)]][[region_tag2]]
R_snp_info <- do.call(rbind, lapply(region$regRDS, function(x){data.table::fread(paste0(tools::file_path_sans_ext(x), ".Rvar"))}))
if (isTRUE(rerun_ctwas)){
ld_exprfs <- paste0(results_dir, "/", analysis_id, "_expr_chr", 1:22, ".expr.gz")
temp_reg <- data.frame("chr" = paste0("chr",region_tag1), "start" = region$start, "stop" = region$stop)
write.table(temp_reg,
#file= paste0(results_dir, "/", analysis_id, "_ctwas.temp.reg.txt") ,
file= "temp_reg.txt",
row.names=F, col.names=T, sep="\t", quote = F)
load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))
z_gene_temp <- z_gene[z_gene$id %in% a$id[a$type=="gene"],]
z_snp_temp <- z_snp[z_snp$id %in% R_snp_info$id,]
ctwas_rss(z_gene_temp, z_snp_temp, ld_exprfs, ld_pgenfs = NULL,
ld_R_dir = dirname(region$regRDS)[1],
ld_regions_custom = "temp_reg.txt", thin = 1,
outputdir = ".", outname = "temp", ncore = 1, ncore.rerun = 1, prob_single = 0,
group_prior = estimated_group_prior, group_prior_var = estimated_group_prior_var,
estimate_group_prior = F, estimate_group_prior_var = F)
a <- data.table::fread("temp.susieIrss.txt", header = T)
rownames(z_snp_temp) <- z_snp_temp$id
z_snp_temp <- z_snp_temp[a$id[a$type=="SNP"],]
z_gene_temp <- z_gene_temp[a$id[a$type=="gene"],]
a$z <- NA
a$z[a$type=="SNP"] <- z_snp_temp$z
a$z[a$type=="gene"] <- z_gene_temp$z
}
a$ifcausal <- 0
focus <- a$id[which(a$genename==focus)]
a$ifcausal <- as.numeric(a$id==focus)
a$PVALUE <- (-log(2) - pnorm(abs(a$z), lower.tail=F, log.p=T))/log(10)
R_gene <- readRDS(region$R_g_file)
R_snp_gene <- readRDS(region$R_sg_file)
R_snp <- as.matrix(Matrix::bdiag(lapply(region$regRDS, readRDS)))
rownames(R_gene) <- region$gid
colnames(R_gene) <- region$gid
rownames(R_snp_gene) <- R_snp_info$id
colnames(R_snp_gene) <- region$gid
rownames(R_snp) <- R_snp_info$id
colnames(R_snp) <- R_snp_info$id
a$r2max <- NA
a$r2max[a$type=="gene"] <- R_gene[focus,a$id[a$type=="gene"]]
a$r2max[a$type=="SNP"] <- R_snp_gene[a$id[a$type=="SNP"],focus]
r2cut <- 0.4
colorsall <- c("#7fc97f", "#beaed4", "#fdc086")
layout(matrix(1:2, ncol = 1), widths = 1, heights = c(1.5,1.5), respect = FALSE)
par(mar = c(0, 4.1, 4.1, 2.1))
plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 19, xlab=paste0("Chromosome ", region_tag1, " Position"),frame.plot=FALSE, col = "white", ylim= c(-0.1,1.1), ylab = "cTWAS PIP", xaxt = 'n')
grid()
points(a$pos[a$type=="SNP"], a$susie_pip[a$type == "SNP"], pch = 21, xlab="Genomic position", bg = colorsall[1])
points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$susie_pip[a$type == "SNP" & a$r2max >r2cut], pch = 21, bg = "purple")
points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$susie_pip[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
points(a$pos[a$type=="gene"], a$susie_pip[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
points(a$pos[a$type=="gene" & a$r2max > r2cut], a$susie_pip[a$type == "gene" & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
points(a$pos[a$type=="gene" & a$ifcausal == 1], a$susie_pip[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
if (isTRUE(plot_eqtl)){
for (cgene in a[a$type=="gene" & a$ifcausal == 1, ]$id){
load(paste0(results_dir, "/",analysis_id, "_expr_chr", region_tag1, ".exprqc.Rd"))
eqtls <- rownames(wgtlist[[cgene]])
points(a[a$id %in% eqtls,]$pos, rep( -0.15, nrow(a[a$id %in% eqtls,])), pch = "|", col = "salmon", cex = 1.5)
}
}
legend(min(a$pos), y= 1.1 ,c("Gene", "SNP"), pch = c(22,21), title="Shape Legend", bty ='n', cex=0.6, title.adj = 0)
legend(min(a$pos), y= 0.7 ,c("Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = 19, col = c("salmon", "purple", colorsall[1]), title="Color Legend", bty ='n', cex=0.6, title.adj = 0)
if (label=="cTWAS"){
text(a$pos[a$id==focus], a$susie_pip[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
}
par(mar = c(4.1, 4.1, 0.5, 2.1))
plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 21, xlab=paste0("Chromosome ", region_tag1, " Position"), frame.plot=FALSE, bg = colorsall[1], ylab = "TWAS -log10(p value)", panel.first = grid(), ylim =c(0, max(a$PVALUE)*1.2))
points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$PVALUE[a$type == "SNP" & a$r2max > r2cut], pch = 21, bg = "purple")
points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$PVALUE[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
points(a$pos[a$type=="gene"], a$PVALUE[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
points(a$pos[a$type=="gene" & a$r2max > r2cut], a$PVALUE[a$type == "gene" & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
points(a$pos[a$type=="gene" & a$ifcausal == 1], a$PVALUE[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
abline(h=-log10(alpha/nrow(ctwas_gene_res)), col ="red", lty = 2)
if (label=="TWAS"){
text(a$pos[a$id==focus], a$PVALUE[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
}
}
load(paste0(results_dir, "/known_annotations.Rd"))
load(paste0(results_dir, "/bystanders.Rd"))
for (i in 1:length(known_annotations)){
focus <- known_annotations[i]
region_tag <- ctwas_res$region_tag[which(ctwas_res$genename==focus)]
locus_plot3(region_tag, focus=focus)
mtext(text=region_tag)
print(focus)
print(region_tag)
print(ctwas_gene_res[ctwas_gene_res$region_tag==region_tag,report_cols,])
}
[1] "APOA2"
[1] "1_79"
genename region_tag susie_pip mu2 PVE z
259 ATP1A2 1_79 0.02232677 4.551601 9.858264e-08 0.07777778
690 CD84 1_79 0.02445465 5.384296 1.277323e-07 0.51964897
1094 DUSP12 1_79 0.04437271 10.856957 4.673416e-07 1.41714286
1185 IGSF9 1_79 0.03513173 8.706494 2.967244e-07 -1.11342462
3375 SLAMF1 1_79 0.12883011 20.843702 2.604970e-06 -2.22875817
3376 CD48 1_79 0.02421329 5.293529 1.243396e-07 -0.45491803
3468 ATF6 1_79 0.02562464 5.812063 1.444769e-07 0.53097345
3790 COPA 1_79 0.04219359 10.392503 4.253800e-07 1.32350564
3791 CD244 1_79 0.02496083 5.571796 1.349164e-07 0.59471366
4628 FCRLA 1_79 0.05630893 13.060553 7.134266e-07 -1.77669903
4697 ATP1A4 1_79 0.10166656 18.589602 1.833406e-06 2.06586644
4702 DCAF8 1_79 0.04828663 11.637584 5.451300e-07 -1.43939394
5946 PPOX 1_79 0.02289066 4.779682 1.061372e-07 0.15573770
5947 FCGR2A 1_79 0.12905796 20.860563 2.611688e-06 2.48000000
5949 SDHC 1_79 0.11265004 19.562650 2.137812e-06 -2.08724832
5950 NR1I3 1_79 0.08553689 16.961091 1.407400e-06 -2.02857143
5954 PIGM 1_79 0.04527462 11.042659 4.849969e-07 -1.32314410
7220 ITLN2 1_79 0.02248328 4.615475 1.006669e-07 0.18987342
7221 F11R 1_79 0.02325707 4.924920 1.111129e-07 0.28619272
7223 NIT1 1_79 0.03060573 7.440007 2.208953e-07 -0.93879364
7233 NDUFS2 1_79 0.02802655 6.632779 1.803332e-07 -0.78307586
7235 FCER1G 1_79 0.02524152 5.674157 1.389400e-07 0.52631579
7236 APOA2 1_79 0.03370659 8.325963 2.722449e-07 1.21739130
7237 TOMM40L 1_79 0.07088884 15.202522 1.045452e-06 -1.91304348
7238 MPZ 1_79 0.02941405 7.075746 2.019005e-07 -0.75154614
7626 SLAMF9 1_79 0.02239659 4.580152 9.951128e-08 0.03448276
7627 IGSF8 1_79 0.05691677 13.160142 7.266265e-07 -1.52830189
7629 PEX19 1_79 0.02629840 6.049720 1.543388e-07 0.63280467
7630 NCSTN 1_79 0.03447255 8.532417 2.853356e-07 -0.99781384
7632 FCRLB 1_79 0.02491546 5.555148 1.342687e-07 -0.58151404
7634 KLHDC9 1_79 0.03356796 8.288108 2.698925e-07 1.06849315
9128 SPATA46 1_79 0.04523183 11.033926 4.841552e-07 1.23750000
9314 HSPA6 1_79 0.06806905 14.823938 9.788670e-07 1.82882883
9999 ITLN1 1_79 0.05095282 12.134618 5.997976e-07 1.54929577
11553 NOS1AP 1_79 0.02828404 6.716600 1.842898e-07 0.74025974
12062 TSTD1 1_79 0.02232309 4.550095 9.853378e-08 0.15944626
12145 LINC01133 1_79 0.05226939 12.370747 6.272690e-07 -1.48306018
12583 C1orf226 1_79 0.02229566 4.538854 9.816960e-08 0.02857143
12782 PCP4L1 1_79 0.03158946 7.730320 2.368918e-07 1.05063291
num_eqtl
259 1
690 2
1094 1
1185 2
3375 1
3376 1
3468 1
3790 2
3791 1
4628 1
4697 2
4702 1
5946 1
5947 1
5949 1
5950 1
5954 1
7220 1
7221 2
7223 2
7233 3
7235 1
7236 1
7237 1
7238 2
7626 1
7627 1
7629 2
7630 2
7632 2
7634 1
9128 1
9314 1
9999 1
11553 1
12062 2
12145 3
12583 1
12782 1
[1] "ITIH4"
[1] "3_36"
genename region_tag susie_pip mu2 PVE z num_eqtl
176 SEMA3G 3_36 0.03892813 5.882125 2.221305e-07 -0.3605769 1
177 NISCH 3_36 0.03501379 4.907373 1.666858e-07 0.2403846 1
178 STAB1 3_36 0.05267797 8.674289 4.432751e-07 -1.2993631 1
248 CHDH 3_36 0.03442462 4.751404 1.586725e-07 -0.2307692 1
251 GLT8D1 3_36 0.03500186 4.904243 1.665228e-07 0.2814371 1
292 ALAS1 3_36 0.05805748 9.575996 5.393275e-07 -1.0765027 1
531 ITIH4 3_36 0.03840350 5.757342 2.144882e-07 0.8173077 1
538 IL17RB 3_36 0.04383722 6.976700 2.966904e-07 -0.7272727 1
3050 SELENOK 3_36 0.05845472 9.639338 5.466095e-07 -1.1715552 2
3051 ACTR8 3_36 0.07702387 12.210050 9.123326e-07 1.5751679 2
3113 RRP9 3_36 0.05886224 9.703827 5.541027e-07 -1.0801527 1
3120 DNAH1 3_36 0.03448260 4.766850 1.594564e-07 -0.3181818 1
3123 TNNC1 3_36 0.08797256 13.456208 1.148366e-06 -1.7987805 1
3128 NEK4 3_36 0.06425446 10.518637 6.556517e-07 1.8823529 1
7112 CACNA1D 3_36 0.07625317 12.115995 8.962464e-07 1.8985507 1
7543 RPL29 3_36 0.07191249 11.568177 8.070114e-07 1.4583333 1
7544 ITIH3 3_36 0.04958308 8.114356 3.902995e-07 -1.5362319 1
7867 TKT 3_36 0.10852581 15.440173 1.625532e-06 2.1739130 1
7868 PRKCD 3_36 0.03655681 5.303862 1.880923e-07 -0.4230769 1
7869 RFT1 3_36 0.05539321 9.140198 4.911595e-07 1.7910448 1
7871 GNL3 3_36 0.05767993 9.515554 5.324382e-07 1.7925028 2
7912 POC1A 3_36 0.03705553 5.428529 1.951397e-07 0.4108527 1
7913 PPM1M 3_36 0.03670298 5.340552 1.901507e-07 -0.3214261 2
8637 GLYCTK 3_36 0.03444132 4.755838 1.588976e-07 0.1515152 1
8642 NT5DC2 3_36 0.04435247 7.084555 3.048181e-07 -1.3761055 2
8643 SMIM4 3_36 0.05073643 8.327070 4.098478e-07 1.5074627 1
11922 TMEM110 3_36 0.04187176 6.553733 2.662076e-07 -1.6043526 2
12579 TLR9 3_36 0.16509570 19.471131 3.118440e-06 -2.2559524 1
12702 ACY1 3_36 0.03545778 5.023196 1.727834e-07 0.4567901 1
12767 TWF2 3_36 0.07691229 12.196522 9.100016e-07 -1.6206897 1
13640 MUSTN1 3_36 0.04590077 7.401293 3.295627e-07 -1.5443038 1
13678 DCP1A 3_36 0.04258930 6.710355 2.772403e-07 0.8337349 1
[1] "GHR"
[1] "5_28"
genename region_tag susie_pip mu2 PVE z
2969 GHR 5_28 0.19125588 17.236901 3.198044e-06 -2.68604651
2970 HMGCS1 5_28 0.05652290 5.649690 3.097844e-07 0.64482759
2973 NNT 5_28 0.05054509 4.614259 2.262514e-07 -0.05662818
6681 FBXO4 5_28 0.05180791 4.842651 2.433827e-07 -0.73297467
6682 TMEM267 5_28 0.06372503 6.763756 4.181272e-07 0.83582090
9758 NIM1K 5_28 0.06765561 7.321140 4.804995e-07 0.98373058
11530 CCDC152 5_28 0.15418984 15.129397 2.263017e-06 -2.48172469
12854 SELENOP 5_28 0.06422306 6.836265 4.259125e-07 0.90099010
num_eqtl
2969 1
2970 1
2973 2
6681 2
6682 1
9758 2
11530 2
12854 1
[1] "EPHX2"
[1] "8_27"
genename region_tag susie_pip mu2 PVE z
1435 DPYSL2 8_27 0.02485388 4.784257 1.153504e-07 -0.27748691
2097 BNIP3L 8_27 0.03748736 8.555083 3.111140e-07 -1.08571429
3705 ADRA1A 8_27 0.22411517 25.514834 5.547208e-06 2.94751053
12086 EBF2 8_27 0.02652548 5.380226 1.384441e-07 0.48439655
12602 PNMA2 8_27 0.02451811 4.659772 1.108312e-07 -0.07042254
2037 TRIM35 8_27 0.02423569 4.553755 1.070620e-07 -0.08536585
3702 CLU 8_27 0.02460261 4.691260 1.119647e-07 0.38023585
3704 PTK2B 8_27 0.02737181 5.667939 1.505009e-07 0.51339769
3708 EPHX2 8_27 0.02649535 5.369815 1.380191e-07 0.48402855
6343 CCDC25 8_27 0.02499550 4.836267 1.172688e-07 -0.25224323
8618 SCARA3 8_27 0.03280532 7.328798 2.332316e-07 1.00883393
9082 ESCO2 8_27 0.03536059 8.017939 2.750380e-07 -1.10606061
num_eqtl
1435 1
2097 1
3705 2
12086 2
12602 1
2037 1
3702 2
3704 3
3708 3
6343 2
8618 2
9082 1
[1] "LPL"
[1] "8_21"
genename region_tag susie_pip mu2 PVE z
2096 ASAH1 8_21 0.06087832 22.207900 1.311537e-06 -3.0530181
6342 CSGALNACT1 8_21 0.03028582 10.539089 3.096370e-07 -1.2215401
7002 NAT2 8_21 0.11610082 26.464882 2.980682e-06 3.6206897
7003 PSD3 8_21 0.01596183 4.798613 7.430341e-08 -0.2647059
2077 INTS10 8_21 0.02759994 9.793581 2.622165e-07 -1.1484375
9575 LPL 8_21 0.04832215 14.815748 6.945128e-07 1.7500000
num_eqtl
2096 2
6342 2
7002 1
7003 1
2077 1
9575 1
[1] "MTTP"
[1] "4_66"
genename region_tag susie_pip mu2 PVE z
5518 MTTP 4_66 0.07672006 7.882237 5.866361e-07 -1.04046243
6184 TRMT10A 4_66 0.05371170 4.563792 2.377963e-07 0.02083333
6617 EIF4E 4_66 0.11727722 11.886921 1.352364e-06 -1.81333333
8714 TSPAN5 4_66 0.06040562 5.653403 3.312819e-07 0.44252874
9300 ADH6 4_66 0.17858509 15.949040 2.763059e-06 -2.40716823
11121 ADH1B 4_66 0.08911404 9.287286 8.028703e-07 1.29411765
11329 ADH5 4_66 0.23991541 18.891767 4.396845e-06 2.65454545
12774 ADH1C 4_66 0.08529751 8.875806 7.344370e-07 1.23802332
12794 RP11-766F14.2 4_66 0.06015217 5.614326 3.276117e-07 -0.44844283
13664 RP11-571L19.8 4_66 0.16995144 15.463789 2.549477e-06 -2.35541164
num_eqtl
5518 1
6184 1
6617 1
8714 1
9300 2
11121 1
11329 1
12774 2
12794 2
13664 2
[1] "DHCR7"
[1] "11_40"
genename region_tag susie_pip mu2 PVE z num_eqtl
2685 FOLR1 11_40 0.06258367 5.213023 3.164908e-07 -0.4785714 1
5304 IL18BP 11_40 0.10890933 10.413126 1.100162e-06 1.4642857 1
5312 RNF121 11_40 0.06163017 5.070277 3.031346e-07 0.3772455 1
7534 CLPB 11_40 0.13114123 12.185398 1.550206e-06 1.7218935 1
8137 FOLR2 11_40 0.08772321 8.369647 7.122494e-07 1.0524345 1
9291 NADSYN1 11_40 0.06402732 5.425169 3.369683e-07 0.5577167 2
9292 DHCR7 11_40 0.05900796 4.666336 2.671142e-07 -0.1466667 1
10407 LRTOMT 11_40 0.06061223 4.915490 2.890264e-07 -0.3013699 1
12963 KRTAP5-9 11_40 0.08504535 8.078318 6.664721e-07 -1.0649351 1
[1] "LIPA"
[1] "10_57"
genename region_tag susie_pip mu2 PVE z
2455 BMPR1A 10_57 0.03519791 9.444573 3.224850e-07 1.04477612
3796 OPN4 10_57 0.11736877 20.673933 2.353890e-06 -2.45405716
3797 FAM35A 10_57 0.02198949 5.133217 1.095003e-07 -0.43750000
9339 SNCG 10_57 0.02087998 4.660016 9.439041e-08 0.22058824
9340 MMRN2 10_57 0.02149415 4.924955 1.026911e-07 0.43283582
10489 NUTM2A 10_57 0.02122421 4.809446 9.902322e-08 0.27432909
12160 LINC00863 10_57 0.02558729 6.519488 1.618260e-07 0.71187876
313 FAS 10_57 0.05925597 14.254753 8.194118e-07 -1.71641791
2456 MINPP1 10_57 0.02525645 6.400349 1.568145e-07 0.69432314
2457 ACTA2 10_57 0.02061418 4.542955 9.084789e-08 -0.03797468
2458 LIPA 10_57 0.02967295 7.876891 2.267389e-07 -0.94788048
5408 ATAD1 10_57 0.02561701 6.530118 1.622781e-07 -0.73134328
6757 ANKRD22 10_57 0.05908532 14.227973 8.155171e-07 1.64516129
10211 LIPF 10_57 0.03066253 8.177807 2.432513e-07 -0.95108696
10468 RNLS 10_57 0.02058621 4.530549 9.047687e-08 -0.03707098
11472 PAPSS2 10_57 0.02479869 6.232931 1.499449e-07 0.70178462
11607 LIPN 10_57 0.02064596 4.557032 9.126993e-08 -0.08219178
12241 KLLN 10_57 0.02916591 7.718844 2.183928e-07 -0.90551181
5415 KIF20B 10_57 0.02786753 7.301416 1.973858e-07 -0.90599016
6759 IFIT5 10_57 0.03836548 10.237178 3.810055e-07 -1.19736842
6760 SLC16A12 10_57 0.18461536 25.055997 4.487350e-06 -2.58551947
12374 LINC00865 10_57 0.06301921 14.826994 9.064346e-07 1.73137107
12460 RP11-80H5.9 10_57 0.04484944 11.676348 5.080125e-07 1.53051643
12612 RP11-80H5.7 10_57 0.04842283 12.384402 5.817490e-07 1.59433962
num_eqtl
2455 1
3796 2
3797 1
9339 1
9340 1
10489 2
12160 2
313 1
2456 1
2457 1
2458 2
5408 1
6757 1
10211 1
10468 2
11472 2
11607 1
12241 1
5415 2
6759 1
6760 2
12374 2
12460 1
12612 1
[1] "LDLRAP1"
[1] "1_18"
genename region_tag susie_pip mu2 PVE z
575 PIGV 1_18 0.06374105 6.967278 4.308170e-07 0.9159664
3435 SYF2 1_18 0.14346972 14.633673 2.036686e-06 -1.6825397
3438 MTFR1L 1_18 0.04980418 4.678812 2.260538e-07 -0.3536585
3440 RPS6KA1 1_18 0.07102014 7.974975 5.494413e-07 1.0059524
3441 DHDDS 1_18 0.05380369 5.393824 2.815265e-07 -0.6725101
4211 AUNIP 1_18 0.09201181 10.402720 9.285406e-07 -1.4179104
4603 NR0B2 1_18 0.04979733 4.677539 2.259612e-07 -0.1588282
5888 SH3BGRL3 1_18 0.05022431 4.756530 2.317473e-07 -0.4166667
5889 CNKSR1 1_18 0.05166707 5.018596 2.515396e-07 -0.3717949
5897 GPN2 1_18 0.05919837 6.280058 3.606483e-07 -0.7983193
7154 LDLRAP1 1_18 0.04901100 4.530361 2.153956e-07 -0.1515152
7157 PAFAH2 1_18 0.04935011 4.594120 2.199383e-07 0.2173913
7158 EXTL1 1_18 0.05268064 5.198438 2.656650e-07 -0.6067637
7159 SLC30A2 1_18 0.05322706 5.294011 2.733555e-07 0.5277778
7161 TRIM63 1_18 0.09101490 10.300110 9.094206e-07 -1.5035039
7166 UBXN11 1_18 0.07037800 7.890028 5.386739e-07 0.5286808
7567 SELENON 1_18 0.05390663 5.411522 2.829906e-07 -0.2835821
8813 CD52 1_18 0.05640361 5.831306 3.190679e-07 0.9574677
9605 KDF1 1_18 0.06375737 6.969660 4.310746e-07 0.9159664
9632 ZNF683 1_18 0.11491686 12.507060 1.394278e-06 2.1467890
10250 PAQR7 1_18 0.05138529 4.967951 2.476433e-07 -0.3214286
10367 TMEM50A 1_18 0.18574567 17.150421 3.090323e-06 2.2714286
10923 RHCE 1_18 0.08253391 9.380747 7.510697e-07 -1.4973672
11222 FAM110D 1_18 0.06128334 6.601642 3.924685e-07 0.6959054
11515 HMGN2 1_18 0.05094986 4.889203 2.416526e-07 -0.3648649
11621 ZDHHC18 1_18 0.11413453 12.442379 1.377625e-06 -1.5652174
12514 RP11-96L14.7 1_18 0.07056985 7.915638 5.418955e-07 -1.3544304
num_eqtl
575 1
3435 1
3438 1
3440 1
3441 2
4211 1
4603 2
5888 1
5889 1
5897 1
7154 1
7157 1
7158 3
7159 1
7161 2
7166 2
7567 1
8813 3
9605 1
9632 1
10250 1
10367 1
10923 2
11222 3
11515 1
11621 1
12514 1
[1] "APOB"
[1] "2_13"
genename region_tag susie_pip mu2 PVE z num_eqtl
1162 APOB 2_13 0.05171173 6.022032 3.020943e-07 0.8315789 1
12398 AC067959.1 2_13 0.06126714 7.594636 4.513828e-07 1.0606061 1
[1] "APOE"
[1] "19_31"
genename region_tag susie_pip mu2 PVE z
204 PLAUR 19_31 0.02849177 4.808054 1.328921e-07 0.31958763
867 XRCC1 19_31 0.02829552 4.744703 1.302378e-07 0.25581395
2099 KCNN4 19_31 0.04351501 8.701255 3.673089e-07 -1.06930693
2266 ETHE1 19_31 0.03414140 6.468101 2.142242e-07 0.68748771
2267 SMG9 19_31 0.03758500 7.351636 2.680458e-07 -0.89043174
3971 ZNF45 19_31 0.05900086 11.518291 6.592601e-07 -1.37024221
4540 ZNF227 19_31 0.03640418 7.057995 2.492545e-07 -0.91280315
7319 ZNF230 19_31 0.03395243 6.417107 2.113589e-07 -0.73630137
7323 ZNF221 19_31 0.03974818 7.866755 3.033355e-07 -0.95714286
8475 IRGQ 19_31 0.02777114 4.573267 1.232057e-07 0.11217949
8476 ZNF226 19_31 0.02765363 4.534412 1.216420e-07 0.06122449
8519 ZNF283 19_31 0.03058882 5.459326 1.619989e-07 -0.46268657
9651 ZNF404 19_31 0.03087040 5.543399 1.660079e-07 -0.46268657
9865 ZNF223 19_31 0.03028714 5.368403 1.577298e-07 0.44285714
10644 ZNF284 19_31 0.02770775 4.552327 1.223616e-07 0.10101010
11740 ZNF155 19_31 0.02962992 5.167181 1.485233e-07 0.47048028
12434 PINLYP 19_31 0.02765847 4.536014 1.217063e-07 -0.06795808
13018 ZNF225 19_31 0.04727306 9.465932 4.340977e-07 -1.17391304
13291 ZNF234 19_31 0.02770092 4.550066 1.222707e-07 0.11594203
13411 ZNF224 19_31 0.03783347 7.412266 2.720430e-07 0.89772727
112 MARK4 19_31 0.03067690 5.485707 1.632505e-07 -0.47282609
119 TRAPPC6A 19_31 0.06385391 12.253005 7.589978e-07 -1.43410853
214 ERCC1 19_31 0.06209460 11.993145 7.224326e-07 1.43750000
593 ZNF112 19_31 0.02823966 4.726588 1.294844e-07 0.15555945
866 PVR 19_31 0.02786954 4.605680 1.245186e-07 -0.16666667
2111 CLPTM1 19_31 0.04952683 9.896424 4.754767e-07 1.22413793
2113 PPP1R37 19_31 0.02764689 4.532178 1.215524e-07 0.02325315
2115 CKM 19_31 0.02947524 5.119184 1.463756e-07 0.42066734
2117 PPP1R13L 19_31 0.03936284 7.777046 2.969693e-07 0.94933333
3451 CD3EAP 19_31 0.02904211 4.983442 1.404003e-07 0.38478177
4079 FOSB 19_31 0.02784195 4.596603 1.241501e-07 0.11538462
4080 OPA3 19_31 0.04559245 9.131621 4.038790e-07 1.09859155
4082 RTN2 19_31 0.03633139 7.039587 2.481074e-07 0.82935506
4412 NECTIN2 19_31 0.03594458 6.941161 2.420338e-07 0.91447368
4413 APOE 19_31 0.06880641 12.948792 8.643080e-07 1.75000000
4414 TOMM40 19_31 0.03077329 5.514488 1.646226e-07 -0.59268930
4415 APOC1 19_31 0.16958180 21.526348 3.541278e-06 2.46376812
5860 GEMIN7 19_31 0.04929982 9.853941 4.712656e-07 -1.23208778
7324 ZNF233 19_31 0.14629720 20.091293 2.851375e-06 2.44329897
7325 ZNF235 19_31 0.06927352 13.011865 8.744143e-07 1.88899386
8477 ZNF180 19_31 0.03262520 6.050867 1.915055e-07 0.70149254
8993 ZNF296 19_31 0.02805998 4.668090 1.270682e-07 0.19444444
10708 CEACAM19 19_31 0.03280796 6.102161 1.942108e-07 0.66278513
10978 BLOC1S3 19_31 0.02976706 5.209531 1.504337e-07 -0.41492537
11951 PPM1N 19_31 0.02966612 5.178378 1.490270e-07 -0.46241261
12455 APOC2 19_31 0.03222310 5.937003 1.855859e-07 0.52968037
13399 ZNF285 19_31 0.02878369 4.901500 1.368630e-07 -0.35172414
num_eqtl
204 1
867 1
2099 1
2266 2
2267 2
3971 1
4540 2
7319 1
7323 1
8475 1
8476 1
8519 1
9651 1
9865 1
10644 1
11740 2
12434 3
13018 1
13291 1
13411 1
112 1
119 1
214 1
593 2
866 1
2111 1
2113 2
2115 2
2117 1
3451 2
4079 1
4080 1
4082 2
4412 1
4413 1
4414 1
4415 1
5860 3
7324 1
7325 2
8477 1
8993 1
10708 2
10978 1
11951 2
12455 1
13399 1
[1] "SOAT1"
[1] "1_89"
genename region_tag susie_pip mu2 PVE z
540 SOAT1 1_89 0.05268186 8.479530 4.333545e-07 1.01176471
3288 FAM20B 1_89 0.04168309 6.316295 2.554070e-07 0.72222222
3297 QSOX1 1_89 0.03814560 5.499501 2.035064e-07 -0.56944444
3738 LHX4 1_89 0.03450814 4.577904 1.532494e-07 -0.22123894
5072 KIAA1614 1_89 0.09426456 13.911566 1.272140e-06 1.55555556
5073 CEP350 1_89 0.05369001 8.655103 4.507919e-07 1.19655172
5957 ABL2 1_89 0.03712037 5.248817 1.890097e-07 -0.65194565
5958 XPR1 1_89 0.25759467 23.712071 5.925388e-06 -2.84545455
5961 FAM163A 1_89 0.03564314 4.875355 1.685748e-07 -0.27882629
10672 TOR3A 1_89 0.03445531 4.563826 1.525442e-07 0.05797101
12311 ACBD6 1_89 0.15917424 18.920478 2.921563e-06 2.67647059
13170 RP11-533E19.5 1_89 0.05369001 8.655103 4.507919e-07 1.19655172
num_eqtl
540 1
3288 1
3297 1
3738 1
5072 1
5073 1
5957 2
5958 1
5961 2
10672 1
12311 1
13170 1
[1] "MYLIP"
[1] "6_13"
genename region_tag susie_pip mu2 PVE z
133 MYLIP 6_13 0.03540141 8.989224 3.087118e-07 1.0444444
437 DTNBP1 6_13 0.02834756 6.944155 1.909613e-07 0.8356641
5264 GMPR 6_13 0.02157356 5.014321 1.049408e-07 0.7214247
13562 RP11-560J1.2 6_13 0.05478702 13.476172 7.162336e-07 2.0738691
13609 RP1-151F17.2 6_13 0.04426768 10.793664 4.635175e-07 1.1410021
num_eqtl
133 1
437 2
5264 2
13562 2
13609 2
[1] "SCARB1"
[1] "12_76"
genename region_tag susie_pip mu2 PVE z
868 SCARB1 12_76 0.62884142 20.201894 1.232377e-05 3.511961722
1095 AACS 12_76 0.06933066 7.380080 4.963600e-07 0.971014493
5568 TMEM132B 12_76 0.05107164 4.534029 2.246335e-07 -0.002253938
6595 DHX37 12_76 0.11417682 12.222112 1.353738e-06 -1.600000000
6596 UBC 12_76 0.13556009 13.784176 1.812688e-06 1.712707182
num_eqtl
868 1
1095 1
5568 3
6595 1
6596 1
[1] "ABCB11"
[1] "2_102"
genename region_tag susie_pip mu2 PVE z num_eqtl
885 ABCB11 2_102 0.04874027 7.916105 3.742914e-07 -1.05981763 2
886 DHRS9 2_102 0.03386763 4.561817 1.498763e-07 -0.09510815 2
6708 SPC25 2_102 0.03743384 5.482276 1.990837e-07 0.88512935 3
9208 CERS6 2_102 0.04146862 6.424799 2.584578e-07 -0.67662405 2
[1] "CETP"
[1] "16_30"
genename region_tag susie_pip mu2 PVE z
55 CIAPIN1 16_30 0.04845288 6.302228 2.962266e-07 -0.73183714
87 CX3CL1 16_30 0.07153896 9.920655 6.884833e-07 -1.27536232
476 HERPUD1 16_30 0.05680504 7.774791 4.284361e-07 -0.96998736
1234 CETP 16_30 0.07838425 10.775033 8.193281e-07 -1.40545710
1237 GNAO1 16_30 0.04013178 4.563708 1.776710e-07 -0.08828906
1274 COQ9 16_30 0.11314960 14.237664 1.562796e-06 -1.79032091
1904 NUP93 16_30 0.04463449 5.544105 2.400559e-07 -0.56595745
1913 POLR2C 16_30 0.04887837 6.383052 3.026603e-07 -0.74626866
4021 BBS2 16_30 0.04248260 5.088312 2.096984e-07 -0.45344441
4023 MT2A 16_30 0.04970500 6.538125 3.152562e-07 -0.78160920
4026 DOK4 16_30 0.04048193 4.643731 1.823638e-07 -0.13131313
5060 CCDC102A 16_30 0.04419186 5.452138 2.337327e-07 -0.50704225
5718 CPNE2 16_30 0.04730006 6.079700 2.789679e-07 -0.65178571
5719 NLRC5 16_30 0.15157292 17.042580 2.505921e-06 -1.96932515
7285 CES5A 16_30 0.04847434 6.306322 2.965503e-07 -0.74264706
7293 AMFR 16_30 0.04732496 6.084562 2.793380e-07 0.69115648
7296 RSPRY1 16_30 0.07009822 9.730778 6.617059e-07 -1.25362319
8424 NUDT21 16_30 0.04005713 4.546559 1.766742e-07 -0.06870005
8846 MT1E 16_30 0.09262666 12.343192 1.109108e-06 1.51612903
9275 FAM192A 16_30 0.05394953 7.296643 3.818750e-07 -0.97354497
10774 MT1X 16_30 0.04139045 4.848234 1.946678e-07 -0.26865672
11419 MT1F 16_30 0.04985897 6.566730 3.176164e-07 -0.70526316
11792 MT1H 16_30 0.04000831 4.535327 1.760229e-07 -0.01470588
11793 MT1A 16_30 0.08943528 12.013025 1.042249e-06 1.47590361
11795 MT1M 16_30 0.04720573 6.061256 2.775669e-07 -0.68013825
12749 RP11-461O7.1 16_30 0.04242036 5.074794 2.088350e-07 -0.36774954
num_eqtl
55 2
87 1
476 2
1234 2
1237 2
1274 2
1904 1
1913 1
4021 2
4023 1
4026 1
5060 1
5718 1
5719 1
7285 1
7293 2
7296 1
8424 2
8846 1
9275 1
10774 1
11419 1
11792 1
11793 1
11795 2
12749 3
[1] "APOH"
[1] "17_38"
genename region_tag susie_pip mu2 PVE z num_eqtl
1394 APOH 17_38 0.13334553 14.802053 1.914744e-06 -2.0358974 1
6876 PRKCA 17_38 0.40925888 26.254174 1.042334e-05 -3.6842105 1
6878 CEP112 17_38 0.04898550 5.398308 2.565285e-07 0.9939394 1
8696 AXIN2 17_38 0.05966651 7.225824 4.182427e-07 0.8732394 1
[1] "TSPO"
[1] "22_18"
genename region_tag susie_pip mu2 PVE z num_eqtl
1614 CYB5R3 22_18 0.04708721 5.352272 2.444847e-07 -0.4895833 1
1619 PACSIN2 22_18 0.04695762 5.326821 2.426524e-07 -0.4969661 2
1620 TTLL1 22_18 0.06193207 7.891516 4.741180e-07 -1.0573210 2
1627 MCAT 22_18 0.05771660 7.236749 4.051862e-07 -0.9702970 1
1631 TSPO 22_18 0.04336523 4.592180 1.931839e-07 -0.2083333 1
1633 TTLL12 22_18 0.33762365 24.457289 8.010352e-06 2.9906361 3
4272 A4GALT 22_18 0.08909122 11.290982 9.758364e-07 1.4286502 2
10343 SERHL2 22_18 0.04385792 4.696390 1.998125e-07 0.2220141 4
10997 RRP7A 22_18 0.04472207 4.876429 2.115603e-07 -0.1760735 6
12647 ARFGAP3 22_18 0.08577514 10.934347 9.098393e-07 1.3790111 2
[1] "PLTP"
[1] "20_28"
genename region_tag susie_pip mu2 PVE z
310 TOMM34 20_28 0.02468007 5.500228 1.316853e-07 0.48837209
621 WISP2 20_28 0.02479161 5.579655 1.341907e-07 0.60139860
629 CTSA 20_28 0.04075101 10.074828 3.982782e-07 1.52238806
1755 PLTP 20_28 0.06905741 14.928154 1.000062e-06 1.86250000
1756 PCIF1 20_28 0.08025242 16.355427 1.273299e-06 -2.00769231
1758 MMP9 20_28 0.03504881 8.742433 2.972460e-07 1.12113489
1766 CD40 20_28 0.04733968 11.437378 5.252453e-07 1.71428571
1774 RIMS4 20_28 0.02387507 5.232015 1.211781e-07 0.53846154
1841 WFDC2 20_28 0.02508320 5.676817 1.381333e-07 -0.57003938
1845 DNTTIP1 20_28 0.02364407 5.121869 1.174793e-07 0.56338028
1848 ACOT8 20_28 0.07003223 15.127497 1.027722e-06 1.73584906
3926 SNX21 20_28 0.02213841 4.531737 9.732435e-08 0.21865506
3927 SLPI 20_28 0.02223462 4.568065 9.853087e-08 0.21872230
3928 WFDC3 20_28 0.02218200 4.552138 9.795499e-08 0.06067048
3930 SLC12A5 20_28 0.10205195 18.636907 1.845039e-06 2.08823529
3931 SDC4 20_28 0.02234897 4.618843 1.001385e-07 -0.18571429
3933 MATN4 20_28 0.04658125 11.387780 5.145891e-07 -1.45454545
3934 NCOA5 20_28 0.17522231 23.619903 4.014930e-06 2.74698795
3951 RBPJL 20_28 0.05823843 13.358664 7.547152e-07 1.61333333
3953 KCNK15 20_28 0.06597254 14.580137 9.331151e-07 -1.94169918
3954 TP53TG5 20_28 0.03004858 7.345751 2.141266e-07 -0.80103890
3957 NEURL2 20_28 0.06397941 14.235770 8.835510e-07 1.79219427
4713 OSER1 20_28 0.02316326 4.898168 1.100636e-07 -0.11842105
4714 SERINC3 20_28 0.02440935 5.415560 1.282360e-07 -0.41420118
6528 JPH2 20_28 0.02894562 7.140966 2.005166e-07 -0.97014925
6532 SPATA25 20_28 0.04316533 10.600331 4.438794e-07 1.42105582
8404 YWHAB 20_28 0.03229352 7.979207 2.499686e-07 -1.06664098
8706 PKIG 20_28 0.02360497 5.135441 1.175957e-07 -0.48837209
11156 ADA 20_28 0.02412992 5.322283 1.245846e-07 0.58282209
11231 FITM2 20_28 0.34466420 30.888719 1.032777e-05 3.47633136
11609 SYS1 20_28 0.02494313 5.624333 1.360919e-07 -0.52857143
12140 OSER1-AS1 20_28 0.02660360 6.086123 1.570694e-07 -0.42101203
12711 DBNDD2 20_28 0.02943472 7.141745 2.039270e-07 -0.75153374
14021 RP11-445H22.3 20_28 0.08667650 17.159906 1.442868e-06 -2.02222222
num_eqtl
310 1
621 1
629 1
1755 1
1756 1
1758 2
1766 1
1774 1
1841 2
1845 1
1848 1
3926 2
3927 2
3928 2
3930 1
3931 1
3933 1
3934 1
3951 1
3953 2
3954 2
3957 2
4713 1
4714 1
6528 1
6532 2
8404 2
8706 1
11156 1
11231 1
11609 1
12140 5
12711 1
14021 1
[1] "VAPA"
[1] "18_7"
genename region_tag susie_pip mu2 PVE z
1854 VAPA 18_7 0.02250502 5.532316 1.207805e-07 -0.50724638
1865 ANKRD12 18_7 0.02062323 4.734186 9.471361e-08 0.11574364
4309 TWSG1 18_7 0.02194395 5.301492 1.128557e-07 0.44247788
4865 NAPG 18_7 0.16226954 23.979882 3.774805e-06 -2.71301314
6927 PPP4R1 18_7 0.26857459 29.010443 7.558397e-06 -3.31948106
6928 APCDD1 18_7 0.04546274 11.988948 5.287460e-07 -1.30950974
8673 RAB31 18_7 0.02143633 5.087559 1.057962e-07 -0.42878143
8681 MTCL1 18_7 0.02088305 4.848590 9.822450e-08 0.25022734
9842 NDUFV2 18_7 0.06264118 14.958272 9.089746e-07 1.77821164
11845 RAB12 18_7 0.02018144 4.536357 8.881162e-08 0.05155737
13303 PPP4R1-AS1 18_7 0.02416486 6.183233 1.449474e-07 0.96153846
num_eqtl
1854 1
1865 2
4309 1
4865 2
6927 2
6928 2
8673 2
8681 2
9842 2
11845 2
13303 1
[1] "KPNB1"
[1] "17_27"
genename region_tag susie_pip mu2 PVE z
45 CDC27 17_27 8.718574e-06 7.921742 6.700027e-11 1.3689320
889 TBX21 17_27 4.779319e-06 6.009998 2.786447e-11 0.6217949
891 NSF 17_27 4.482510e-06 107.169511 4.660182e-10 0.3333333
2507 WNT3 17_27 3.707228e-05 797.458403 2.867925e-08 -4.3894024
2515 KPNB1 17_27 4.505073e-06 5.881217 2.570274e-11 0.4344828
2516 GOSR2 17_27 4.092394e-06 26.523101 1.052961e-10 -0.4405248
3637 KANSL1 17_27 1.284852e-05 26.280094 3.275598e-10 1.2652096
5155 NMT1 17_27 5.146064e-06 34.645366 1.729541e-10 -0.2835821
7240 WNT9B 17_27 6.962174e-06 23.610209 1.594612e-10 -1.4179104
7276 ARHGAP27 17_27 5.875984e-06 189.442021 1.079860e-09 0.1576482
7497 PLCD3 17_27 4.090509e-06 16.256175 6.450690e-11 -0.3418803
9304 DCAKD 17_27 4.151521e-06 46.023255 1.853510e-10 -0.7214662
9905 EFCAB13 17_27 5.098684e-06 6.464700 3.197547e-11 -0.7481167
10133 ACBD4 17_27 1.493108e-05 36.452467 5.279935e-10 2.0149254
10488 FMNL1 17_27 4.442251e-06 50.069692 2.157687e-10 0.9729730
10616 ARL17A 17_27 7.713881e-06 488.685319 3.656896e-09 -0.5399498
10733 HEXIM1 17_27 2.623803e-05 51.799366 1.318457e-09 -2.4155844
10739 MAPT 17_27 2.791224e-04 166.512662 4.508711e-08 3.8724621
11409 MYL4 17_27 2.747494e-05 11.509995 3.067766e-10 -2.1660197
11555 TBKBP1 17_27 4.296711e-05 33.693899 1.404423e-09 2.3676471
12286 ARL17B 17_27 1.618098e-05 117.096052 1.838050e-09 2.5357143
13108 ITGB3 17_27 1.319177e-05 10.880709 1.392421e-10 -1.5791058
13371 RP11-798G7.6 17_27 9.150494e-06 115.994088 1.029653e-09 2.1204819
13879 AC142472.6 17_27 4.310133e-05 48.132994 2.012538e-09 2.6212121
num_eqtl
45 1
889 1
891 1
2507 2
2515 1
2516 2
3637 3
5155 1
7240 1
7276 2
7497 1
9304 2
9905 3
10133 1
10488 1
10616 2
10733 1
10739 2
11409 2
11555 1
12286 1
13108 4
13371 1
13879 1
[1] "APOA4"
[1] "11_70"
genename region_tag susie_pip mu2 PVE z
2690 APOA4 11_70 0.08597876 10.093678 8.418816e-07 -0.37037037
2691 CEP164 11_70 0.09111581 11.335944 1.001987e-06 1.44776119
3461 APOA1 11_70 0.06263300 7.448341 4.525569e-07 0.16909746
5336 FXYD2 11_70 0.05788562 7.468529 4.193882e-07 0.86178768
6527 TAGLN 11_70 0.04582118 9.456397 4.203416e-07 2.39185905
7399 SIK3 11_70 0.09457604 10.724944 9.839808e-07 0.86597938
7404 PCSK7 11_70 0.09065674 16.195458 1.424308e-06 -3.41666667
8458 RNF214 11_70 0.04229603 4.536722 1.861453e-07 0.01470588
8620 PAFAH1B2 11_70 0.76294098 21.209914 1.569785e-05 4.16485221
9733 DSCAML1 11_70 0.04229107 4.532488 1.859498e-07 0.05504602
10677 BACE1 11_70 0.06261943 8.003026 4.861539e-07 1.08724832
num_eqtl
2690 1
2691 1
3461 3
5336 2
6527 2
7399 1
7404 1
8458 1
8620 2
9733 3
10677 1
[1] "ALDH2"
[1] "12_67"
genename region_tag susie_pip mu2 PVE z
1296 MAPKAPK5 12_67 0.08012151 11.945585 9.284680e-07 -1.1733333
1317 ERP29 12_67 0.03855432 5.176368 1.936015e-07 -0.6422018
2770 ARPC3 12_67 0.03582291 4.673904 1.624243e-07 -0.1810345
2771 GPN3 12_67 0.03614353 4.760320 1.669080e-07 -0.2307692
2772 VPS29 12_67 0.03751501 8.210948 2.988194e-07 -1.9631441
2773 MYL2 12_67 0.13743467 17.251484 2.300028e-06 -1.9552239
2775 SH2B3 12_67 0.09091118 12.677368 1.118039e-06 1.7037037
2780 ACAD10 12_67 0.07176932 10.502546 7.312129e-07 1.5186529
2781 ALDH2 12_67 0.03922845 5.349209 2.035641e-07 -0.7294118
2784 NAA25 12_67 0.03553311 4.621570 1.593064e-07 0.2922582
3851 IFT81 12_67 0.04218807 8.332797 3.410287e-07 2.0042599
5575 GIT2 12_67 0.70103238 22.545466 1.533231e-05 -4.5737419
5576 TCHP 12_67 0.18384103 18.805427 3.353792e-06 -4.1063830
6611 RAD9B 12_67 0.06529046 13.668112 8.657025e-07 2.6250000
9310 HECTD4 12_67 0.14007693 16.328968 2.218890e-06 -2.0573653
9463 C12orf76 12_67 0.18931921 21.116844 3.878235e-06 2.6123077
10674 PPP1CC 12_67 0.03640971 4.784495 1.689910e-07 -0.3119266
11102 ANAPC7 12_67 0.03609400 4.717581 1.651828e-07 -0.2200000
11158 PPTC7 12_67 0.03689056 4.955877 1.773561e-07 0.3162393
11403 TMEM116 12_67 0.04026398 5.515291 2.154247e-07 0.7459176
11408 FAM109A 12_67 0.03821478 5.682622 2.106641e-07 0.6309694
11730 ATXN2 12_67 0.03999521 5.624313 2.182167e-07 0.6532258
12444 MAPKAPK5-AS1 12_67 0.03971005 5.457536 2.102362e-07 0.7674419
13052 RP3-473L9.4 12_67 0.03646776 4.764151 1.685408e-07 0.2820513
num_eqtl
1296 1
1317 1
2770 1
2771 1
2772 2
2773 1
2775 1
2780 2
2781 1
2784 2
3851 2
5575 2
5576 1
6611 1
9310 2
9463 1
10674 1
11102 1
11158 1
11403 3
11408 2
11730 1
12444 1
13052 1
[1] "APOA1"
[1] "11_70"
genename region_tag susie_pip mu2 PVE z
2690 APOA4 11_70 0.08597876 10.093678 8.418816e-07 -0.37037037
2691 CEP164 11_70 0.09111581 11.335944 1.001987e-06 1.44776119
3461 APOA1 11_70 0.06263300 7.448341 4.525569e-07 0.16909746
5336 FXYD2 11_70 0.05788562 7.468529 4.193882e-07 0.86178768
6527 TAGLN 11_70 0.04582118 9.456397 4.203416e-07 2.39185905
7399 SIK3 11_70 0.09457604 10.724944 9.839808e-07 0.86597938
7404 PCSK7 11_70 0.09065674 16.195458 1.424308e-06 -3.41666667
8458 RNF214 11_70 0.04229603 4.536722 1.861453e-07 0.01470588
8620 PAFAH1B2 11_70 0.76294098 21.209914 1.569785e-05 4.16485221
9733 DSCAML1 11_70 0.04229107 4.532488 1.859498e-07 0.05504602
10677 BACE1 11_70 0.06261943 8.003026 4.861539e-07 1.08724832
num_eqtl
2690 1
2691 1
3461 3
5336 2
6527 2
7399 1
7404 1
8458 1
8620 2
9733 3
10677 1
[1] "NPC2"
[1] "14_34"
genename region_tag susie_pip mu2 PVE z
1073 PSEN1 14_34 0.21393548 32.401216 6.724416e-06 4.2307692
1727 PAPLN 14_34 0.02452860 9.765600 2.323711e-07 -1.2104233
3570 DCAF4 14_34 0.01385379 10.020297 1.346665e-07 3.0495367
3571 PROX2 14_34 0.02186940 9.092144 1.928918e-07 1.2272727
3574 BBOF1 14_34 0.01815829 7.624654 1.343091e-07 -1.3641061
3575 NEK9 14_34 0.01663519 6.192502 9.993193e-08 0.5909091
3576 ACYP1 14_34 0.01654069 6.142174 9.855672e-08 -0.5757576
3577 IFT43 14_34 0.03605355 13.283572 4.645937e-07 -1.4666667
3578 NPC2 14_34 0.01468276 5.106894 7.274027e-08 0.3777174
3581 ACOT2 14_34 0.03507351 16.030096 5.454134e-07 -2.5454490
3582 LTBP2 14_34 0.01402540 4.715639 6.416026e-08 -0.2238095
3584 MLH3 14_34 0.01515096 5.401685 7.939254e-08 0.4878049
3586 FLVCR2 14_34 0.01393610 4.662053 6.302732e-08 -0.1908397
3587 ABCD4 14_34 0.01637664 6.476112 1.028844e-07 -1.0000000
3588 DLST 14_34 0.03450396 13.063234 4.372502e-07 1.5571429
3596 EIF2B2 14_34 0.01544762 5.536585 8.296865e-08 0.4477612
3597 COQ6 14_34 0.01522450 5.397768 7.972008e-08 0.4558824
3598 ZNF410 14_34 0.02141551 8.312245 1.726860e-07 -0.9333063
4815 C14orf1 14_34 0.04197844 14.622577 5.954710e-07 -1.6000000
5639 PTGR2 14_34 0.01457521 5.222525 7.384237e-08 -0.7412556
8206 ZFYVE1 14_34 0.03286027 11.810349 3.764821e-07 -1.1335878
9705 PNMA1 14_34 0.01376090 4.595818 6.135078e-08 -0.1502769
9763 ACOT4 14_34 0.01823760 6.751362 1.194454e-07 0.6428571
10421 ACOT1 14_34 0.01379707 4.685384 6.271085e-08 0.3316324
10758 ENTPD5 14_34 0.03987186 14.269894 5.519473e-07 -1.6660365
10760 HEATR4 14_34 0.02479427 8.888447 2.137902e-07 0.3698630
11394 RPS6KL1 14_34 0.01390024 4.615402 6.223608e-08 0.0620155
11818 DPF3 14_34 0.95743121 33.355115 3.097993e-05 6.2649595
13091 RP11-270M14.5 14_34 0.01394386 4.652603 6.293458e-08 0.1590909
13097 CTD-2207P18.2 14_34 0.01389708 4.648876 6.267323e-08 0.2686567
13101 RP3-449M8.6 14_34 0.01900602 7.539356 1.390067e-07 1.0179851
13131 LINC01220 14_34 0.01535249 5.598671 8.338236e-08 -0.5555556
13472 RP3-449M8.9 14_34 0.01385642 4.597187 6.179506e-08 0.2204239
num_eqtl
1073 1
1727 2
3570 2
3571 1
3574 2
3575 1
3576 1
3577 1
3578 1
3581 3
3582 1
3584 1
3586 1
3587 1
3588 1
3596 1
3597 1
3598 2
4815 1
5639 4
8206 1
9705 3
9763 1
10421 3
10758 3
10760 1
11394 1
11818 3
13091 1
13097 1
13101 2
13131 1
13472 2
[1] "VAPB"
[1] "20_34"
genename region_tag susie_pip mu2 PVE z
1251 PHACTR3 20_34 0.04769367 5.922148 2.739999e-07 0.6041667
1785 NELFCD 20_34 0.04117991 4.567122 1.824477e-07 -0.3370275
1786 CTSZ 20_34 0.04268982 4.899060 2.028839e-07 0.3513970
3935 VAPB 20_34 0.04166560 4.675176 1.889670e-07 0.1826668
3941 ZNF831 20_34 0.08074517 10.818934 8.474448e-07 1.5252525
3943 RAB22A 20_34 0.05066719 6.481360 3.185689e-07 -0.7815028
11494 APCDD1L 20_34 0.10370004 13.175833 1.325462e-06 1.5859808
12054 NPEPL1 20_34 0.06110568 8.218286 4.871618e-07 -1.0426678
13435 RP4-806M20.4 20_34 0.11006771 13.741049 1.467203e-06 -1.6701031
num_eqtl
1251 1
1785 2
1786 2
3935 3
3941 1
3943 2
11494 2
12054 2
13435 1
[1] "APOC1"
[1] "19_31"
genename region_tag susie_pip mu2 PVE z
204 PLAUR 19_31 0.02849177 4.808054 1.328921e-07 0.31958763
867 XRCC1 19_31 0.02829552 4.744703 1.302378e-07 0.25581395
2099 KCNN4 19_31 0.04351501 8.701255 3.673089e-07 -1.06930693
2266 ETHE1 19_31 0.03414140 6.468101 2.142242e-07 0.68748771
2267 SMG9 19_31 0.03758500 7.351636 2.680458e-07 -0.89043174
3971 ZNF45 19_31 0.05900086 11.518291 6.592601e-07 -1.37024221
4540 ZNF227 19_31 0.03640418 7.057995 2.492545e-07 -0.91280315
7319 ZNF230 19_31 0.03395243 6.417107 2.113589e-07 -0.73630137
7323 ZNF221 19_31 0.03974818 7.866755 3.033355e-07 -0.95714286
8475 IRGQ 19_31 0.02777114 4.573267 1.232057e-07 0.11217949
8476 ZNF226 19_31 0.02765363 4.534412 1.216420e-07 0.06122449
8519 ZNF283 19_31 0.03058882 5.459326 1.619989e-07 -0.46268657
9651 ZNF404 19_31 0.03087040 5.543399 1.660079e-07 -0.46268657
9865 ZNF223 19_31 0.03028714 5.368403 1.577298e-07 0.44285714
10644 ZNF284 19_31 0.02770775 4.552327 1.223616e-07 0.10101010
11740 ZNF155 19_31 0.02962992 5.167181 1.485233e-07 0.47048028
12434 PINLYP 19_31 0.02765847 4.536014 1.217063e-07 -0.06795808
13018 ZNF225 19_31 0.04727306 9.465932 4.340977e-07 -1.17391304
13291 ZNF234 19_31 0.02770092 4.550066 1.222707e-07 0.11594203
13411 ZNF224 19_31 0.03783347 7.412266 2.720430e-07 0.89772727
112 MARK4 19_31 0.03067690 5.485707 1.632505e-07 -0.47282609
119 TRAPPC6A 19_31 0.06385391 12.253005 7.589978e-07 -1.43410853
214 ERCC1 19_31 0.06209460 11.993145 7.224326e-07 1.43750000
593 ZNF112 19_31 0.02823966 4.726588 1.294844e-07 0.15555945
866 PVR 19_31 0.02786954 4.605680 1.245186e-07 -0.16666667
2111 CLPTM1 19_31 0.04952683 9.896424 4.754767e-07 1.22413793
2113 PPP1R37 19_31 0.02764689 4.532178 1.215524e-07 0.02325315
2115 CKM 19_31 0.02947524 5.119184 1.463756e-07 0.42066734
2117 PPP1R13L 19_31 0.03936284 7.777046 2.969693e-07 0.94933333
3451 CD3EAP 19_31 0.02904211 4.983442 1.404003e-07 0.38478177
4079 FOSB 19_31 0.02784195 4.596603 1.241501e-07 0.11538462
4080 OPA3 19_31 0.04559245 9.131621 4.038790e-07 1.09859155
4082 RTN2 19_31 0.03633139 7.039587 2.481074e-07 0.82935506
4412 NECTIN2 19_31 0.03594458 6.941161 2.420338e-07 0.91447368
4413 APOE 19_31 0.06880641 12.948792 8.643080e-07 1.75000000
4414 TOMM40 19_31 0.03077329 5.514488 1.646226e-07 -0.59268930
4415 APOC1 19_31 0.16958180 21.526348 3.541278e-06 2.46376812
5860 GEMIN7 19_31 0.04929982 9.853941 4.712656e-07 -1.23208778
7324 ZNF233 19_31 0.14629720 20.091293 2.851375e-06 2.44329897
7325 ZNF235 19_31 0.06927352 13.011865 8.744143e-07 1.88899386
8477 ZNF180 19_31 0.03262520 6.050867 1.915055e-07 0.70149254
8993 ZNF296 19_31 0.02805998 4.668090 1.270682e-07 0.19444444
10708 CEACAM19 19_31 0.03280796 6.102161 1.942108e-07 0.66278513
10978 BLOC1S3 19_31 0.02976706 5.209531 1.504337e-07 -0.41492537
11951 PPM1N 19_31 0.02966612 5.178378 1.490270e-07 -0.46241261
12455 APOC2 19_31 0.03222310 5.937003 1.855859e-07 0.52968037
13399 ZNF285 19_31 0.02878369 4.901500 1.368630e-07 -0.35172414
num_eqtl
204 1
867 1
2099 1
2266 2
2267 2
3971 1
4540 2
7319 1
7323 1
8475 1
8476 1
8519 1
9651 1
9865 1
10644 1
11740 2
12434 3
13018 1
13291 1
13411 1
112 1
119 1
214 1
593 2
866 1
2111 1
2113 2
2115 2
2117 1
3451 2
4079 1
4080 1
4082 2
4412 1
4413 1
4414 1
4415 1
5860 3
7324 1
7325 2
8477 1
8993 1
10708 2
10978 1
11951 2
12455 1
13399 1
[1] "LPIN3"
[1] "20_25"
genename region_tag susie_pip mu2 PVE z num_eqtl
3937 CHD6 20_25 0.04149349 4.887035 1.967142e-07 -0.4739866 2
3938 PLCG1 20_25 0.04372960 5.371009 2.278462e-07 0.5237893 2
4710 LPIN3 20_25 0.05168602 6.915591 3.467471e-07 0.8249187 2
10378 EMILIN3 20_25 0.05127277 6.841276 3.402783e-07 1.0852760 2
11542 TOP1 20_25 0.04073443 4.716900 1.863926e-07 -0.2518045 2
[1] "SORT1"
[1] "1_69"
genename region_tag susie_pip mu2 PVE z
4854 VAV3 1_69 0.007360794 5.792493 4.136191e-08 -0.61577136
7607 NTNG1 1_69 0.013475947 11.242393 1.469699e-07 -1.38461538
11538 PRMT6 1_69 0.051956490 23.381155 1.178464e-06 -2.41666667
344 SARS 1_69 0.006986679 5.334827 3.615776e-08 0.44800000
1179 WDR47 1_69 0.007170521 5.573058 3.876633e-08 0.50000000
1182 SLC25A24 1_69 0.006787076 5.068679 3.337244e-08 0.38461538
3298 STXBP3 1_69 0.006407795 4.551223 2.829092e-08 0.05000000
3773 CLCC1 1_69 0.010017917 8.601256 8.358911e-08 -1.01639344
3774 GPSM2 1_69 0.006485344 4.661177 2.932507e-08 0.16239316
4849 GSTM1 1_69 0.006633141 4.864554 3.130204e-08 0.28399653
4850 PRPF38B 1_69 0.010568522 9.064166 9.292928e-08 -1.11560694
4852 GSTM5 1_69 0.009068114 7.679306 6.755374e-08 -0.93675660
4853 GSTM3 1_69 0.006394558 4.531569 2.811057e-08 0.02985075
4855 PSRC1 1_69 0.006462700 4.633937 2.905190e-08 -0.08557694
4856 SORT1 1_69 0.006451700 4.612983 2.887131e-08 -0.13513514
5918 SYPL2 1_69 0.008165993 6.732360 5.333187e-08 -0.78993535
5923 PSMA5 1_69 0.008126179 6.706339 5.286671e-08 0.73457603
7609 HENMT1 1_69 0.018928170 14.363043 2.637336e-07 -1.60447761
8710 GSTM4 1_69 0.006964859 5.299935 3.580909e-08 0.46882593
9435 CYB561D1 1_69 0.013011187 10.987508 1.386841e-07 1.25874126
9996 C1orf194 1_69 0.015938161 12.812202 1.980945e-07 -1.45832274
10150 AMIGO1 1_69 0.006809047 5.089012 3.361478e-08 -0.44117647
11311 TAF13 1_69 0.007127584 5.512816 3.811766e-08 0.50839722
11907 GSTM2 1_69 0.011424171 9.805167 1.086651e-07 -1.13618389
12058 TMEM167B 1_69 0.008933496 7.560141 6.551817e-08 -0.88157895
12108 MYBPHL 1_69 0.006414246 4.562159 2.838745e-08 0.03282884
12227 RP11-356N1.2 1_69 0.010409893 8.942052 9.030127e-08 1.07246377
4861 CEPT1 1_69 0.016470252 13.065713 2.087583e-07 -1.54255319
5922 STRIP1 1_69 0.006749723 5.023231 3.289119e-08 0.34317369
5925 PROK1 1_69 0.010705486 9.208717 9.563480e-08 -1.08002080
7017 DRAM2 1_69 0.009975593 8.525865 8.250639e-08 -1.08219178
7639 DENND2D 1_69 0.009558310 8.147190 7.554390e-08 -1.00808455
8701 SLC16A4 1_69 0.007391127 5.844495 4.190521e-08 -0.57575758
8704 AHCYL1 1_69 0.006941342 5.278333 3.554272e-08 -0.42045455
9747 KCNA2 1_69 0.088489011 28.369070 2.435257e-06 -2.62500000
10435 CSF1 1_69 0.007023761 5.382626 3.667536e-08 -0.46236559
11198 SLC6A17 1_69 0.009108989 7.738553 6.838177e-08 -0.90243902
13139 RP11-284N8.3 1_69 0.035959924 20.121611 7.019270e-07 -2.11254860
123 ST7L 1_69 0.009530354 8.119170 7.506389e-08 0.92424242
1181 OVGP1 1_69 0.010417281 8.707643 8.799650e-08 0.86567164
3304 WDR77 1_69 0.016278415 12.636548 1.995497e-07 -1.25373134
3305 ATP5F1 1_69 0.013148012 10.630536 1.355894e-07 -1.02702703
3306 RAP1A 1_69 0.006394824 4.563040 2.830696e-08 0.06410256
3308 CAPZA1 1_69 0.009530771 8.119460 7.506987e-08 0.92424242
3772 TMIGD3 1_69 0.011619766 10.037766 1.131475e-07 1.20588235
5924 C1orf162 1_69 0.006997775 5.365705 3.642480e-08 0.45238095
6959 MOV10 1_69 0.011760283 9.969968 1.137423e-07 -1.19389720
6960 RHOC 1_69 0.017219897 13.435675 2.244401e-07 1.51851852
6961 PPM1J 1_69 0.006395630 4.543890 2.819172e-08 -0.10000000
9086 KCND3 1_69 0.009322585 8.111148 7.335489e-08 -1.18238994
9416 PIFO 1_69 0.010801681 8.982942 9.412833e-08 -0.91082852
11320 FAM212B 1_69 0.006426704 5.149213 3.210256e-08 0.86764706
12341 RP5-965F6.2 1_69 0.006442001 4.589414 2.868062e-08 0.07352941
12345 LINC01160 1_69 0.010806169 8.727229 9.148683e-08 0.79310345
12348 LINC01750 1_69 0.007941604 6.110965 4.707913e-08 0.06666667
num_eqtl
4854 2
7607 1
11538 1
344 1
1179 1
1182 1
3298 1
3773 1
3774 1
4849 3
4850 1
4852 2
4853 1
4855 2
4856 1
5918 2
5923 2
7609 1
8710 2
9435 1
9996 2
10150 1
11311 2
11907 4
12058 1
12108 3
12227 1
4861 1
5922 2
5925 2
7017 1
7639 2
8701 1
8704 1
9747 1
10435 1
11198 1
13139 2
123 1
1181 1
3304 1
3305 1
3306 1
3308 1
3772 1
5924 1
6959 2
6960 1
6961 1
9086 1
9416 2
11320 1
12341 1
12345 1
12348 1
[1] "FADS2"
[1] "11_34"
genename region_tag susie_pip mu2 PVE z
2664 DTX4 11_34 0.03099303 6.991372 2.102020e-07 0.85897436
2679 CCDC86 11_34 0.02551854 5.210056 1.289759e-07 0.37220667
2680 PRPF19 11_34 0.02554661 5.220123 1.293673e-07 0.44117647
2681 TMEM109 11_34 0.02481824 4.955340 1.193040e-07 0.35294118
2708 CD5 11_34 0.03596171 8.357137 2.915468e-07 1.04347826
4016 MYRF 11_34 0.03186538 7.246121 2.239934e-07 -0.84466019
4927 DAGLA 11_34 0.02480277 4.949630 1.190922e-07 -0.34650349
4932 FADS2 11_34 0.07656635 15.358491 1.140767e-06 1.99325920
4933 TMEM258 11_34 0.04188552 9.760925 3.966114e-07 1.33463162
4934 TCN1 11_34 0.05049878 11.487781 5.627655e-07 1.30687831
6505 TKFC 11_34 0.08736548 16.595898 1.406537e-06 -1.88215488
6507 TMEM138 11_34 0.08387976 16.213411 1.319295e-06 1.96202532
6511 INCENP 11_34 0.16897569 22.902963 3.754277e-06 2.45901639
6512 ZP1 11_34 0.03411467 7.872500 2.605339e-07 -0.91980700
6515 MS4A2 11_34 0.02457572 4.865466 1.159955e-07 -0.33823529
7536 CYB561A3 11_34 0.08387976 16.213411 1.319295e-06 1.96202532
7537 PPP1R32 11_34 0.02769822 5.960772 1.601640e-07 0.60736196
8379 FAM111A 11_34 0.02482961 4.959529 1.194595e-07 0.37903226
8398 PATL1 11_34 0.02477812 4.940530 1.187551e-07 -0.29903537
8400 STX3 11_34 0.02380707 4.574707 1.056525e-07 0.02186908
8595 VPS37C 11_34 0.02512710 5.068543 1.235481e-07 -0.33636364
8597 BEST1 11_34 0.04076498 9.511029 3.761189e-07 1.25321316
8598 FTH1 11_34 0.05332834 11.992459 6.204071e-07 1.65217391
8680 FEN1 11_34 0.08312665 16.128761 1.300624e-06 2.04225352
10297 PTGDR2 11_34 0.02750529 5.896723 1.573393e-07 0.68811881
10755 TMEM216 11_34 0.03799363 8.862739 3.266549e-07 -1.13978495
10971 FAM111B 11_34 0.03225465 7.357582 2.302172e-07 -0.85853659
11292 MPEG1 11_34 0.03351433 7.709398 2.506464e-07 -0.96609070
12022 MS4A4E 11_34 0.03198641 7.280922 2.259240e-07 0.97058824
12736 AP001258.4 11_34 0.02549331 5.201000 1.286244e-07 -0.38235294
12965 AP000442.4 11_34 0.04194449 9.773896 3.976977e-07 -1.14210526
13022 RP11-794G24.1 11_34 0.02916128 6.432586 1.819712e-07 -0.70680628
13026 RP11-286N22.8 11_34 0.04123878 9.617506 3.847500e-07 -1.22580645
num_eqtl
2664 1
2679 2
2680 1
2681 1
2708 1
4016 1
4927 2
4932 2
4933 2
4934 1
6505 1
6507 1
6511 1
6512 2
6515 1
7536 1
7537 1
8379 1
8398 1
8400 2
8595 1
8597 2
8598 1
8680 1
10297 1
10755 1
10971 1
11292 2
12022 1
12736 1
12965 1
13022 1
13026 1
[1] "CD36"
[1] "7_51"
genename region_tag susie_pip mu2 PVE z num_eqtl
925 SEMA3C 7_51 0.04540722 4.669443 2.056840e-07 -0.3409091 1
4984 CD36 7_51 0.05163038 5.756439 2.883166e-07 0.8130841 1
[1] "CYP27A1"
[1] "2_129"
genename region_tag susie_pip mu2 PVE z
256 SLC11A1 2_129 0.02818779 5.128755 1.402437e-07 -0.3776224
507 PTPRN 2_129 0.40887978 31.055978 1.231831e-05 -3.6739927
838 ASIC4 2_129 0.04403253 9.229360 3.942354e-07 1.3373494
839 SPEG 2_129 0.07029966 13.568034 9.252957e-07 -1.5628415
905 BCS1L 2_129 0.11201778 17.952033 1.950792e-06 2.5752688
1042 TNS1 2_129 0.30024256 27.707559 8.070138e-06 2.9756098
3208 PLCD4 2_129 0.11181367 17.934589 1.945346e-06 2.5089459
3210 ZNF142 2_129 0.11293908 18.029919 1.975370e-06 2.5806452
3221 CNPPD1 2_129 0.05823445 11.816018 6.675158e-07 1.8364237
3223 ABCB6 2_129 0.02673374 4.643488 1.204244e-07 0.2678571
3916 DNPEP 2_129 0.03051430 5.855960 1.733453e-07 0.5665584
3917 INHA 2_129 0.03262286 6.469243 2.047321e-07 -0.7761194
3919 OBSL1 2_129 0.04426631 9.278222 3.984267e-07 -1.2058824
4236 TUBA4A 2_129 0.02682524 4.674795 1.216513e-07 -0.3905109
4237 AAMP 2_129 0.04191628 8.775105 3.568169e-07 1.0000000
4238 PNKD 2_129 0.04191628 8.775105 3.568169e-07 1.0000000
5082 TTLL4 2_129 0.02996833 5.690352 1.654292e-07 -0.5362319
5083 USP37 2_129 0.07467321 14.131302 1.023664e-06 -2.1171493
5087 TMBIM1 2_129 0.04591592 9.615892 4.283150e-07 1.1327420
5088 CYP27A1 2_129 0.03026815 5.781614 1.697639e-07 1.0593803
6113 CNOT9 2_129 0.03060940 5.884493 1.747328e-07 0.9891156
6115 GMPPA 2_129 0.05084309 10.558123 5.207498e-07 1.2318841
7205 ZFAND2B 2_129 0.03664767 7.538405 2.680009e-07 -1.5142857
7750 CXCR1 2_129 0.02773211 4.979390 1.339583e-07 0.3382353
7751 ARPC2 2_129 0.02743903 4.882049 1.299515e-07 0.2049660
7756 RNF25 2_129 0.08636921 15.495056 1.298262e-06 -2.3920455
7760 IHH 2_129 0.03415260 6.890097 2.282756e-07 -0.8875000
7762 ANKZF1 2_129 0.03382441 6.801437 2.231729e-07 0.9333333
7765 GLB1L 2_129 0.15705396 21.197410 3.229551e-06 -2.7954545
9526 DES 2_129 0.03228830 6.374523 1.996656e-07 -0.8028169
10001 GPBAR1 2_129 0.02762010 4.942315 1.324238e-07 0.2603852
10076 CXCR2 2_129 0.02824113 5.146079 1.409837e-07 0.3409091
10817 NHEJ1 2_129 0.02913239 5.430957 1.534839e-07 0.8700191
10935 TMEM198 2_129 0.19590827 23.365013 4.440473e-06 2.6865672
11552 ATG9A 2_129 0.04992114 10.388856 5.031096e-07 -1.5736388
11952 SLC23A3 2_129 0.15922753 21.331066 3.294892e-06 2.8769191
12352 DIRC3 2_129 0.03927978 8.176621 3.115684e-07 -0.9728261
13648 RP11-33O4.1 2_129 0.02690161 4.700872 1.226781e-07 0.6661952
num_eqtl
256 1
507 1
838 1
839 1
905 1
1042 1
3208 2
3210 1
3221 2
3223 1
3916 2
3917 1
3919 1
4236 1
4237 1
4238 1
5082 1
5083 2
5087 2
5088 2
6113 2
6115 1
7205 1
7750 1
7751 2
7756 1
7760 1
7762 1
7765 1
9526 1
10001 2
10076 1
10817 2
10935 1
11552 2
11952 2
12352 1
13648 2
[1] "NPC1"
[1] "18_12"
genename region_tag susie_pip mu2 PVE z
1870 RIOK3 18_12 0.04551269 5.955563 2.629455e-07 -0.56481481
4896 TMEM241 18_12 0.11515422 14.634959 1.634865e-06 2.77611940
5782 OSBPL1A 18_12 0.04608661 6.071346 2.714377e-07 -0.67164179
5784 C18orf8 18_12 0.30565619 24.310650 7.208422e-06 3.57683496
5786 NPC1 18_12 0.15283418 17.351284 2.572542e-06 3.10871482
6853 CABYR 18_12 0.04808927 6.464307 3.015648e-07 0.70028818
6855 ANKRD29 18_12 0.04084802 4.958308 1.964785e-07 0.08415842
8636 TTC39C 18_12 0.04065429 4.914584 1.938222e-07 -0.27631579
13315 LINC01894 18_12 0.06742822 9.600360 6.279711e-07 1.20930233
13326 LINC01915 18_12 0.04587287 6.028430 2.682690e-07 0.68750000
13331 RP11-799B12.4 18_12 0.07023556 9.980795 6.800372e-07 1.27536232
13332 RP11-403A21.1 18_12 0.06089290 8.651258 5.110417e-07 -0.84375000
13348 RP11-449D8.5 18_12 0.06742822 9.600360 6.279711e-07 1.20930233
13729 RP11-621L6.3 18_12 0.05970007 8.467863 4.904097e-07 -1.06784079
num_eqtl
1870 1
4896 1
5782 1
5784 3
5786 2
6853 1
6855 1
8636 1
13315 1
13326 1
13331 1
13332 1
13348 1
13729 3
[1] "NCEH1"
[1] "3_106"
genename region_tag susie_pip mu2 PVE z num_eqtl
6158 NCEH1 3_106 0.04148114 4.572903 1.840149e-07 0.09859155 1
8855 NLGN1 3_106 0.04435164 5.189937 2.232966e-07 0.40472815 2
[1] "STAR"
[1] "8_34"
genename region_tag susie_pip mu2 PVE z
269 ADGRA2 8_34 0.06354746 7.933602 4.890791e-07 1.0142857
1002 FGFR1 8_34 0.05699148 6.922049 3.826969e-07 1.0519481
1194 DDHD2 8_34 0.16865141 17.197954 2.813696e-06 -2.0444444
6349 STAR 8_34 0.04716142 5.169443 2.365054e-07 -0.3458647
6350 PROSC 8_34 0.19803812 18.778491 3.607613e-06 -2.1703057
6353 TACC1 8_34 0.04521276 4.779775 2.096423e-07 0.2803738
6356 NSD3 8_34 0.06498656 8.142002 5.132928e-07 1.0840336
8093 LETM2 8_34 0.08107619 10.208263 8.028892e-07 1.4736842
8695 ADAM9 8_34 0.08283038 10.409025 8.363924e-07 -1.2732558
8815 TM2D2 8_34 0.04505410 4.747326 2.074884e-07 -0.2027542
12893 LINC01605 8_34 0.05084619 5.864974 2.892910e-07 -0.5764706
13583 RP11-350N15.5 8_34 0.08860578 11.042216 9.491367e-07 1.5707641
num_eqtl
269 1
1002 1
1194 1
6349 1
6350 1
6353 1
6356 1
8093 1
8695 1
8815 2
12893 1
13583 2
[1] "LRPAP1"
[1] "4_4"
genename region_tag susie_pip mu2 PVE z
1240 NOP14 4_4 0.04978278 4.530374 2.187881e-07 0.04285714
1241 ADD1 4_4 0.05001056 4.572595 2.218375e-07 0.18740108
2638 MFSD10 4_4 0.08232703 9.212764 7.357713e-07 -1.17237308
2641 HGFAC 4_4 0.05011092 4.591138 2.231840e-07 -0.16296339
4040 GRK4 4_4 0.04978278 4.530374 2.187881e-07 0.04285714
7315 RGS12 4_4 0.07504018 8.344860 6.074679e-07 -1.14954438
7875 LRPAP1 4_4 0.05036700 4.638291 2.266285e-07 -0.16304348
9622 DOK7 4_4 0.24873833 19.929428 4.808925e-06 2.35949040
10409 ADRA2C 4_4 0.05244587 5.012614 2.550269e-07 -0.41000000
10960 MSANTD1 4_4 0.05081558 4.720325 2.326908e-07 0.30000000
11252 HTT 4_4 0.05202175 4.937439 2.491708e-07 -0.31884058
12864 AC141928.1 4_4 0.13383145 13.819728 1.794189e-06 -1.88888889
num_eqtl
1240 1
1241 2
2638 3
2641 2
4040 1
7315 2
7875 1
9622 2
10409 1
10960 1
11252 1
12864 1
[1] "LIPC"
[1] "15_26"
genename region_tag susie_pip mu2 PVE z
5343 SLTM 15_26 0.09283266 12.511027 1.126689e-06 2.07058824
5362 ADAM10 15_26 0.04403073 5.565549 2.377247e-07 -0.97769990
7117 RNF111 15_26 0.14666590 16.870906 2.400369e-06 2.41176471
7118 FAM81A 15_26 0.03958787 4.585133 1.760858e-07 0.19172932
8241 LIPC 15_26 0.05373014 7.405989 3.860215e-07 0.96987827
9173 LDHAL6B 15_26 0.04033631 4.757634 1.861648e-07 -0.18000000
12744 RP11-30K9.6 15_26 0.03956020 4.578692 1.757156e-07 -0.05298013
num_eqtl
5343 1
5362 2
7117 1
7118 1
8241 3
9173 1
12744 1
[1] "ANGPTL4"
[1] "19_8"
genename region_tag susie_pip mu2 PVE z
347 PNPLA6 19_8 0.01959833 4.533508 8.619141e-08 0.066666667
681 ELAVL1 19_8 0.10125862 19.724509 1.937531e-06 -2.192771084
976 CAMSAP3 19_8 0.01960340 4.535871 8.625865e-08 -0.018115359
978 XAB2 19_8 0.02081469 5.083575 1.026478e-07 -0.428571429
979 STXBP2 19_8 0.02115783 5.232992 1.074068e-07 -0.471428571
1362 CD209 19_8 0.08022301 17.532325 1.364423e-06 -1.897833916
1363 CERS4 19_8 0.01959274 4.530901 8.611724e-08 -0.014285714
1364 MCOLN1 19_8 0.02250985 5.799227 1.266348e-07 -0.594594595
2116 ARHGEF18 19_8 0.02268853 5.871529 1.292314e-07 -0.597222222
2118 PEX11G 19_8 0.03326015 9.376453 3.025333e-07 1.111137463
2144 SNAPC2 19_8 0.02056093 4.971497 9.916086e-08 0.481481481
2146 TIMM44 19_8 0.03367665 9.490760 3.100561e-07 -1.164609629
4074 C3 19_8 0.02914260 8.163690 2.307944e-07 0.958904110
4075 SH2D3A 19_8 0.01973486 4.596910 8.800562e-08 0.145525293
4076 TRIP10 19_8 0.02727433 7.556445 1.999319e-07 0.879629630
4077 GPR108 19_8 0.02173865 5.480518 1.155752e-07 0.488174923
4461 ZNF557 19_8 0.27538955 29.534361 7.890154e-06 -3.045178789
5871 EVI5L 19_8 0.02032747 4.867171 9.597771e-08 0.413707888
9033 LRRC8E 19_8 0.03511530 9.875152 3.363958e-07 1.222507877
9044 INSR 19_8 0.02270928 5.879887 1.295337e-07 -0.618631151
9497 PCP2 19_8 0.02066267 5.016596 1.005555e-07 -0.400000000
9877 CTXN1 19_8 0.03450845 9.714932 3.252188e-07 1.243750000
10099 TRAPPC5 19_8 0.01959164 4.530388 8.610267e-08 0.007936508
10234 CLEC4G 19_8 0.03115928 8.777440 2.653174e-07 -1.050050849
10280 MCEMP1 19_8 0.02490636 6.724756 1.624790e-07 -0.730263158
10306 PRR36 19_8 0.07391205 16.765541 1.202107e-06 1.983333333
10748 KANK3 19_8 0.02370047 6.270631 1.441712e-07 -0.609205878
11508 ZNF358 19_8 0.04965731 13.069327 6.295741e-07 1.478873239
13421 CTD-2325M2.1 19_8 0.03469176 9.763620 3.285849e-07 -1.212669683
1518 HNRNPM 19_8 0.03725889 10.420035 3.766253e-07 1.227678571
1519 MARCH2 19_8 0.02016181 4.792419 9.373349e-08 0.211379694
4760 PRAM1 19_8 0.04925542 12.994183 6.208882e-07 1.579512358
4762 ZNF414 19_8 0.04819059 12.792139 5.980202e-07 1.588888889
5862 ADAMTS10 19_8 0.07019384 16.283577 1.108815e-06 -1.829268293
5866 MYO1F 19_8 0.05061982 13.246908 6.504974e-07 1.616000000
8557 ANGPTL4 19_8 0.06458429 15.507418 9.715760e-07 1.808823529
8558 CD320 19_8 0.06840312 16.042554 1.064535e-06 -1.862381374
8561 ZNF558 19_8 0.02431398 6.504462 1.534186e-07 0.675308883
12420 RPS28 19_8 0.05413168 13.867957 7.282398e-07 1.592592593
13418 NDUFA7 19_8 0.04347266 11.840848 4.993550e-07 1.401346519
num_eqtl
347 1
681 1
976 4
978 1
979 1
1362 2
1363 1
1364 1
2116 1
2118 2
2144 1
2146 2
4074 1
4075 2
4076 1
4077 2
4461 2
5871 2
9033 2
9044 2
9497 1
9877 1
10099 1
10234 2
10280 1
10306 1
10748 2
11508 1
13421 1
1518 1
1519 2
4760 2
4762 1
5862 1
5866 1
8557 1
8558 3
8561 3
12420 1
13418 2
[1] "SOAT2"
[1] "12_33"
genename region_tag susie_pip mu2 PVE z
600 EIF4B 12_33 0.03817402 5.376694 1.991103e-07 -0.36193441
1449 CBX5 12_33 0.32038709 25.855612 8.036006e-06 -2.88421053
2756 KRT18 12_33 0.07743131 11.933995 8.964227e-07 -1.45555556
2758 TNS2 12_33 0.03514490 4.616299 1.573862e-07 -0.02479339
3884 SMUG1 12_33 0.03693231 5.072471 1.817341e-07 -0.52941176
5022 ESPL1 12_33 0.06304153 10.016040 6.125383e-07 1.66869034
5588 GPR84 12_33 0.04280238 6.431030 2.670293e-07 -0.49253731
5594 MAP3K12 12_33 0.41148394 28.593077 1.141364e-05 -3.72857143
5597 CSAD 12_33 0.04082426 5.994798 2.374123e-07 -0.51615347
5603 ZNF740 12_33 0.04755341 7.402510 3.414845e-07 0.75757576
8554 KRT1 12_33 0.03565415 4.748568 1.642416e-07 -0.34883721
8559 SPRYD3 12_33 0.04756694 7.405195 3.417056e-07 0.81437126
8560 SOAT2 12_33 0.11036988 15.274751 1.635442e-06 1.80000000
8950 KRT78 12_33 0.14404157 17.823332 2.490504e-06 2.19672131
8963 KRT4 12_33 0.03796041 5.325081 1.960955e-07 -0.53191489
8989 ATF7 12_33 0.11008551 15.250319 1.628619e-06 2.28235294
9278 HOXC5 12_33 0.07150595 11.189819 7.762036e-07 -1.52174831
10584 SP1 12_33 0.05406712 8.590487 4.505691e-07 -1.39534884
11410 HOXC4 12_33 0.04343837 6.566996 2.767265e-07 0.75401070
11790 PRR13 12_33 0.06770936 10.681133 7.015788e-07 1.63953488
12777 FLJ12825 12_33 0.03564947 4.747353 1.641780e-07 0.41791045
12855 RP11-834C11.4 12_33 0.03564947 4.747353 1.641780e-07 0.41791045
13181 RP11-834C11.11 12_33 0.05044089 7.947453 3.888850e-07 1.07894737
13183 CISTR 12_33 0.04794054 7.477562 3.477550e-07 -1.08403361
num_eqtl
600 2
1449 1
2756 1
2758 1
3884 1
5022 2
5588 1
5594 1
5597 2
5603 1
8554 1
8559 1
8560 1
8950 1
8963 1
8989 1
9278 2
10584 1
11410 1
11790 1
12777 1
12855 1
13181 1
13183 1
[1] "TNKS"
[1] "8_12"
genename region_tag susie_pip mu2 PVE z num_eqtl
9342 TNKS 8_12 0.04205266 5.937176 2.422054e-07 -0.6212121 1
[1] "ADH1B"
[1] "4_66"
genename region_tag susie_pip mu2 PVE z
5518 MTTP 4_66 0.07672006 7.882237 5.866361e-07 -1.04046243
6184 TRMT10A 4_66 0.05371170 4.563792 2.377963e-07 0.02083333
6617 EIF4E 4_66 0.11727722 11.886921 1.352364e-06 -1.81333333
8714 TSPAN5 4_66 0.06040562 5.653403 3.312819e-07 0.44252874
9300 ADH6 4_66 0.17858509 15.949040 2.763059e-06 -2.40716823
11121 ADH1B 4_66 0.08911404 9.287286 8.028703e-07 1.29411765
11329 ADH5 4_66 0.23991541 18.891767 4.396845e-06 2.65454545
12774 ADH1C 4_66 0.08529751 8.875806 7.344370e-07 1.23802332
12794 RP11-766F14.2 4_66 0.06015217 5.614326 3.276117e-07 -0.44844283
13664 RP11-571L19.8 4_66 0.16995144 15.463789 2.549477e-06 -2.35541164
num_eqtl
5518 1
6184 1
6617 1
8714 1
9300 2
11121 1
11329 1
12774 2
12794 2
13664 2
[1] "LCAT"
[1] "16_36"
genename region_tag susie_pip mu2 PVE z
391 EDC4 16_36 0.03400473 4.660952 1.537533e-07 -0.2045455
394 CDH1 16_36 0.03389962 4.632534 1.523435e-07 -0.1683168
397 FAM65A 16_36 0.03782273 5.639383 2.069164e-07 0.4771242
591 CDH3 16_36 0.03436924 4.758944 1.586686e-07 -0.3938948
731 CBFB 16_36 0.05411423 8.946107 4.696302e-07 1.5744681
853 NFATC3 16_36 0.03891414 5.901233 2.227720e-07 0.9370463
1324 CMTM1 16_36 0.05948939 9.824574 5.669747e-07 -1.5940594
1901 ELMO3 16_36 0.07278104 11.702651 8.262529e-07 -1.6954497
1903 NUTF2 16_36 0.04148319 6.489996 2.611722e-07 1.3725490
1905 TSNAXIP1 16_36 0.03437529 4.760525 1.587492e-07 -0.1460674
1912 ACD 16_36 0.10212577 14.885295 1.474698e-06 2.3179191
1914 PARD6A 16_36 0.10212577 14.885295 1.474698e-06 2.3179191
1929 SLC7A6 16_36 0.03413838 4.697017 1.555520e-07 -0.2000000
1931 ESRP2 16_36 0.03677567 5.381101 1.919739e-07 0.4476190
3921 SLC12A4 16_36 0.03422702 4.720811 1.567459e-07 -0.1379310
3922 ENKD1 16_36 0.04705703 7.653340 3.493703e-07 0.8580858
4020 LRRC29 16_36 0.03649905 5.311661 1.880712e-07 0.6692913
4024 C16orf70 16_36 0.05887384 9.728014 5.555933e-07 1.3144944
4682 PRMT7 16_36 0.04359627 6.948192 2.938540e-07 0.7735476
5058 DYNC1LI2 16_36 0.03512533 4.958930 1.689736e-07 -0.6000000
5059 FHOD1 16_36 0.03456573 4.811325 1.613321e-07 0.0608060
5061 SLC9A5 16_36 0.03644022 5.296826 1.872437e-07 0.6577274
7299 NAE1 16_36 0.05372475 8.879170 4.627615e-07 1.4328358
7308 LRRC36 16_36 0.04904254 8.035048 3.822714e-07 -1.6036585
7309 TPPP3 16_36 0.03430976 4.743029 1.578642e-07 0.3612335
7310 ATP6V0D1 16_36 0.03728246 5.507007 1.991731e-07 1.0800000
7312 C16orf86 16_36 0.05196721 8.570843 4.320792e-07 1.7131399
8349 BEAN1 16_36 0.05319507 8.787406 4.534636e-07 -1.2727273
8350 TK2 16_36 0.08137123 12.746689 1.006187e-06 -1.8119658
9285 PDP2 16_36 0.04895400 8.018556 3.807981e-07 -1.1764706
9928 EXOC3L1 16_36 0.03809024 5.704243 2.107765e-07 -0.7656250
10366 CMTM4 16_36 0.07785828 12.333128 9.315121e-07 -1.7164179
10492 ZFP90 16_36 0.03414356 4.698411 1.556217e-07 -0.2000000
10854 NRN1L 16_36 0.04746783 7.733646 3.561182e-07 -0.9029126
11019 KIAA0895L 16_36 0.03506720 4.943707 1.681761e-07 0.5526279
11027 PLEKHG4 16_36 0.06966926 11.294435 7.633367e-07 -1.9274194
11778 PSMB10 16_36 0.07275881 11.699098 8.257497e-07 2.0465116
11781 E2F4 16_36 0.09616595 14.317207 1.335642e-06 -2.2233846
11910 LCAT 16_36 0.03381462 4.609450 1.512043e-07 -0.2272727
12523 B3GNT9 16_36 0.06757969 11.010839 7.218501e-07 -1.7058824
12756 LINC00920 16_36 0.04325337 6.875356 2.884865e-07 -0.8559874
13829 RP11-615I2.6 16_36 0.09808115 14.504259 1.380040e-06 -1.7346386
num_eqtl
391 1
394 1
397 1
591 2
731 1
853 2
1324 1
1901 2
1903 1
1905 1
1912 1
1914 1
1929 1
1931 1
3921 1
3922 1
4020 1
4024 2
4682 2
5058 1
5059 2
5061 2
7299 1
7308 1
7309 1
7310 1
7312 2
8349 1
8350 1
9285 1
9928 1
10366 1
10492 1
10854 1
11019 2
11027 1
11778 1
11781 2
11910 1
12523 1
12756 2
13829 2
[1] "VDAC1"
[1] "5_80"
genename region_tag susie_pip mu2 PVE z
111 CDKL3 5_80 0.04198163 4.564652 1.858992e-07 -0.08130081
756 PITX1 5_80 0.06532111 8.658644 5.486733e-07 1.07027027
844 AFF4 5_80 0.04940146 6.067178 2.907615e-07 0.68807339
1084 TCF7 5_80 0.09434263 12.101939 1.107576e-06 1.51470588
3022 PPP2CA 5_80 0.04771665 5.746423 2.659978e-07 0.53676471
3024 C5orf15 5_80 0.04421073 5.041777 2.162329e-07 0.30293910
3531 UBE2B 5_80 0.05122915 6.403247 3.182203e-07 -0.72514620
4679 PCBD2 5_80 0.11029947 13.580855 1.453152e-06 -1.75470345
7982 SEPT8 5_80 0.05110468 6.380735 3.163310e-07 0.77333333
7983 SHROOM1 5_80 0.07188192 9.551008 6.660077e-07 -1.21875000
7984 GDF9 5_80 0.04514514 5.234798 2.292564e-07 0.46268657
7985 UQCRQ 5_80 0.04572256 5.352124 2.373926e-07 -0.52293578
8018 CAMLG 5_80 0.07276961 9.665632 6.823241e-07 1.24770642
11925 VDAC1 5_80 0.04307558 4.801835 2.006544e-07 0.22752809
12524 CDKN2AIPNL 5_80 0.10703776 13.295919 1.380593e-06 1.59019991
12868 LINC01843 5_80 0.04220565 4.613711 1.888997e-07 0.11428851
num_eqtl
111 1
756 1
844 1
1084 1
3022 1
3024 2
3531 1
4679 2
7982 1
7983 1
7984 1
7985 1
8018 1
11925 1
12524 2
12868 2
[1] "APOC2"
[1] "19_31"
genename region_tag susie_pip mu2 PVE z
204 PLAUR 19_31 0.02849177 4.808054 1.328921e-07 0.31958763
867 XRCC1 19_31 0.02829552 4.744703 1.302378e-07 0.25581395
2099 KCNN4 19_31 0.04351501 8.701255 3.673089e-07 -1.06930693
2266 ETHE1 19_31 0.03414140 6.468101 2.142242e-07 0.68748771
2267 SMG9 19_31 0.03758500 7.351636 2.680458e-07 -0.89043174
3971 ZNF45 19_31 0.05900086 11.518291 6.592601e-07 -1.37024221
4540 ZNF227 19_31 0.03640418 7.057995 2.492545e-07 -0.91280315
7319 ZNF230 19_31 0.03395243 6.417107 2.113589e-07 -0.73630137
7323 ZNF221 19_31 0.03974818 7.866755 3.033355e-07 -0.95714286
8475 IRGQ 19_31 0.02777114 4.573267 1.232057e-07 0.11217949
8476 ZNF226 19_31 0.02765363 4.534412 1.216420e-07 0.06122449
8519 ZNF283 19_31 0.03058882 5.459326 1.619989e-07 -0.46268657
9651 ZNF404 19_31 0.03087040 5.543399 1.660079e-07 -0.46268657
9865 ZNF223 19_31 0.03028714 5.368403 1.577298e-07 0.44285714
10644 ZNF284 19_31 0.02770775 4.552327 1.223616e-07 0.10101010
11740 ZNF155 19_31 0.02962992 5.167181 1.485233e-07 0.47048028
12434 PINLYP 19_31 0.02765847 4.536014 1.217063e-07 -0.06795808
13018 ZNF225 19_31 0.04727306 9.465932 4.340977e-07 -1.17391304
13291 ZNF234 19_31 0.02770092 4.550066 1.222707e-07 0.11594203
13411 ZNF224 19_31 0.03783347 7.412266 2.720430e-07 0.89772727
112 MARK4 19_31 0.03067690 5.485707 1.632505e-07 -0.47282609
119 TRAPPC6A 19_31 0.06385391 12.253005 7.589978e-07 -1.43410853
214 ERCC1 19_31 0.06209460 11.993145 7.224326e-07 1.43750000
593 ZNF112 19_31 0.02823966 4.726588 1.294844e-07 0.15555945
866 PVR 19_31 0.02786954 4.605680 1.245186e-07 -0.16666667
2111 CLPTM1 19_31 0.04952683 9.896424 4.754767e-07 1.22413793
2113 PPP1R37 19_31 0.02764689 4.532178 1.215524e-07 0.02325315
2115 CKM 19_31 0.02947524 5.119184 1.463756e-07 0.42066734
2117 PPP1R13L 19_31 0.03936284 7.777046 2.969693e-07 0.94933333
3451 CD3EAP 19_31 0.02904211 4.983442 1.404003e-07 0.38478177
4079 FOSB 19_31 0.02784195 4.596603 1.241501e-07 0.11538462
4080 OPA3 19_31 0.04559245 9.131621 4.038790e-07 1.09859155
4082 RTN2 19_31 0.03633139 7.039587 2.481074e-07 0.82935506
4412 NECTIN2 19_31 0.03594458 6.941161 2.420338e-07 0.91447368
4413 APOE 19_31 0.06880641 12.948792 8.643080e-07 1.75000000
4414 TOMM40 19_31 0.03077329 5.514488 1.646226e-07 -0.59268930
4415 APOC1 19_31 0.16958180 21.526348 3.541278e-06 2.46376812
5860 GEMIN7 19_31 0.04929982 9.853941 4.712656e-07 -1.23208778
7324 ZNF233 19_31 0.14629720 20.091293 2.851375e-06 2.44329897
7325 ZNF235 19_31 0.06927352 13.011865 8.744143e-07 1.88899386
8477 ZNF180 19_31 0.03262520 6.050867 1.915055e-07 0.70149254
8993 ZNF296 19_31 0.02805998 4.668090 1.270682e-07 0.19444444
10708 CEACAM19 19_31 0.03280796 6.102161 1.942108e-07 0.66278513
10978 BLOC1S3 19_31 0.02976706 5.209531 1.504337e-07 -0.41492537
11951 PPM1N 19_31 0.02966612 5.178378 1.490270e-07 -0.46241261
12455 APOC2 19_31 0.03222310 5.937003 1.855859e-07 0.52968037
13399 ZNF285 19_31 0.02878369 4.901500 1.368630e-07 -0.35172414
num_eqtl
204 1
867 1
2099 1
2266 2
2267 2
3971 1
4540 2
7319 1
7323 1
8475 1
8476 1
8519 1
9651 1
9865 1
10644 1
11740 2
12434 3
13018 1
13291 1
13411 1
112 1
119 1
214 1
593 2
866 1
2111 1
2113 2
2115 2
2117 1
3451 2
4079 1
4080 1
4082 2
4412 1
4413 1
4414 1
4415 1
5860 3
7324 1
7325 2
8477 1
8993 1
10708 2
10978 1
11951 2
12455 1
13399 1
#run APOE locus again using full SNPs
# focus <- "APOE"
# region_tag <- ctwas_res$region_tag[which(ctwas_res$genename==focus)]
#
# locus_plot(region_tag, label="TWAS", rerun_ctwas = T)
#
# mtext(text=region_tag)
#
# print(focus)
# print(region_tag)
# print(ctwas_gene_res[ctwas_gene_res$region_tag==region_tag,report_cols,])
This section produces locus plots for all bystander genes with PIP>0.8 (false positives). The highlighted gene at each region is the false positive gene.
false_positives <- ctwas_gene_res$genename[ctwas_gene_res$genename %in% unrelated_genes & ctwas_gene_res$susie_pip>0.8]
for (i in 1:length(false_positives)){
focus <- false_positives[i]
region_tag <- ctwas_res$region_tag[which(ctwas_res$genename==focus)]
locus_plot3(region_tag, focus=focus)
mtext(text=region_tag)
print(focus)
print(region_tag)
print(ctwas_gene_res[ctwas_gene_res$region_tag==region_tag,report_cols,])
#genes at this locus that are in known annotations
ctwas_gene_res$genename[ctwas_gene_res$region_tag==region_tag][ctwas_gene_res$genename[ctwas_gene_res$region_tag==region_tag] %in% known_annotations]
}
[1] "STK11IP"
[1] "2_130"
genename region_tag susie_pip mu2 PVE z
3272 EPHA4 2_130 0.03760385 6.393523 2.332292e-07 -0.6912247
6114 STK11IP 2_130 0.84063808 18.968247 1.546845e-05 -3.8680218
13420 RP11-256I23.3 2_130 0.03070736 4.584763 1.365745e-07 0.2298851
num_eqtl
3272 2
6114 2
13420 1
#distribution of number of eQTL for all imputed genes (after dropping ambiguous variants)
table(ctwas_gene_res$num_eqtl)
1 2 3 4 5 6
7076 3067 605 98 13 3
#all genes with 4+ eQTL
ctwas_gene_res[ctwas_gene_res$num_eqtl>3,]
chrom id pos type region_tag1 region_tag2 cs_index
8829 1 ENSG00000169598.15 3856947 gene 1 3 0
7228 1 ENSG00000158825.5 20587958 gene 1 14 0
10362 1 ENSG00000183682.7 39491437 gene 1 24 0
11907 1 ENSG00000213366.12 109668049 gene 1 69 0
3657 1 ENSG00000120332.15 175068086 gene 1 86 0
13141 1 ENSG00000259865.1 247164089 gene 1 131 0
12651 2 ENSG00000242282.6 3525259 gene 2 2 0
13152 2 ENSG00000260077.1 10011416 gene 2 6 0
6061 2 ENSG00000144026.11 95125518 gene 2 57 0
3534 2 ENSG00000119147.9 106041343 gene 2 63 0
837 2 ENSG00000072163.19 127617901 gene 2 75 0
11022 2 ENSG00000196141.13 200299060 gene 2 118 0
5431 2 ENSG00000138363.14 215075224 gene 2 127 0
5865 2 ENSG00000142330.19 240586128 gene 2 143 0
11971 3 ENSG00000214021.15 9809721 gene 3 8 0
4655 4 ENSG00000132406.11 4247756 gene 4 5 0
12866 4 ENSG00000251129.1 31994228 gene 4 27 0
12748 4 ENSG00000246375.2 88284457 gene 4 59 0
7927 4 ENSG00000164124.10 158173634 gene 4 102 0
12863 4 ENSG00000250971.1 186813865 gene 4 120 0
12845 5 ENSG00000250490.1 6363492 gene 5 6 0
7951 5 ENSG00000164237.8 10308070 gene 5 9 0
4716 5 ENSG00000132840.9 79069112 gene 5 46 0
8063 5 ENSG00000164904.17 126544897 gene 5 77 0
12810 5 ENSG00000249306.5 174323562 gene 5 105 0
6251 6 ENSG00000145949.9 2680498 gene 6 3 0
6252 6 ENSG00000145979.17 13279232 gene 6 12 0
11690 6 ENSG00000204516.9 31494471 gene 6 27 0
11695 6 ENSG00000204531.17 31179417 gene 6 27 0
11944 6 ENSG00000213780.10 30904497 gene 6 27 0
11647 6 ENSG00000204301.6 32202656 gene 6 27 0
11633 6 ENSG00000204228.3 33204859 gene 6 27 0
9023 6 ENSG00000170915.8 52335661 gene 6 39 0
2358 7 ENSG00000106524.8 16599990 gene 7 16 0
6768 7 ENSG00000152926.14 64998115 gene 7 43 0
12433 7 ENSG00000234444.9 64307784 gene 7 43 0
11275 7 ENSG00000197558.11 149756134 gene 7 92 0
10781 7 ENSG00000187260.15 151404454 gene 7 94 0
2296 7 ENSG00000105983.20 156806908 gene 7 98 0
10215 8 ENSG00000182372.9 1292383 gene 8 3 0
12980 8 ENSG00000255394.4 11758186 gene 8 15 0
5316 8 ENSG00000137563.11 63029281 gene 8 48 0
11294 9 ENSG00000197646.7 5483361 gene 9 6 0
2416 9 ENSG00000107186.16 13106599 gene 9 12 0
5242 9 ENSG00000137074.18 33024919 gene 9 25 0
11958 9 ENSG00000213930.11 34637693 gene 9 27 0
6423 9 ENSG00000148357.16 130254358 gene 9 67 0
8177 9 ENSG00000165689.16 136406987 gene 9 73 0
5186 10 ENSG00000136738.14 17641079 gene 10 14 0
4791 10 ENSG00000133661.15 79979389 gene 10 51 0
5404 10 ENSG00000138119.16 93323282 gene 10 59 0
8952 10 ENSG00000170430.9 129467281 gene 10 81 0
9724 11 ENSG00000177042.14 688091 gene 11 1 0
3726 11 ENSG00000121236.20 5590335 gene 11 4 0
2696 11 ENSG00000110328.5 11410495 gene 11 9 0
764 12 ENSG00000069493.14 9664279 gene 12 9 0
40 12 ENSG00000004700.15 21501331 gene 12 16 0
11169 12 ENSG00000196935.8 63844067 gene 12 39 0
2808 12 ENSG00000111581.9 68686129 gene 12 42 0
10495 12 ENSG00000184967.6 132083372 gene 12 81 0
13025 12 ENSG00000256576.2 132189571 gene 12 81 0
2018 15 ENSG00000103966.10 41923122 gene 15 15 0
10624 15 ENSG00000185880.12 44727667 gene 15 17 0
1214 16 ENSG00000086504.15 345757 gene 16 1 0
1938 16 ENSG00000103148.15 137677 gene 16 1 0
1980 16 ENSG00000103381.11 12803538 gene 16 13 0
10341 16 ENSG00000183549.10 20409610 gene 16 19 0
6544 16 ENSG00000149922.10 30091070 gene 16 24 0
5732 16 ENSG00000140955.10 84184959 gene 16 48 0
5743 16 ENSG00000141013.16 90018731 gene 16 54 0
4344 17 ENSG00000129204.16 5116034 gene 17 5 0
10120 17 ENSG00000181291.6 34581017 gene 17 21 0
13108 17 ENSG00000259207.7 47221042 gene 17 27 0
13351 17 ENSG00000266714.6 75588005 gene 17 42 0
13289 17 ENSG00000262877.4 81388422 gene 17 46 0
5796 17 ENSG00000141526.16 82228706 gene 17 47 0
944 18 ENSG00000075643.5 36187019 gene 18 19 0
708 18 ENSG00000066926.10 57571588 gene 18 31 0
651 19 ENSG00000065268.10 982793 gene 19 2 0
1526 19 ENSG00000099817.11 1032229 gene 19 2 0
976 19 ENSG00000076826.9 7594599 gene 19 8 0
277 19 ENSG00000021488.12 32869435 gene 19 23 0
13395 19 ENSG00000267475.1 32691414 gene 19 23 0
11312 19 ENSG00000197782.14 40070352 gene 19 27 0
4459 19 ENSG00000130529.15 49114644 gene 19 35 0
8552 19 ENSG00000167766.18 52615913 gene 19 36 0
9027 19 ENSG00000170949.17 53087254 gene 19 36 0
11285 20 ENSG00000197586.12 25195384 gene 20 18 0
10660 20 ENSG00000186191.7 33077982 gene 20 20 0
11015 20 ENSG00000196090.12 43187301 gene 20 27 0
12140 20 ENSG00000223891.5 44210535 gene 20 28 0
7376 21 ENSG00000160305.17 46438335 gene 21 24 0
1440 22 ENSG00000093072.15 17197305 gene 22 2 0
1546 22 ENSG00000099957.16 21003838 gene 22 4 0
10551 22 ENSG00000185339.8 30596847 gene 22 10 0
10343 22 ENSG00000183569.17 42552989 gene 22 18 0
10997 22 ENSG00000189306.10 42490805 gene 22 18 0
10747 22 ENSG00000186976.14 43808777 gene 22 19 0
99 2 ENSG00000006607.13 241354886 gene 2 144 0
8665 2 ENSG00000168397.16 241636141 gene 2 144 0
10082 2 ENSG00000180902.17 241732627 gene 2 144 0
8101 6 ENSG00000165097.13 18153891 gene 6 14 0
8296 10 ENSG00000166295.8 72211079 gene 10 49 0
9454 11 ENSG00000174370.9 128809746 gene 11 80 0
6594 12 ENSG00000150977.10 123430286 gene 12 75 0
7162 12 ENSG00000158023.9 121918251 gene 12 75 0
3866 13 ENSG00000123179.13 49691102 gene 13 21 0
7111 14 ENSG00000157379.13 24291558 gene 14 3 0
5639 14 ENSG00000140043.11 73844725 gene 14 34 0
163 14 ENSG00000009830.11 77311261 gene 14 36 0
10088 15 ENSG00000180953.11 79922366 gene 15 37 0
1334 19 ENSG00000089847.12 4183158 gene 19 4 0
7353 21 ENSG00000160200.17 42941853 gene 21 22 0
7358 21 ENSG00000160213.6 43767678 gene 21 22 0
susie_pip mu2 region_tag PVE genename
8829 4.160727e-02 4.562732 1_3 1.841639e-07 DFFB
7228 1.659371e-01 16.299471 1_14 2.623781e-06 CDA
10362 3.536819e-02 4.661882 1_24 1.599501e-07 BMP8A
11907 1.142417e-02 9.805167 1_69 1.086651e-07 GSTM2
3657 6.710729e-02 12.989658 1_86 8.456251e-07 TNN
13141 3.085086e-02 9.011259 1_131 2.696890e-07 RP11-488L18.10
12651 1.896278e-02 7.677279 2_2 1.412277e-07 AC108488.4
13152 4.407680e-02 6.839611 2_6 2.924502e-07 RP11-254F7.2
6061 8.657371e-02 8.343336 2_57 7.007066e-07 ZNF514
3534 1.411348e-01 14.521299 2_63 1.988153e-06 C2orf40
837 6.084210e-02 5.313185 2_75 3.135953e-07 LIMS2
11022 3.003384e-02 95.300331 2_118 2.776615e-06 SPATS2L
5431 1.360629e-01 16.535574 2_127 2.182576e-06 ATIC
5865 3.482796e-02 7.164635 2_143 2.420653e-07 CAPN10
11971 1.188509e-01 11.239305 3_8 1.295843e-06 TTLL3
4655 4.169085e-02 4.603728 4_5 1.861919e-07 TMEM128
12866 6.874848e-02 7.086021 4_27 4.725806e-07 RP11-734I18.1
12748 5.990045e-02 4.698849 4_59 2.730436e-07 RP11-10L7.1
7927 6.030136e-02 4.990715 4_102 2.919445e-07 TMEM144
12863 6.017045e-02 5.706989 4_120 3.331200e-07 RP11-696F12.1
12845 1.198806e-01 13.958888 5_6 1.623343e-06 LINC02145
7951 5.059846e-02 5.388011 5_9 2.644698e-07 CMBL
4716 4.239101e-02 5.025132 5_46 2.066482e-07 BHMT2
8063 6.077566e-02 5.731451 5_77 3.379128e-07 ALDH7A1
12810 6.464465e-02 7.490826 5_105 4.697564e-07 LINC01411
6251 4.335437e-02 4.532337 6_3 1.906187e-07 MYLK4
6252 5.601621e-02 5.601698 6_12 3.043994e-07 TBC1D7
11690 6.007886e-02 27.777389 6_27 1.618913e-06 MICB
11695 8.047401e-03 9.415482 6_27 7.350360e-08 POU5F1
11944 1.296462e-02 13.811198 6_27 1.737007e-07 GTF2H4
11647 4.710762e-03 4.543353 6_27 2.076243e-08 NOTCH4
11633 1.396179e-02 14.381660 6_27 1.947873e-07 HSD17B8
9023 2.867181e-02 4.543987 6_39 1.263871e-07 PAQR8
2358 4.702895e-02 5.445215 7_16 2.484224e-07 ANKMY2
6768 5.023305e-02 6.151104 7_43 2.997458e-07 ZNF117
12433 8.419199e-02 11.240276 7_43 9.180328e-07 ZNF736
11275 5.200805e-02 8.969464 7_92 4.525301e-07 SSPO
10781 3.396058e-02 8.645892 7_94 2.848363e-07 WDR86
2296 6.147956e-02 8.163856 7_98 4.868963e-07 LMBR1
10215 4.632397e-02 4.535147 8_3 2.038016e-07 CLN8
12980 2.476107e-02 8.773421 8_15 2.107408e-07 C8orf49
5316 6.841080e-02 7.031033 8_48 4.666102e-07 GGH
11294 5.306128e-02 4.855033 9_6 2.499081e-07 PDCD1LG2
2416 3.206349e-02 4.883384 9_12 1.518945e-07 MPDZ
5242 5.319653e-02 4.542096 9_25 2.343959e-07 APTX
11958 2.328524e-02 5.078618 9_27 1.147193e-07 GALT
6423 2.466585e-01 20.836963 9_67 4.985871e-06 HMCN2
8177 8.784738e-02 13.072608 9_73 1.114042e-06 SDCCAG3
5186 5.387607e-02 10.479376 10_14 5.476987e-07 STAM
4791 6.836780e-02 8.431123 10_51 5.591746e-07 SFTPD
5404 1.445696e-01 15.503954 10_59 2.174352e-06 MYOF
8952 6.789768e-02 9.622812 10_81 6.338221e-07 MGMT
9724 3.960285e-02 4.552221 11_1 1.748881e-07 TMEM80
3726 3.951884e-02 4.530694 11_4 1.736918e-07 TRIM6
2696 4.172490e-02 4.834936 11_9 1.957025e-07 GALNT18
764 6.774877e-02 6.210837 12_9 4.081896e-07 CLEC2D
40 4.723176e-02 11.482884 12_16 5.261329e-07 RECQL
11169 5.232829e-02 6.129059 12_39 3.111292e-07 SRGAP1
2808 1.228938e-01 13.104567 12_42 1.562295e-06 NUP107
10495 1.028720e-01 12.642046 12_81 1.261609e-06 NOC4L
13025 4.396147e-02 4.711916 12_81 2.009464e-07 RP13-977J11.2
2018 1.444954e-01 17.024716 15_15 2.386407e-06 EHD4
10624 6.678218e-02 5.884794 15_17 3.812433e-07 TRIM69
1214 4.551849e-02 8.109793 16_1 3.581031e-07 MRPL28
1938 1.796355e-01 21.054359 16_1 3.668973e-06 NPRL3
1980 5.161597e-02 6.782632 16_13 3.396196e-07 CPPED1
10341 9.125280e-02 9.051325 16_19 8.012514e-07 ACSM5
6544 4.402615e-02 5.613910 16_24 2.397654e-07 TBX6
5732 6.711738e-02 7.912542 16_48 5.151830e-07 ADAD2
5743 5.375185e-02 6.618971 16_54 3.451392e-07 GAS8
4344 4.956765e-02 5.281360 17_5 2.539536e-07 USP6
10120 2.682028e-02 4.984821 17_21 1.296950e-07 TMEM132E
13108 1.319177e-05 10.880709 17_27 1.392421e-10 ITGB3
13351 3.910169e-02 4.592795 17_42 1.742140e-07 MYO15B
13289 4.163151e-02 5.107075 17_46 2.062552e-07 RP11-1055B8.4
5796 5.954408e-02 4.816236 17_47 2.781998e-07 SLC16A3
944 4.326557e-02 4.562763 18_19 1.915053e-07 MOCOS
708 5.743433e-02 7.227610 18_31 4.026954e-07 FECH
651 4.324470e-02 7.698742 19_2 3.229707e-07 WDR18
1526 2.684089e-01 25.177110 19_2 6.555612e-06 POLR2E
976 1.960340e-02 4.535871 19_8 8.625865e-08 CAMSAP3
277 1.329474e-01 17.026823 19_23 2.195957e-06 SLC7A9
13395 3.501099e-02 4.556265 19_23 1.547476e-07 CTD-2538C1.2
11312 3.907937e-02 4.680517 19_27 1.774401e-07 ZNF780A
4459 1.348543e-02 5.099611 19_35 6.671329e-08 TRPM4
8552 3.337832e-02 4.565379 19_36 1.478263e-07 ZNF83
9027 3.869678e-02 5.924854 19_36 2.224144e-07 ZNF160
11285 5.941315e-02 8.129045 20_18 4.685247e-07 ENTPD6
10660 5.525131e-02 6.947800 20_20 3.723920e-07 BPIFB4
11015 3.867975e-02 4.572127 20_27 1.715586e-07 PTPRT
12140 2.660360e-02 6.086123 20_28 1.570694e-07 OSER1-AS1
7376 3.970524e-02 6.138704 21_24 2.364476e-07 DIP2A
1440 4.014696e-02 4.625767 22_2 1.801552e-07 CECR1
1546 1.909623e-02 7.224043 22_4 1.338253e-07 P2RX6
10551 1.456716e-01 16.721527 22_10 2.362986e-06 TCN2
10343 4.385792e-02 4.696390 22_18 1.998125e-07 SERHL2
10997 4.472207e-02 4.876429 22_18 2.115603e-07 RRP7A
10747 5.866690e-02 6.643992 22_19 3.781226e-07 EFCAB6
99 3.773174e-02 4.920054 2_144 1.800889e-07 FARP2
8665 3.819760e-02 5.543522 2_144 2.054150e-07 ATG4B
10082 3.665308e-02 4.592015 2_144 1.632767e-07 D2HGDH
8101 3.367752e-02 47.184002 6_14 1.541506e-06 KDM1B
8296 7.630441e-05 11.415357 10_49 8.449861e-10 ANAPC16
9454 2.571903e-02 19.573814 11_80 4.883605e-07 C11orf45
6594 9.310735e-04 4.788344 12_75 4.324937e-09 RILPL2
7162 1.577479e-03 9.393574 12_75 1.437490e-08 WDR66
3866 5.454124e-02 10.259270 13_21 5.428150e-07 EBPL
7111 1.370814e-02 5.168687 14_3 6.873363e-08 DHRS1
5639 1.457521e-02 5.222525 14_34 7.384237e-08 PTGR2
163 2.537794e-02 4.919146 14_36 1.211034e-07 POMT2
10088 2.986045e-02 7.646866 15_37 2.215084e-07 ST20
1334 3.238781e-02 7.550345 19_4 2.372241e-07 ANKRD24
7353 1.054189e-02 5.401357 21_22 5.523721e-08 CBS
7358 1.076657e-02 5.588965 21_22 5.837398e-08 CSTB
gene_type z num_eqtl
8829 protein_coding -0.05606883 4
7228 protein_coding -2.11159404 5
10362 protein_coding -0.04886818 4
11907 protein_coding -1.13618389 4
3657 protein_coding -1.56712336 4
13141 lincRNA -1.15241658 4
12651 lincRNA 0.88509724 4
13152 lincRNA -0.65540955 5
6061 protein_coding 1.18030677 5
3534 protein_coding 1.75470100 5
837 protein_coding 0.67333098 4
11022 protein_coding 8.11412691 4
5431 protein_coding -1.95877307 4
5865 protein_coding -1.08230144 4
11971 protein_coding 1.41366703 4
4655 protein_coding 0.35456062 4
12866 lincRNA 0.99806910 4
12748 lincRNA 0.16815663 4
7927 protein_coding -0.36615299 5
12863 lincRNA 0.52938089 4
12845 lincRNA -1.84178478 4
7951 protein_coding 0.57035749 4
4716 protein_coding 0.55240521 4
8063 protein_coding 0.67205955 4
12810 lincRNA -0.87537902 4
6251 protein_coding -0.01538851 4
6252 protein_coding 0.58335172 4
11690 protein_coding 2.73153856 4
11695 protein_coding 1.19707710 4
11944 protein_coding 1.54571781 4
11647 protein_coding -0.04864491 4
11633 protein_coding -1.70351244 4
9023 protein_coding 0.05092472 4
2358 protein_coding 0.59449010 4
6768 protein_coding 0.29410631 4
12433 protein_coding -1.42962198 4
11275 protein_coding 1.17327949 4
10781 protein_coding -1.07155972 4
2296 protein_coding 1.12846744 4
10215 protein_coding 0.14155900 5
12980 lincRNA 2.00933006 4
5316 protein_coding -1.03772803 5
11294 protein_coding -0.13876175 4
2416 protein_coding -0.31465621 4
5242 protein_coding -0.10240511 4
11958 protein_coding 0.54117071 4
6423 protein_coding 2.58282602 6
8177 protein_coding 1.62552220 4
5186 protein_coding -1.21519734 5
4791 protein_coding -1.06876491 4
5404 protein_coding 1.89158295 4
8952 protein_coding -1.23104737 4
9724 protein_coding -0.21243537 4
3726 protein_coding 0.03791292 4
2696 protein_coding -0.25931605 4
764 protein_coding -0.74959674 4
40 protein_coding 1.39889693 4
11169 protein_coding -0.64611366 4
2808 protein_coding 1.57728136 4
10495 protein_coding -1.59211541 6
13025 lincRNA -0.17676741 4
2018 protein_coding -2.18379904 4
10624 protein_coding 0.68260923 4
1214 protein_coding 1.46503375 4
1938 protein_coding -2.38794751 5
1980 protein_coding -0.78395748 4
10341 protein_coding -1.23454259 4
6544 protein_coding 0.23682640 4
5732 protein_coding -1.14113140 4
5743 protein_coding -0.82726355 4
4344 protein_coding -0.28654155 4
10120 protein_coding -0.33913678 4
13108 protein_coding -1.57910576 4
13351 protein_coding 0.07613186 5
13289 lincRNA -0.44622658 4
5796 protein_coding -0.36078965 4
944 protein_coding -0.13469930 4
708 protein_coding 0.79795344 4
651 protein_coding 1.06428772 4
1526 protein_coding -2.83809922 4
976 protein_coding -0.01811536 4
277 protein_coding -2.02040773 4
13395 lincRNA 0.08674841 4
11312 protein_coding 0.34051207 4
4459 protein_coding -0.38500405 4
8552 protein_coding -0.10819463 5
9027 protein_coding -0.58121153 4
11285 protein_coding 1.11446112 4
10660 protein_coding 0.88525055 4
11015 protein_coding 0.06492351 4
12140 lincRNA -0.42101203 5
7376 protein_coding 0.60857479 4
1440 protein_coding -0.16372486 4
1546 protein_coding -0.82364067 4
10551 protein_coding 2.42724084 4
10343 protein_coding 0.22201409 4
10997 protein_coding -0.17607349 6
10747 protein_coding -0.82194388 4
99 protein_coding 0.51764732 4
8665 protein_coding 1.00584632 4
10082 protein_coding 0.02223367 4
8101 protein_coding -7.80377324 4
8296 protein_coding 1.50960211 4
9454 protein_coding -4.26886900 4
6594 protein_coding -0.31787410 4
7162 protein_coding -1.03591335 4
3866 protein_coding -0.71354410 4
7111 protein_coding 0.28913514 4
5639 protein_coding -0.74125560 4
163 protein_coding -0.09069729 5
10088 protein_coding 1.24686579 4
1334 protein_coding -0.95784361 4
7353 protein_coding -0.47878923 4
7358 protein_coding -0.62864698 4
#distribution of number of eQTL for genes with PIP>0.8
table(ctwas_gene_res$num_eqtl[ctwas_gene_res$susie_pip>0.8])/sum(ctwas_gene_res$susie_pip>0.8)
1 2 3
0.625 0.250 0.125
#genes with 2+ eQTL and PIP>0.8
ctwas_gene_res[ctwas_gene_res$num_eqtl>1 & ctwas_gene_res$susie_pip>0.8,]
chrom id pos type region_tag1 region_tag2 cs_index
3275 1 ENSG00000116132.11 170662622 gene 1 84 4
6114 2 ENSG00000144589.21 219597759 gene 2 130 0
712 2 ENSG00000067066.16 230415508 gene 2 135 0
9691 2 ENSG00000176720.4 241555444 gene 2 144 0
2293 7 ENSG00000105974.11 116519968 gene 7 70 1
9012 8 ENSG00000170873.18 124576649 gene 8 82 1
8992 9 ENSG00000170681.6 100578027 gene 9 50 0
9257 10 ENSG00000172650.13 73650294 gene 10 49 5
2444 10 ENSG00000107651.12 119893621 gene 10 74 1
11818 14 ENSG00000205683.11 72894134 gene 14 34 1
2138 19 ENSG00000104964.14 3056215 gene 19 4 0
6914 21 ENSG00000154721.14 25638800 gene 21 9 1
susie_pip mu2 region_tag PVE genename gene_type
3275 0.9998808 119.34663 1_84 1.157627e-04 PRRX1 protein_coding
6114 0.8406381 18.96825 2_130 1.546845e-05 STK11IP protein_coding
712 0.8658723 18.73540 2_135 1.573719e-05 SP100 protein_coding
9691 0.8255975 19.18259 2_144 1.536335e-05 BOK protein_coding
2293 1.0000000 622.84815 7_70 6.042165e-04 CAV1 protein_coding
9012 0.8594108 20.87861 8_82 1.740655e-05 MTSS1 protein_coding
8992 0.8478869 23.34736 9_50 1.920376e-05 MURC protein_coding
9257 0.9779202 48.91516 10_49 4.640420e-05 AGAP5 protein_coding
2444 0.9517809 22.38862 10_74 2.067163e-05 SEC23IP protein_coding
11818 0.9574312 33.35512 14_34 3.097993e-05 DPF3 protein_coding
2138 0.9403219 20.20438 19_4 1.843030e-05 AES protein_coding
6914 0.9640543 22.19279 21_9 2.075505e-05 JAM2 protein_coding
z num_eqtl
3275 14.667578 2
6114 -3.868022 2
712 -3.671335 2
9691 3.910125 3
2293 15.567870 3
9012 4.402634 2
8992 4.911964 2
9257 11.518590 2
2444 -4.565228 2
11818 6.264960 3
2138 4.182804 3
6914 4.563232 2
#reload silver standard genes
known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
* `` -> ...4
* `` -> ...5
known_annotations <- unique(known_annotations$`Gene Symbol`)
#GO enrichment analysis for silver standard genes
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- known_annotations
GO_enrichment <- enrichr(genes, dbs)
Uploading data to Enrichr... Done.
Querying GO_Biological_Process_2021... Done.
Querying GO_Cellular_Component_2021... Done.
Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
for (db in dbs){
print(db)
df <- GO_enrichment[[db]]
df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
plotEnrich(GO_enrichment[[db]])
print(df)
}
[1] "GO_Biological_Process_2021"
Term
1 cholesterol transport (GO:0030301)
2 cholesterol homeostasis (GO:0042632)
3 sterol homeostasis (GO:0055092)
4 cholesterol efflux (GO:0033344)
5 sterol transport (GO:0015918)
6 cholesterol metabolic process (GO:0008203)
7 sterol metabolic process (GO:0016125)
8 triglyceride-rich lipoprotein particle remodeling (GO:0034370)
9 high-density lipoprotein particle remodeling (GO:0034375)
10 reverse cholesterol transport (GO:0043691)
11 secondary alcohol metabolic process (GO:1902652)
12 regulation of lipoprotein lipase activity (GO:0051004)
13 phospholipid transport (GO:0015914)
14 lipid transport (GO:0006869)
15 acylglycerol homeostasis (GO:0055090)
16 very-low-density lipoprotein particle remodeling (GO:0034372)
17 triglyceride homeostasis (GO:0070328)
18 triglyceride metabolic process (GO:0006641)
19 phospholipid efflux (GO:0033700)
20 chylomicron remodeling (GO:0034371)
21 regulation of cholesterol transport (GO:0032374)
22 chylomicron assembly (GO:0034378)
23 chylomicron remnant clearance (GO:0034382)
24 lipoprotein metabolic process (GO:0042157)
25 diterpenoid metabolic process (GO:0016101)
26 positive regulation of steroid metabolic process (GO:0045940)
27 retinoid metabolic process (GO:0001523)
28 lipid homeostasis (GO:0055088)
29 negative regulation of lipase activity (GO:0060192)
30 positive regulation of cholesterol esterification (GO:0010873)
31 intestinal cholesterol absorption (GO:0030299)
32 negative regulation of cholesterol transport (GO:0032375)
33 intestinal lipid absorption (GO:0098856)
34 acylglycerol metabolic process (GO:0006639)
35 regulation of cholesterol esterification (GO:0010872)
36 phospholipid homeostasis (GO:0055091)
37 very-low-density lipoprotein particle assembly (GO:0034379)
38 positive regulation of lipid metabolic process (GO:0045834)
39 high-density lipoprotein particle assembly (GO:0034380)
40 negative regulation of lipoprotein lipase activity (GO:0051005)
41 negative regulation of lipoprotein particle clearance (GO:0010985)
42 regulation of very-low-density lipoprotein particle remodeling (GO:0010901)
43 intracellular cholesterol transport (GO:0032367)
44 positive regulation of cholesterol transport (GO:0032376)
45 regulation of intestinal cholesterol absorption (GO:0030300)
46 positive regulation of lipoprotein lipase activity (GO:0051006)
47 acylglycerol catabolic process (GO:0046464)
48 positive regulation of lipid biosynthetic process (GO:0046889)
49 positive regulation of triglyceride metabolic process (GO:0090208)
50 positive regulation of triglyceride lipase activity (GO:0061365)
51 regulation of lipid catabolic process (GO:0050994)
52 steroid metabolic process (GO:0008202)
53 positive regulation of lipid catabolic process (GO:0050996)
54 triglyceride catabolic process (GO:0019433)
55 organophosphate ester transport (GO:0015748)
56 phosphatidylcholine metabolic process (GO:0046470)
57 regulation of triglyceride catabolic process (GO:0010896)
58 fatty acid metabolic process (GO:0006631)
59 regulation of fatty acid biosynthetic process (GO:0042304)
60 regulation of sterol transport (GO:0032371)
61 cellular response to low-density lipoprotein particle stimulus (GO:0071404)
62 low-density lipoprotein particle remodeling (GO:0034374)
63 regulation of macrophage derived foam cell differentiation (GO:0010743)
64 organic substance transport (GO:0071702)
65 regulation of cholesterol efflux (GO:0010874)
66 receptor-mediated endocytosis (GO:0006898)
67 secondary alcohol biosynthetic process (GO:1902653)
68 regulation of cholesterol storage (GO:0010885)
69 cholesterol import (GO:0070508)
70 sterol import (GO:0035376)
71 monocarboxylic acid biosynthetic process (GO:0072330)
72 cholesterol biosynthetic process (GO:0006695)
73 positive regulation of cellular metabolic process (GO:0031325)
74 sterol biosynthetic process (GO:0016126)
75 positive regulation of fatty acid metabolic process (GO:0045923)
76 regulation of receptor-mediated endocytosis (GO:0048259)
77 fatty acid biosynthetic process (GO:0006633)
78 regulation of Cdc42 protein signal transduction (GO:0032489)
79 positive regulation of triglyceride catabolic process (GO:0010898)
80 lipid biosynthetic process (GO:0008610)
81 positive regulation of cholesterol efflux (GO:0010875)
82 negative regulation of receptor-mediated endocytosis (GO:0048261)
83 lipoprotein transport (GO:0042953)
84 regulation of lipid metabolic process (GO:0019216)
85 monocarboxylic acid metabolic process (GO:0032787)
86 lipoprotein localization (GO:0044872)
87 lipid catabolic process (GO:0016042)
88 positive regulation of fatty acid biosynthetic process (GO:0045723)
89 intracellular sterol transport (GO:0032366)
90 steroid biosynthetic process (GO:0006694)
91 regulation of lipid biosynthetic process (GO:0046890)
92 regulation of lipase activity (GO:0060191)
93 positive regulation of cellular biosynthetic process (GO:0031328)
94 regulation of amyloid-beta clearance (GO:1900221)
95 phospholipid metabolic process (GO:0006644)
96 regulation of intestinal lipid absorption (GO:1904729)
97 positive regulation of protein catabolic process in the vacuole (GO:1904352)
98 positive regulation of biosynthetic process (GO:0009891)
99 regulation of cholesterol metabolic process (GO:0090181)
100 foam cell differentiation (GO:0090077)
101 positive regulation of cholesterol storage (GO:0010886)
102 macrophage derived foam cell differentiation (GO:0010742)
103 organic hydroxy compound biosynthetic process (GO:1901617)
104 regulation of steroid metabolic process (GO:0019218)
105 organonitrogen compound biosynthetic process (GO:1901566)
106 negative regulation of lipid metabolic process (GO:0045833)
107 regulation of lysosomal protein catabolic process (GO:1905165)
108 positive regulation of amyloid-beta clearance (GO:1900223)
109 cellular lipid catabolic process (GO:0044242)
110 chemical homeostasis (GO:0048878)
111 cholesterol catabolic process (GO:0006707)
112 sterol catabolic process (GO:0016127)
113 steroid hormone biosynthetic process (GO:0120178)
114 regulation of low-density lipoprotein particle clearance (GO:0010988)
115 bile acid metabolic process (GO:0008206)
116 phosphatidylcholine biosynthetic process (GO:0006656)
117 alcohol catabolic process (GO:0046164)
118 organophosphate catabolic process (GO:0046434)
119 regulation of phospholipase activity (GO:0010517)
120 positive regulation of lipid localization (GO:1905954)
121 positive regulation of phospholipid transport (GO:2001140)
122 glycerophospholipid metabolic process (GO:0006650)
123 organic hydroxy compound transport (GO:0015850)
124 negative regulation of macrophage derived foam cell differentiation (GO:0010745)
125 positive regulation of lipid transport (GO:0032370)
126 C21-steroid hormone biosynthetic process (GO:0006700)
127 membrane organization (GO:0061024)
128 positive regulation of endocytosis (GO:0045807)
129 positive regulation of multicellular organismal process (GO:0051240)
130 negative regulation of catabolic process (GO:0009895)
131 negative regulation of lipid catabolic process (GO:0050995)
132 carbohydrate derivative transport (GO:1901264)
133 positive regulation of macrophage derived foam cell differentiation (GO:0010744)
134 protein transport (GO:0015031)
135 fatty acid transport (GO:0015908)
136 positive regulation of lipid storage (GO:0010884)
137 C21-steroid hormone metabolic process (GO:0008207)
138 phospholipid catabolic process (GO:0009395)
139 negative regulation of endocytosis (GO:0045806)
140 regulation of primary metabolic process (GO:0080090)
141 negative regulation of multicellular organismal process (GO:0051241)
142 bile acid biosynthetic process (GO:0006699)
143 regulation of low-density lipoprotein particle receptor catabolic process (GO:0032803)
144 regulation of Rho protein signal transduction (GO:0035023)
145 regulation of small molecule metabolic process (GO:0062012)
146 positive regulation of cellular catabolic process (GO:0031331)
147 artery morphogenesis (GO:0048844)
148 negative regulation of cellular component organization (GO:0051129)
149 glycolipid transport (GO:0046836)
150 positive regulation of lipoprotein particle clearance (GO:0010986)
151 positive regulation of sterol transport (GO:0032373)
152 long-chain fatty acid transport (GO:0015909)
153 response to insulin (GO:0032868)
154 regulation of bile acid metabolic process (GO:1904251)
155 positive regulation of receptor catabolic process (GO:2000646)
156 positive regulation of transport (GO:0051050)
157 negative regulation of endothelial cell proliferation (GO:0001937)
158 negative regulation of endothelial cell migration (GO:0010596)
159 regulation of nitrogen compound metabolic process (GO:0051171)
160 negative regulation of amyloid-beta clearance (GO:1900222)
161 negative regulation of cellular metabolic process (GO:0031324)
162 glycerophospholipid biosynthetic process (GO:0046474)
163 negative regulation of production of molecular mediator of immune response (GO:0002701)
164 unsaturated fatty acid biosynthetic process (GO:0006636)
165 anion transport (GO:0006820)
166 positive regulation of receptor-mediated endocytosis (GO:0048260)
167 negative regulation of cholesterol storage (GO:0010887)
168 regulation of bile acid biosynthetic process (GO:0070857)
169 peptidyl-amino acid modification (GO:0018193)
170 low-density lipoprotein particle receptor catabolic process (GO:0032802)
171 low-density lipoprotein receptor particle metabolic process (GO:0032799)
172 protein oxidation (GO:0018158)
173 positive regulation by host of viral process (GO:0044794)
174 positive regulation of triglyceride biosynthetic process (GO:0010867)
175 receptor internalization (GO:0031623)
176 response to glucose (GO:0009749)
177 positive regulation of cellular component organization (GO:0051130)
178 negative regulation of fatty acid biosynthetic process (GO:0045717)
179 negative regulation of hemostasis (GO:1900047)
180 peptidyl-methionine modification (GO:0018206)
181 ethanol oxidation (GO:0006069)
182 negative regulation of amyloid fibril formation (GO:1905907)
183 negative regulation of protein metabolic process (GO:0051248)
184 unsaturated fatty acid metabolic process (GO:0033559)
185 alpha-linolenic acid metabolic process (GO:0036109)
186 platelet degranulation (GO:0002576)
187 negative regulation of metabolic process (GO:0009892)
188 negative regulation of cell activation (GO:0050866)
189 negative regulation of coagulation (GO:0050819)
190 cGMP-mediated signaling (GO:0019934)
191 intestinal absorption (GO:0050892)
192 receptor metabolic process (GO:0043112)
193 regulation of phagocytosis (GO:0050764)
194 regulation of amyloid fibril formation (GO:1905906)
195 regulation of sequestering of triglyceride (GO:0010889)
196 regulation of triglyceride biosynthetic process (GO:0010866)
197 post-translational protein modification (GO:0043687)
198 regulation of endocytosis (GO:0030100)
199 amyloid fibril formation (GO:1990000)
200 positive regulation of small molecule metabolic process (GO:0062013)
201 cellular response to nutrient levels (GO:0031669)
202 negative regulation of cytokine production involved in immune response (GO:0002719)
203 negative regulation of fatty acid metabolic process (GO:0045922)
204 regulation of cholesterol biosynthetic process (GO:0045540)
205 regulation of steroid biosynthetic process (GO:0050810)
206 positive regulation of catabolic process (GO:0009896)
207 amyloid precursor protein metabolic process (GO:0042982)
208 nitric oxide mediated signal transduction (GO:0007263)
209 positive regulation of nitric-oxide synthase activity (GO:0051000)
210 ethanol metabolic process (GO:0006067)
211 positive regulation of cellular protein catabolic process (GO:1903364)
212 response to fatty acid (GO:0070542)
213 long-term memory (GO:0007616)
214 negative regulation of lipid storage (GO:0010888)
215 linoleic acid metabolic process (GO:0043651)
216 negative regulation of lipid biosynthetic process (GO:0051055)
217 regulation of lipid storage (GO:0010883)
218 regulation of interleukin-1 beta production (GO:0032651)
219 long-chain fatty acid metabolic process (GO:0001676)
220 regulation of cytokine production involved in immune response (GO:0002718)
221 cellular protein metabolic process (GO:0044267)
222 negative regulation of defense response (GO:0031348)
223 transport across blood-brain barrier (GO:0150104)
224 receptor catabolic process (GO:0032801)
225 response to hexose (GO:0009746)
226 regulated exocytosis (GO:0045055)
227 regulation of endothelial cell migration (GO:0010594)
228 negative regulation of protein transport (GO:0051224)
229 positive regulation of binding (GO:0051099)
230 regulation of blood coagulation (GO:0030193)
231 positive regulation of monooxygenase activity (GO:0032770)
232 negative regulation of wound healing (GO:0061045)
233 negative regulation of macromolecule metabolic process (GO:0010605)
234 long-chain fatty acid biosynthetic process (GO:0042759)
235 regulation of developmental growth (GO:0048638)
236 regulation of cell death (GO:0010941)
237 regulation of angiogenesis (GO:0045765)
238 regulation of inflammatory response (GO:0050727)
239 apoptotic cell clearance (GO:0043277)
240 cellular response to peptide hormone stimulus (GO:0071375)
241 negative regulation of blood vessel endothelial cell migration (GO:0043537)
242 phosphate-containing compound metabolic process (GO:0006796)
243 negative regulation of epithelial cell migration (GO:0010633)
244 cellular response to amyloid-beta (GO:1904646)
245 cyclic-nucleotide-mediated signaling (GO:0019935)
246 regulation of receptor internalization (GO:0002090)
247 response to lipid (GO:0033993)
248 regulation of vascular associated smooth muscle cell proliferation (GO:1904705)
249 regulation of protein-containing complex assembly (GO:0043254)
250 ion transport (GO:0006811)
251 negative regulation of response to external stimulus (GO:0032102)
252 regulation of protein binding (GO:0043393)
253 regulation of cellular component biogenesis (GO:0044087)
254 negative regulation of protein secretion (GO:0050709)
255 negative regulation of secretion by cell (GO:1903531)
256 regulation of nitric-oxide synthase activity (GO:0050999)
257 negative regulation of blood coagulation (GO:0030195)
258 cellular response to organic substance (GO:0071310)
259 cellular response to insulin stimulus (GO:0032869)
260 response to amyloid-beta (GO:1904645)
261 establishment of protein localization to extracellular region (GO:0035592)
262 regulation of cellular metabolic process (GO:0031323)
263 regulation of protein metabolic process (GO:0051246)
264 positive regulation of cell differentiation (GO:0045597)
265 negative regulation of cell projection organization (GO:0031345)
266 positive regulation of fat cell differentiation (GO:0045600)
267 negative regulation of BMP signaling pathway (GO:0030514)
268 negative regulation of cellular biosynthetic process (GO:0031327)
269 positive regulation of phagocytosis (GO:0050766)
Overlap Adjusted.P.value
1 28/51 3.291336e-55
2 29/71 1.134840e-52
3 29/72 1.264418e-52
4 16/24 1.003687e-32
5 15/21 2.203564e-31
6 20/77 5.273224e-31
7 19/70 7.882518e-30
8 12/13 1.520527e-27
9 13/18 2.514128e-27
10 12/17 5.731565e-25
11 15/49 2.711706e-24
12 12/21 2.245426e-23
13 15/59 5.665269e-23
14 17/109 2.748742e-22
15 12/25 3.145271e-22
16 9/9 2.283165e-21
17 12/31 7.414146e-21
18 13/55 1.935295e-19
19 9/12 4.196729e-19
20 8/9 5.374944e-18
21 10/25 1.639871e-17
22 8/10 2.436689e-17
23 7/7 1.679428e-16
24 7/9 5.763376e-15
25 11/64 8.362646e-15
26 7/13 2.508790e-13
27 11/92 5.133855e-13
28 10/64 5.133855e-13
29 6/9 3.296018e-12
30 6/9 3.296018e-12
31 6/9 3.296018e-12
32 6/11 1.693836e-11
33 6/11 1.693836e-11
34 8/41 3.013332e-11
35 6/12 3.013332e-11
36 6/12 3.013332e-11
37 6/12 3.013332e-11
38 7/25 4.654994e-11
39 6/13 5.294950e-11
40 5/6 5.459029e-11
41 5/6 5.459029e-11
42 5/6 5.459029e-11
43 6/15 1.393181e-10
44 7/33 3.496187e-10
45 5/8 4.627510e-10
46 5/8 4.627510e-10
47 7/35 5.017364e-10
48 7/35 5.017364e-10
49 6/19 6.556580e-10
50 5/9 9.553575e-10
51 6/21 1.253116e-09
52 9/104 1.493946e-09
53 6/22 1.653549e-09
54 6/23 2.189811e-09
55 6/25 3.733511e-09
56 8/77 3.733511e-09
57 5/12 5.225810e-09
58 9/124 6.552660e-09
59 6/29 9.279729e-09
60 4/5 9.798195e-09
61 5/14 1.207993e-08
62 5/14 1.207993e-08
63 6/31 1.339781e-08
64 9/136 1.355933e-08
65 6/33 1.942867e-08
66 9/143 2.054367e-08
67 6/34 2.282600e-08
68 5/16 2.390304e-08
69 4/6 2.513038e-08
70 4/6 2.513038e-08
71 7/63 2.556641e-08
72 6/35 2.556641e-08
73 8/105 3.517095e-08
74 6/38 4.196695e-08
75 5/18 4.228478e-08
76 6/39 4.816188e-08
77 7/71 5.609765e-08
78 4/8 1.033779e-07
79 4/8 1.033779e-07
80 7/80 1.258618e-07
81 5/23 1.517283e-07
82 5/26 2.906610e-07
83 4/10 2.936601e-07
84 7/92 3.199662e-07
85 8/143 3.471498e-07
86 4/11 4.442138e-07
87 5/29 4.906437e-07
88 4/13 9.252034e-07
89 4/13 9.252034e-07
90 6/65 9.598111e-07
91 5/35 1.249797e-06
92 4/14 1.249797e-06
93 8/180 1.884951e-06
94 4/16 2.212485e-06
95 6/76 2.336232e-06
96 3/5 3.664395e-06
97 3/5 3.664395e-06
98 5/44 3.827136e-06
99 4/21 6.819051e-06
100 3/6 6.952354e-06
101 3/6 6.952354e-06
102 3/6 6.952354e-06
103 5/50 6.991423e-06
104 4/23 9.554179e-06
105 7/158 1.040987e-05
106 4/24 1.121951e-05
107 3/7 1.146235e-05
108 3/7 1.146235e-05
109 4/27 1.788032e-05
110 5/65 2.452122e-05
111 3/9 2.639634e-05
112 3/9 2.639634e-05
113 4/31 3.060279e-05
114 3/10 3.695601e-05
115 4/33 3.856854e-05
116 4/33 3.856854e-05
117 3/11 4.775659e-05
118 3/11 4.775659e-05
119 3/11 4.775659e-05
120 3/11 4.775659e-05
121 3/11 4.775659e-05
122 5/80 6.182763e-05
123 4/40 7.973389e-05
124 3/13 7.973389e-05
125 3/13 7.973389e-05
126 3/15 1.252218e-04
127 7/242 1.420233e-04
128 4/48 1.598563e-04
129 8/345 1.704405e-04
130 4/49 1.709436e-04
131 3/18 2.111817e-04
132 3/18 2.111817e-04
133 3/18 2.111817e-04
134 8/369 2.646441e-04
135 3/20 2.892290e-04
136 3/21 3.341258e-04
137 3/24 4.974036e-04
138 3/24 4.974036e-04
139 3/25 5.597802e-04
140 5/130 5.616142e-04
141 6/214 6.166972e-04
142 3/27 6.934199e-04
143 2/5 7.406583e-04
144 4/73 7.449454e-04
145 3/28 7.586859e-04
146 5/141 7.898802e-04
147 3/30 9.228897e-04
148 4/80 1.034287e-03
149 2/6 1.049782e-03
150 2/6 1.049782e-03
151 2/6 1.049782e-03
152 3/32 1.085012e-03
153 4/84 1.208000e-03
154 2/7 1.428577e-03
155 2/7 1.428577e-03
156 4/91 1.611630e-03
157 3/37 1.625395e-03
158 3/38 1.749224e-03
159 2/8 1.841132e-03
160 2/8 1.841132e-03
161 3/39 1.855101e-03
162 5/177 2.046657e-03
163 2/9 2.304288e-03
164 2/9 2.304288e-03
165 3/43 2.420344e-03
166 3/44 2.575438e-03
167 2/10 2.756295e-03
168 2/10 2.756295e-03
169 2/10 2.756295e-03
170 2/10 2.756295e-03
171 2/10 2.756295e-03
172 2/11 3.303347e-03
173 2/11 3.303347e-03
174 2/11 3.303347e-03
175 3/49 3.337798e-03
176 3/49 3.337798e-03
177 4/114 3.341630e-03
178 2/12 3.781332e-03
179 2/12 3.781332e-03
180 2/12 3.781332e-03
181 2/12 3.781332e-03
182 2/12 3.781332e-03
183 3/52 3.822266e-03
184 3/54 4.245657e-03
185 2/13 4.386588e-03
186 4/125 4.489058e-03
187 3/56 4.645735e-03
188 2/14 4.945884e-03
189 2/14 4.945884e-03
190 2/14 4.945884e-03
191 2/14 4.945884e-03
192 3/58 4.985945e-03
193 3/58 4.985945e-03
194 2/15 5.548828e-03
195 2/15 5.548828e-03
196 2/15 5.548828e-03
197 6/345 5.596173e-03
198 3/61 5.626994e-03
199 3/63 6.147256e-03
200 2/16 6.200855e-03
201 3/66 6.840974e-03
202 2/17 6.840974e-03
203 2/17 6.840974e-03
204 2/17 6.840974e-03
205 2/17 6.840974e-03
206 3/67 7.093595e-03
207 2/18 7.532008e-03
208 2/18 7.532008e-03
209 2/18 7.532008e-03
210 2/19 8.241667e-03
211 2/19 8.241667e-03
212 2/19 8.241667e-03
213 2/19 8.241667e-03
214 2/20 9.094348e-03
215 2/21 9.982653e-03
216 2/22 1.085553e-02
217 2/22 1.085553e-02
218 3/83 1.230478e-02
219 3/83 1.230478e-02
220 2/24 1.273659e-02
221 6/417 1.291939e-02
222 3/85 1.298477e-02
223 3/86 1.336097e-02
224 2/25 1.350640e-02
225 2/25 1.350640e-02
226 4/180 1.399465e-02
227 3/89 1.440735e-02
228 2/26 1.440735e-02
229 3/90 1.479001e-02
230 2/27 1.539039e-02
231 2/28 1.646589e-02
232 2/29 1.757027e-02
233 4/194 1.771224e-02
234 2/30 1.862299e-02
235 2/31 1.977865e-02
236 3/102 2.036757e-02
237 4/203 2.042828e-02
238 4/206 2.141587e-02
239 2/33 2.198466e-02
240 3/106 2.228428e-02
241 2/34 2.311351e-02
242 4/212 2.328380e-02
243 2/35 2.415927e-02
244 2/35 2.415927e-02
245 2/36 2.531623e-02
246 2/36 2.531623e-02
247 3/114 2.646649e-02
248 2/37 2.648825e-02
249 3/116 2.742785e-02
250 3/116 2.742785e-02
251 3/118 2.842391e-02
252 3/118 2.842391e-02
253 2/39 2.842391e-02
254 2/39 2.842391e-02
255 2/39 2.842391e-02
256 2/39 2.842391e-02
257 2/40 2.973753e-02
258 3/123 3.119488e-02
259 3/129 3.533580e-02
260 2/44 3.533580e-02
261 2/46 3.834204e-02
262 2/47 3.980515e-02
263 2/48 4.128649e-02
264 4/258 4.183273e-02
265 2/49 4.262417e-02
266 2/51 4.583569e-02
267 2/52 4.720898e-02
268 2/52 4.720898e-02
269 2/53 4.877011e-02
Genes
1 SCARB1;CETP;LCAT;LIPC;NPC1L1;LIPG;CD36;APOE;LDLRAP1;APOB;LDLR;ABCA1;ABCG8;STARD3;ABCG5;OSBPL5;APOA2;APOA1;APOC3;APOA4;APOA5;NPC1;SOAT1;STAR;NPC2;SOAT2;APOC2;APOC1
2 SCARB1;CETP;MTTP;PCSK9;LPL;LCAT;ABCB11;CYP7A1;LIPC;LIPG;APOE;LDLRAP1;APOB;LDLR;ABCA1;ABCG8;ABCG5;EPHX2;APOA2;APOA1;APOC3;APOA4;APOA5;SOAT1;NPC1;NPC2;SOAT2;APOC2;ANGPTL3
3 SCARB1;CETP;MTTP;PCSK9;LPL;LCAT;ABCB11;CYP7A1;LIPC;LIPG;APOE;LDLRAP1;APOB;LDLR;ABCA1;ABCG8;ABCG5;EPHX2;APOA2;APOA1;APOC3;APOA4;APOA5;SOAT1;NPC1;NPC2;SOAT2;APOC2;ANGPTL3
4 ABCA1;ABCG8;SCARB1;ABCG5;APOA2;APOA1;APOC3;APOA4;APOA5;NPC1;SOAT1;NPC2;SOAT2;APOC2;APOC1;APOE
5 ABCG8;CETP;STARD3;ABCG5;OSBPL5;APOA2;APOA1;LCAT;NPC1;NPC1L1;NPC2;CD36;APOB;LDLRAP1;LDLR
6 ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;LCAT;APOA4;HMGCR;APOA5;CYP7A1;CYP27A1;SOAT1;SOAT2;NPC1L1;ANGPTL3;APOE;DHCR7;LDLRAP1;APOB
7 ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;LCAT;APOA4;HMGCR;LIPA;CYP7A1;CYP27A1;SOAT1;SOAT2;ANGPTL3;APOE;DHCR7;LDLRAP1;APOB
8 CETP;LIPC;APOC2;APOA2;APOA1;APOC3;LCAT;LPL;APOA4;APOE;APOB;APOA5
9 CETP;SCARB1;APOA2;APOA1;APOC3;LCAT;APOA4;LIPC;APOC2;APOC1;LIPG;APOE;PLTP
10 ABCA1;CETP;SCARB1;LIPC;APOC2;LIPG;APOA2;APOA1;APOC3;LCAT;APOA4;APOE
11 ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;LCAT;APOA4;CYP27A1;SOAT1;SOAT2;ANGPTL3;APOE;LDLRAP1;APOB
12 LIPC;SORT1;APOC2;APOH;APOC1;ANGPTL3;APOA1;APOC3;LPL;APOA4;ANGPTL4;APOA5
13 ABCA1;SCARB1;OSBPL5;MTTP;APOA2;APOA1;APOC3;APOA4;APOA5;NPC2;APOC2;APOC1;APOE;LDLR;PLTP
14 ABCA1;SCARB1;ABCG8;CETP;ABCG5;OSBPL5;MTTP;APOA1;APOA4;ABCB11;APOA5;NPC2;NPC1L1;CD36;APOE;LDLR;PLTP
15 CETP;SCARB1;LIPC;APOC2;ANGPTL3;LPL;APOA1;APOC3;APOA4;APOE;ANGPTL4;APOA5
16 CETP;LIPC;APOC2;APOA1;LCAT;LPL;APOA4;APOE;APOA5
17 CETP;SCARB1;LIPC;APOC2;ANGPTL3;LPL;APOA1;APOC3;APOA4;APOE;ANGPTL4;APOA5
18 CETP;APOA2;LPL;APOC3;APOA5;LIPC;LIPI;APOH;LIPG;APOC1;APOE;APOB;LPIN3
19 ABCA1;APOC2;APOC1;APOA2;APOA1;APOC3;APOA4;APOE;APOA5
20 APOC2;APOA2;APOA1;APOC3;LPL;APOA4;APOE;APOB
21 CETP;LRP1;APOC2;LIPG;APOC1;APOA2;TSPO;APOA1;APOA4;APOA5
22 APOC2;MTTP;APOA2;APOA1;APOC3;APOA4;APOE;APOB
23 LIPC;APOC2;APOC1;APOC3;APOE;APOB;LDLR
24 NPC1L1;MTTP;APOA2;APOA1;APOA4;APOE;APOA5
25 LRP1;ADH1B;APOC2;APOA2;APOA1;LPL;APOC3;APOA4;LRP2;APOE;APOB
26 APOC1;APOA2;APOA1;APOA4;APOE;LDLRAP1;APOA5
27 LRP1;ADH1B;APOC2;APOA2;APOA1;LPL;APOC3;APOA4;LRP2;APOE;APOB
28 ABCA1;CETP;LIPG;ANGPTL3;APOA1;APOA4;PPARG;APOE;ABCB11;APOA5
29 SORT1;APOC1;ANGPTL3;APOA2;APOC3;ANGPTL4
30 APOC1;APOA2;APOA1;APOA4;APOE;APOA5
31 ABCG8;ABCG5;NPC1L1;SOAT2;CD36;LDLR
32 ABCG8;ABCG5;APOC2;APOC1;APOA2;APOC3
33 ABCG8;ABCG5;NPC1L1;SOAT2;CD36;LDLR
34 CETP;APOH;APOC1;APOA2;LPL;APOC3;APOE;APOA5
35 APOC1;APOA2;APOA1;APOA4;APOE;APOA5
36 ABCA1;CETP;LIPG;ANGPTL3;APOA1;ABCB11
37 SOAT1;SOAT2;APOC1;MTTP;APOC3;APOB
38 APOA2;ANGPTL3;APOA1;APOA4;PPARG;APOE;APOA5
39 ABCA1;APOA2;APOA1;APOA4;APOE;APOA5
40 SORT1;APOC1;ANGPTL3;APOC3;ANGPTL4
41 LRPAP1;APOC2;APOC1;APOC3;PCSK9
42 APOC2;APOA2;APOA1;APOC3;APOA5
43 ABCA1;NPC1;STAR;NPC2;LDLRAP1;LDLR
44 CETP;LRP1;LIPG;APOA1;PPARG;APOE;PLTP
45 ABCG8;ABCG5;APOA1;APOA4;APOA5
46 APOC2;APOH;APOA1;APOA4;APOA5
47 LIPC;LIPI;LIPG;APOA2;LPL;APOC3;APOA5
48 SCARB1;APOC2;APOA1;APOA4;APOE;LDLR;APOA5
49 SCARB1;APOC2;APOA1;APOA4;APOA5;LDLR
50 APOC2;APOH;APOA1;APOA4;APOA5
51 APOC1;APOA2;ANGPTL3;APOC3;ABCB11;APOA5
52 CYP27A1;STARD3;NPC1;STAR;TSPO;LRP2;ABCB11;LIPA;CYP7A1
53 APOC2;APOA2;ANGPTL3;APOA1;APOA4;APOA5
54 LIPC;LIPI;LIPG;APOC3;LPL;APOA5
55 SCARB1;OSBPL5;NPC2;MTTP;LDLR;PLTP
56 CETP;LIPC;APOA2;APOA1;LCAT;APOA4;APOA5;LPIN3
57 APOC2;APOA1;APOC3;APOA4;APOA5
58 LIPC;LIPI;LIPG;ANGPTL3;LPL;PPARG;CD36;ABCB11;LPIN3
59 APOC2;APOC1;APOA1;APOC3;APOA4;APOA5
60 LRP1;APOC1;TSPO;APOA4
61 ABCA1;LPL;PPARG;CD36;LDLR
62 CETP;LIPC;APOA2;APOB;LPA
63 ABCA1;CETP;LPL;PPARG;CD36;APOB
64 ABCA1;ABCG8;CETP;ABCG5;APOA1;APOA4;LRP2;APOA5;PLTP
65 CETP;LRP1;APOA1;PPARG;APOE;PLTP
66 SCARB1;LRP1;APOA1;CD36;LRP2;APOE;LDLRAP1;APOB;LDLR
67 NPC1L1;APOA1;APOA4;HMGCR;DHCR7;APOA5
68 ABCA1;SCARB1;LPL;PPARG;APOB
69 SCARB1;APOA1;CD36;LDLR
70 SCARB1;APOA1;CD36;LDLR
71 CYP27A1;LIPC;LIPI;LIPG;LPL;ABCB11;CYP7A1
72 NPC1L1;APOA1;APOA4;HMGCR;DHCR7;APOA5
73 APOC1;APOA2;PCSK9;APOA1;APOA4;PPARG;APOE;APOA5
74 NPC1L1;APOA1;APOA4;HMGCR;DHCR7;APOA5
75 APOC2;APOA1;APOA4;PPARG;APOA5
76 LRPAP1;APOC2;APOC1;APOC3;LDLRAP1;APOA5
77 FADS3;LIPC;LIPI;EPHX2;LIPG;LPL;FADS1
78 ABCA1;APOA1;APOC3;APOE
79 APOC2;APOA1;APOA4;APOA5
80 LIPC;STAR;LIPI;LIPG;LPL;HMGCR;FADS1
81 LRP1;APOA1;PPARG;APOE;PLTP
82 LRPAP1;APOC2;APOC1;PCSK9;APOC3
83 LRP1;PPARG;CD36;APOB
84 NPC2;APOC2;APOC1;APOC3;PPARG;HMGCR;DHCR7
85 NPC1;ADH1B;ANGPTL3;LPL;PPARG;VDAC1;CD36;ABCB11
86 LRP1;PPARG;CD36;APOB
87 LIPC;LIPI;LIPG;LPL;APOA4
88 APOC2;APOA1;APOA4;APOA5
89 ABCA1;NPC1;STAR;NPC2
90 CYP27A1;STAR;HMGCR;DHCR7;ABCB11;CYP7A1
91 STAR;APOA1;APOA4;APOE;APOA5
92 LIPC;APOA2;ANGPTL3;LPL
93 SCARB1;STAR;APOC2;APOA1;APOA4;CD36;APOA5;LDLR
94 LRPAP1;LRP1;HMGCR;APOE
95 LIPG;APOA2;ANGPTL3;LPL;LCAT;FADS1
96 APOA1;APOA4;APOA5
97 LRP1;LRP2;LDLR
98 APOA1;APOA4;APOE;CD36;APOA5
99 EPHX2;APOE;LDLRAP1;KPNB1
100 SOAT1;SOAT2;PPARG
101 SCARB1;LPL;APOB
102 SOAT1;SOAT2;PPARG
103 CYP27A1;HMGCR;DHCR7;ABCB11;CYP7A1
104 STAR;EPHX2;APOE;ABCB11
105 VAPA;VAPB;APOA2;APOA1;LCAT;APOE;LPIN3
106 APOC2;APOC1;APOA2;APOC3
107 LRP1;LRP2;LDLR
108 LRPAP1;LRP1;APOE
109 LIPG;APOA2;ANGPTL3;LPIN3
110 CETP;ANGPTL3;APOA4;PPARG;ABCB11
111 CYP27A1;APOE;CYP7A1
112 CYP27A1;APOE;CYP7A1
113 STARD3;STAR;TSPO;DHCR7
114 APOC3;PCSK9;LDLRAP1
115 CYP27A1;NPC1;ABCB11;CYP7A1
116 APOA2;LCAT;APOA1;LPIN3
117 CYP27A1;APOE;CYP7A1
118 LIPG;ANGPTL3;APOA2
119 LRP1;APOC2;ANGPTL3
120 LRP1;LPL;APOB
121 CETP;APOA1;APOE
122 CETP;APOA1;LCAT;APOA4;APOA5
123 ABCG8;ABCG5;NPC2;ABCB11
124 ABCA1;CETP;PPARG
125 CETP;LRP1;APOE
126 STARD3;STAR;TSPO
127 NPC1;VAPA;VAPB;LRP2;LDLRAP1;APOB;LDLR
128 LRP1;APOE;LDLRAP1;APOA5
129 GHR;ABCA1;LRPAP1;LRP1;APOC2;CD36;APOE;APOA5
130 APOC1;APOA2;APOC3;HMGCR
131 APOC1;APOA2;APOC3
132 SCARB1;NPC2;PLTP
133 LPL;CD36;APOB
134 ABCA1;LRP1;MTTP;PPARG;CD36;LRP2;APOE;APOB
135 PPARG;APOE;CD36
136 SCARB1;LPL;APOB
137 STARD3;STAR;TSPO
138 LIPG;APOA2;ANGPTL3
139 APOC2;APOC1;APOC3
140 PPARG;HMGCR;APOE;DHCR7;LDLR
141 LRPAP1;APOA2;APOA1;APOC3;APOA4;HMGCR
142 CYP27A1;ABCB11;CYP7A1
143 PCSK9;APOE
144 ABCA1;APOA1;APOC3;APOE
145 EPHX2;APOE;ABCB11
146 APOC2;APOA1;APOA4;APOE;APOA5
147 LRP1;ANGPTL3;LRP2
148 APOA2;APOA1;APOC3;APOA4
149 NPC2;PLTP
150 LIPG;LDLRAP1
151 CETP;LIPG
152 PPARG;APOE;CD36
153 SORT1;PCSK9;PPARG;LPIN3
154 ABCB11;CYP7A1
155 PCSK9;APOE
156 LRP1;APOA2;APOA1;APOE
157 APOH;PPARG;APOE
158 APOH;PPARG;APOE
159 APOE;LDLR
160 LRPAP1;HMGCR
161 LRPAP1;PCSK9;APOE
162 LIPI;APOA2;APOA1;LCAT;LPIN3
163 APOA2;APOA1
164 FADS3;FADS1
165 TSPO;VDAC2;VDAC1
166 PCSK9;LDLRAP1;APOA5
167 ABCA1;PPARG
168 STAR;CYP7A1
169 APOA2;APOA1
170 MYLIP;PCSK9
171 MYLIP;PCSK9
172 APOA2;APOA1
173 VAPA;APOE
174 SCARB1;LDLR
175 LRP1;CD36;LDLRAP1
176 APOA2;LPL;CYP7A1
177 LRP1;APOC2;APOE;APOA5
178 APOC1;APOC3
179 APOH;APOE
180 APOA2;APOA1
181 ALDH2;ADH1B
182 APOE;LDLR
183 HMGCR;APOE;LDLR
184 FADS3;FADS2;FADS1
185 FADS2;FADS1
186 ITIH4;APOH;APOA1;CD36
187 APOC2;APOC1;APOC3
188 APOE;LDLR
189 APOH;APOE
190 APOE;CD36
191 NPC1L1;CD36
192 LRP1;CD36;LDLRAP1
193 SCARB1;APOA2;APOA1
194 APOE;LDLR
195 LPL;PPARG
196 SCARB1;LDLR
197 APOA2;PCSK9;APOA1;APOE;APOB;APOA5
198 LRPAP1;LRP1;APOE
199 APOA1;APOA4;CD36
200 PPARG;LDLRAP1
201 PCSK9;LPL;FADS1
202 APOA2;APOA1
203 APOC1;APOC3
204 APOE;KPNB1
205 STAR;CYP7A1
206 APOA2;ANGPTL3;APOA5
207 APOE;LDLRAP1
208 APOE;CD36
209 SCARB1;APOE
210 ALDH2;ADH1B
211 PCSK9;APOE
212 LPL;CD36
213 APOE;LDLR
214 ABCA1;PPARG
215 FADS2;FADS1
216 APOC1;APOC3
217 LPL;APOB
218 APOA1;LPL;CD36
219 FADS2;EPHX2;FADS1
220 APOA2;APOA1
221 APOA2;PCSK9;APOA1;APOE;APOB;APOA5
222 APOA1;PPARG;APOE
223 LRP1;CD36;LRP2
224 MYLIP;PCSK9
225 APOA2;LPL
226 ITIH4;APOH;APOA1;CD36
227 SCARB1;APOH;APOE
228 HMGCR;APOE
229 LRP1;PPARG;APOE
230 APOH;APOE
231 SCARB1;APOE
232 APOH;APOE
233 LRPAP1;PCSK9;APOE;LDLR
234 EPHX2;FADS1
235 GHR;APOE
236 LRPAP1;LRP1;CD36
237 APOH;ANGPTL3;PPARG;ANGPTL4
238 APOA1;LPL;PPARG;APOE
239 SCARB1;LRP1
240 PCSK9;PPARG;LPIN3
241 PPARG;APOE
242 EPHX2;ANGPTL3;LPL;LCAT
243 APOH;APOE
244 LRP1;CD36
245 APOE;CD36
246 LRPAP1;PCSK9
247 APOA4;PPARG;CD36
248 PPARG;LDLRAP1
249 ABCA1;CD36;APOE
250 TSPO;VDAC2;VDAC1
251 APOA1;PPARG;APOE
252 LRPAP1;LRP1;LDLRAP1
253 APOE;CD36
254 HMGCR;APOE
255 HMGCR;APOE
256 SCARB1;APOE
257 APOH;APOE
258 GHR;LRP2;LDLRAP1
259 PCSK9;PPARG;LPIN3
260 LRP1;CD36
261 ABCA1;MTTP
262 NPC2;ABCB11
263 APOE;LDLR
264 LPL;PPARG;CD36;APOB
265 MYLIP;APOE
266 LPL;PPARG
267 PPARG;LRP2
268 APOC1;APOC3
269 APOA2;APOA1
[1] "GO_Cellular_Component_2021"
Term Overlap
1 high-density lipoprotein particle (GO:0034364) 12/19
2 chylomicron (GO:0042627) 10/10
3 triglyceride-rich plasma lipoprotein particle (GO:0034385) 10/15
4 very-low-density lipoprotein particle (GO:0034361) 10/15
5 early endosome (GO:0005769) 13/266
6 low-density lipoprotein particle (GO:0034362) 4/7
7 spherical high-density lipoprotein particle (GO:0034366) 4/8
8 endoplasmic reticulum lumen (GO:0005788) 10/285
9 endocytic vesicle membrane (GO:0030666) 8/158
10 endoplasmic reticulum membrane (GO:0005789) 14/712
11 lysosome (GO:0005764) 11/477
12 lytic vacuole (GO:0000323) 8/219
13 endocytic vesicle (GO:0030139) 7/189
14 clathrin-coated endocytic vesicle membrane (GO:0030669) 5/69
15 clathrin-coated endocytic vesicle (GO:0045334) 5/85
16 clathrin-coated vesicle membrane (GO:0030665) 5/90
17 lysosomal membrane (GO:0005765) 8/330
18 intracellular organelle lumen (GO:0070013) 12/848
19 collagen-containing extracellular matrix (GO:0062023) 8/380
20 endocytic vesicle lumen (GO:0071682) 3/21
21 organelle outer membrane (GO:0031968) 5/142
22 ATP-binding cassette (ABC) transporter complex (GO:0043190) 2/6
23 lytic vacuole membrane (GO:0098852) 6/267
24 endosome membrane (GO:0010008) 6/325
25 mitochondrial outer membrane (GO:0005741) 4/126
26 platelet dense granule lumen (GO:0031089) 2/14
27 vesicle (GO:0031982) 5/226
28 endolysosome membrane (GO:0036020) 2/17
29 basolateral plasma membrane (GO:0016323) 4/151
30 cytoplasmic vesicle membrane (GO:0030659) 6/380
31 platelet dense granule (GO:0042827) 2/21
32 lysosomal lumen (GO:0043202) 3/86
33 endolysosome (GO:0036019) 2/25
34 secretory granule lumen (GO:0034774) 5/316
35 brush border membrane (GO:0031526) 2/37
36 mitochondrial envelope (GO:0005740) 3/127
37 extracellular membrane-bounded organelle (GO:0065010) 2/56
38 extracellular vesicle (GO:1903561) 2/59
39 vacuolar lumen (GO:0005775) 3/161
40 caveola (GO:0005901) 2/60
Adjusted.P.value
1 5.261200e-24
2 6.209923e-24
3 9.203512e-21
4 9.203512e-21
5 1.246888e-10
6 7.731648e-08
7 1.321996e-07
8 6.153361e-07
9 8.075627e-07
10 1.200431e-06
11 6.211359e-06
12 7.353950e-06
13 2.938912e-05
14 2.938912e-05
15 7.671871e-05
16 9.509306e-05
17 1.065748e-04
18 1.698308e-04
19 2.574496e-04
20 2.574496e-04
21 6.432532e-04
22 8.164449e-04
23 1.420908e-03
24 3.827987e-03
25 3.898444e-03
26 4.116966e-03
27 4.199032e-03
28 5.675277e-03
29 6.551600e-03
30 6.795770e-03
31 7.845057e-03
32 1.043474e-02
33 1.043474e-02
34 1.423039e-02
35 2.126720e-02
36 2.763580e-02
37 4.460396e-02
38 4.700422e-02
39 4.700422e-02
40 4.700422e-02
Genes
1 CETP;APOC2;APOH;APOC1;APOA2;APOA1;APOC3;LCAT;APOA4;APOE;APOA5;PLTP
2 APOC2;APOH;APOC1;APOA2;APOA1;APOC3;APOA4;APOE;APOB;APOA5
3 APOC2;APOH;APOC1;APOA2;APOA1;APOC3;APOA4;APOE;APOB;APOA5
4 APOC2;APOH;APOC1;APOA2;APOA1;APOC3;APOA4;APOE;APOB;APOA5
5 LRP1;SORT1;APOA2;PCSK9;APOA1;APOC3;APOA4;APOC2;LIPG;APOE;LDLRAP1;APOB;LDLR
6 APOC2;APOE;APOB;APOA5
7 APOC2;APOA2;APOA1;APOC3
8 LRPAP1;LIPC;MTTP;APOA2;PCSK9;APOA1;APOA4;APOE;APOB;APOA5
9 SCARB1;LRP1;CD36;LRP2;APOE;LDLRAP1;APOB;LDLR
10 ABCA1;STARD3;HMGCR;CYP7A1;FADS2;NCEH1;SOAT1;VAPA;SOAT2;VAPB;DHCR7;APOB;FADS1;LPIN3
11 SCARB1;STARD3;NPC1;LRP1;NPC2;SORT1;PCSK9;LRP2;APOB;LIPA;LDLR
12 SCARB1;NPC1;NPC2;SORT1;PCSK9;LRP2;LIPA;LDLR
13 ABCA1;SCARB1;LRP1;APOA1;CD36;APOE;APOB
14 LRP2;APOE;LDLRAP1;APOB;LDLR
15 LRP2;APOE;LDLRAP1;APOB;LDLR
16 LRP2;APOE;LDLRAP1;APOB;LDLR
17 SCARB1;STARD3;NPC1;LRP1;VAPA;PCSK9;LRP2;LDLR
18 CYP27A1;LIPC;ALDH2;MTTP;APOA2;PCSK9;APOA1;APOA4;APOE;APOB;APOA5;KPNB1
19 ITIH4;APOH;ANGPTL3;APOA1;APOC3;APOA4;ANGPTL4;APOE
20 APOA1;APOE;APOB
21 VDAC3;TSPO;VDAC2;VDAC1;DHCR7
22 ABCG8;ABCG5
23 SCARB1;STARD3;NPC1;LRP1;PCSK9;LRP2
24 STARD3;SORT1;PCSK9;ABCB11;APOB;LDLR
25 VDAC3;TSPO;VDAC2;VDAC1
26 ITIH4;APOH
27 ABCA1;CETP;VAPA;APOA1;APOE
28 PCSK9;LDLR
29 LRP1;MTTP;ABCB11;LDLR
30 SCARB1;LRP1;SORT1;CD36;APOB;LDLR
31 ITIH4;APOH
32 NPC2;APOB;LIPA
33 PCSK9;LDLR
34 ITIH4;NPC2;APOH;APOA1;KPNB1
35 LRP2;CD36
36 STAR;VDAC2;VDAC1
37 APOA1;APOE
38 APOA1;APOE
39 NPC2;APOB;LIPA
40 SCARB1;CD36
[1] "GO_Molecular_Function_2021"
Term
1 cholesterol binding (GO:0015485)
2 sterol binding (GO:0032934)
3 cholesterol transfer activity (GO:0120020)
4 sterol transfer activity (GO:0120015)
5 lipoprotein particle receptor binding (GO:0070325)
6 phosphatidylcholine-sterol O-acyltransferase activator activity (GO:0060228)
7 lipoprotein particle binding (GO:0071813)
8 low-density lipoprotein particle binding (GO:0030169)
9 lipase inhibitor activity (GO:0055102)
10 low-density lipoprotein particle receptor binding (GO:0050750)
11 lipoprotein lipase activity (GO:0004465)
12 amyloid-beta binding (GO:0001540)
13 triglyceride lipase activity (GO:0004806)
14 lipase activity (GO:0016298)
15 lipase binding (GO:0035473)
16 apolipoprotein A-I binding (GO:0034186)
17 apolipoprotein receptor binding (GO:0034190)
18 phospholipase A1 activity (GO:0008970)
19 lipase activator activity (GO:0060229)
20 carboxylic ester hydrolase activity (GO:0052689)
21 voltage-gated anion channel activity (GO:0008308)
22 voltage-gated ion channel activity (GO:0005244)
23 phosphatidylcholine transporter activity (GO:0008525)
24 protein heterodimerization activity (GO:0046982)
25 phosphatidylcholine transfer activity (GO:0120019)
26 phospholipase activity (GO:0004620)
27 O-acyltransferase activity (GO:0008374)
28 high-density lipoprotein particle binding (GO:0008035)
29 ceramide transfer activity (GO:0120017)
30 clathrin heavy chain binding (GO:0032050)
31 phospholipase inhibitor activity (GO:0004859)
32 protein homodimerization activity (GO:0042803)
33 anion channel activity (GO:0005253)
34 phospholipid transfer activity (GO:0120014)
35 oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, NAD(P)H as one donor, and incorporation of one atom of oxygen (GO:0016709)
36 steroid hydroxylase activity (GO:0008395)
37 NADP binding (GO:0050661)
38 peptidase inhibitor activity (GO:0030414)
39 endopeptidase regulator activity (GO:0061135)
Overlap Adjusted.P.value
1 17/50 2.288174e-28
2 17/60 4.390322e-27
3 11/18 5.744987e-22
4 11/19 1.020647e-21
5 10/28 4.677379e-17
6 6/6 3.484605e-14
7 8/24 2.055320e-13
8 6/17 3.140441e-10
9 5/10 1.805253e-09
10 6/23 2.016360e-09
11 4/5 9.113232e-09
12 7/80 1.430772e-07
13 5/23 1.612041e-07
14 6/49 1.859889e-07
15 3/5 3.788104e-06
16 3/5 3.788104e-06
17 3/6 7.112969e-06
18 3/10 3.991032e-05
19 3/12 6.897596e-05
20 5/96 1.501407e-04
21 3/16 1.501407e-04
22 3/16 1.501407e-04
23 3/18 2.082322e-04
24 6/188 3.016202e-04
25 2/5 7.035280e-04
26 4/73 7.035280e-04
27 3/30 8.567836e-04
28 2/6 9.653527e-04
29 2/8 1.732107e-03
30 2/9 2.147965e-03
31 2/10 2.592555e-03
32 8/636 7.345938e-03
33 3/68 7.879809e-03
34 2/22 1.181407e-02
35 2/36 2.870121e-02
36 2/36 2.870121e-02
37 2/36 2.870121e-02
38 2/40 3.429432e-02
39 2/46 4.375411e-02
Genes
1 ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;APOC3;APOA4;APOA5;NPC1;SOAT1;STAR;NPC2;SOAT2;TSPO;VDAC2;VDAC1
2 ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;APOC3;APOA4;APOA5;NPC1;SOAT1;STAR;NPC2;SOAT2;TSPO;VDAC2;VDAC1
3 ABCA1;ABCG8;CETP;ABCG5;NPC2;MTTP;APOA2;APOA1;APOA4;APOB;PLTP
4 ABCA1;ABCG8;CETP;ABCG5;NPC2;MTTP;APOA2;APOA1;APOA4;APOB;PLTP
5 LRPAP1;LRP1;APOA2;PCSK9;APOA1;APOC3;APOE;APOB;LDLRAP1;APOA5
6 APOC1;APOA2;APOA1;APOA4;APOE;APOA5
7 SCARB1;LIPC;APOA2;LPL;PCSK9;CD36;LDLR;PLTP
8 SCARB1;LIPC;PCSK9;CD36;LDLR;PLTP
9 APOC2;APOC1;ANGPTL3;APOA2;APOC3
10 LRPAP1;PCSK9;APOE;APOB;LDLRAP1;APOA5
11 LIPC;LIPI;LIPG;LPL
12 LRPAP1;LRP1;APOA1;CD36;APOE;LDLRAP1;LDLR
13 LIPC;LIPI;LIPG;LCAT;LPL
14 LIPC;LIPI;LIPG;LCAT;LPL;LIPA
15 LRPAP1;APOB;APOA5
16 ABCA1;SCARB1;LCAT
17 APOA2;APOA1;PCSK9
18 LIPC;LIPG;LPL
19 APOC2;APOH;APOA5
20 LIPC;LIPG;LPL;LCAT;LIPA
21 VDAC3;VDAC2;VDAC1
22 VDAC3;VDAC2;VDAC1
23 ABCA1;MTTP;PLTP
24 ABCG8;ABCG5;VAPA;VAPB;MTTP;APOA2
25 MTTP;PLTP
26 LIPC;LIPI;LIPG;LPL
27 SOAT1;SOAT2;LCAT
28 APOA2;PLTP
29 MTTP;PLTP
30 LRP1;LDLR
31 APOC1;ANGPTL3
32 GHR;STARD3;VAPB;EPHX2;APOA2;LPL;APOA4;APOE
33 VDAC3;VDAC2;VDAC1
34 MTTP;PLTP
35 CYP27A1;CYP7A1
36 CYP27A1;CYP7A1
37 HMGCR;DHCR7
38 ITIH4;LPA
39 ITIH4;LPA
GO_known_annotations <- do.call(rbind, GO_enrichment)
GO_known_annotations <- GO_known_annotations[GO_known_annotations$Adjusted.P.value<0.05,]
#GO enrichment analysis for cTWAS genes
genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]
GO_enrichment <- enrichr(genes, dbs)
Uploading data to Enrichr... Done.
Querying GO_Biological_Process_2021... Done.
Querying GO_Cellular_Component_2021... Done.
Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
GO_ctwas_genes <- do.call(rbind, GO_enrichment)
#optionally subset to only significant GO terms
#GO_ctwas_genes <- GO_ctwas_genes[GO_ctwas_genes$Adjusted.P.value<0.05,]
#identify cTWAS genes in silver standard enriched GO terms
GO_ctwas_genes <- GO_ctwas_genes[GO_ctwas_genes$Term %in% GO_known_annotations$Term,]
overlap_genes <- lapply(GO_ctwas_genes$Genes, function(x){unlist(strsplit(x, ";"))})
overlap_genes <- -sort(-table(unlist(overlap_genes)))
#ctwas genes in silver standard enriched GO terms, not already in silver standard
overlap_genes[!(names(overlap_genes) %in% known_annotations)]
CAV1 BOK STK11IP PGP PSMB7 SP100 AKAP6 GNB4 SEC23IP MTSS1
31 9 5 4 4 4 3 3 3 1
NKX2-5
1
save(overlap_genes, file=paste0(results_dir, "/overlap_genes.Rd"))
load(paste0(results_dir, "/overlap_genes.Rd"))
overlap_genes <- overlap_genes[!(names(overlap_genes) %in% known_annotations)]
overlap_genes
CAV1 BOK STK11IP PGP PSMB7 SP100 AKAP6 GNB4 SEC23IP MTSS1
31 9 5 4 4 4 3 3 3 1
NKX2-5
1
overlap_genes <- names(overlap_genes)
#ctwas_gene_res[ctwas_gene_res$genename %in% overlap_genes, report_cols,]
out_table <- ctwas_gene_res
report_cols <- report_cols[!(report_cols %in% c("mu2", "PVE"))]
report_cols <- c(report_cols,"silver","GO_overlap_silver", "bystander")
#reload silver standard genes
known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
* `` -> ...4
* `` -> ...5
known_annotations <- unique(known_annotations$`Gene Symbol`)
out_table$silver <- F
out_table$silver[out_table$genename %in% known_annotations] <- T
library(biomaRt)
library(GenomicRanges)
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: parallel
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:parallel':
clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from 'package:dplyr':
combine, intersect, setdiff, union
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
anyDuplicated, append, as.data.frame, basename, cbind, colnames,
dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
union, unique, unsplit, which, which.max, which.min
Loading required package: S4Vectors
Attaching package: 'S4Vectors'
The following objects are masked from 'package:dplyr':
first, rename
The following object is masked from 'package:tidyr':
expand
The following object is masked from 'package:base':
expand.grid
Loading required package: IRanges
Attaching package: 'IRanges'
The following objects are masked from 'package:dplyr':
collapse, desc, slice
The following object is masked from 'package:purrr':
reduce
Loading required package: GenomeInfoDb
ensembl <- useEnsembl(biomart="ENSEMBL_MART_ENSEMBL", dataset="hsapiens_gene_ensembl")
G_list <- getBM(filters= "chromosome_name", attributes= c("hgnc_symbol","chromosome_name","start_position","end_position","gene_biotype"), values=1:22, mart=ensembl)
G_list <- G_list[G_list$hgnc_symbol!="",]
G_list <- G_list[G_list$gene_biotype %in% c("protein_coding","lncRNA"),]
G_list$start <- G_list$start_position
G_list$end <- G_list$end_position
G_list_granges <- makeGRangesFromDataFrame(G_list, keep.extra.columns=T)
known_annotations_positions <- G_list[G_list$hgnc_symbol %in% known_annotations,]
half_window <- 1000000
known_annotations_positions$start <- known_annotations_positions$start_position - half_window
known_annotations_positions$end <- known_annotations_positions$end_position + half_window
known_annotations_positions$start[known_annotations_positions$start<1] <- 1
known_annotations_granges <- makeGRangesFromDataFrame(known_annotations_positions, keep.extra.columns=T)
bystanders_extended <- findOverlaps(known_annotations_granges,G_list_granges)
bystanders_extended <- unique(subjectHits(bystanders_extended))
bystanders_extended <- G_list$hgnc_symbol[bystanders_extended]
bystanders_extended <- unique(bystanders_extended[!(bystanders_extended %in% known_annotations)])
save(bystanders_extended, file=paste0(results_dir, "/bystanders_extended.Rd"))
load(paste0(results_dir, "/bystanders_extended.Rd"))
#add extended bystanders list to output
out_table$bystander <- F
out_table$bystander[out_table$genename %in% bystanders_extended] <- T
#reload GO overlaps with silver standard
load(paste0(results_dir, "/overlap_genes.Rd"))
out_table$GO_overlap_silver <- NA
out_table$GO_overlap_silver[out_table$susie_pip>0.8] <- 0
for (i in names(overlap_genes)){
out_table$GO_overlap_silver[out_table$genename==i] <- overlap_genes[i]
}
full.gene.pip.summary <- data.frame(gene_name = ctwas_gene_res$genename,
gene_pip = ctwas_gene_res$susie_pip,
gene_id = ctwas_gene_res$id,
chr = as.integer(ctwas_gene_res$chrom),
start = ctwas_gene_res$pos / 1e3,
is_highlight = F, stringsAsFactors = F) %>% as_tibble()
full.gene.pip.summary$is_highlight <- full.gene.pip.summary$gene_pip > 0.80
don <- full.gene.pip.summary %>%
# Compute chromosome size
group_by(chr) %>%
summarise(chr_len=max(start)) %>%
# Calculate cumulative position of each chromosome
mutate(tot=cumsum(chr_len)-chr_len) %>%
dplyr::select(-chr_len) %>%
# Add this info to the initial dataset
left_join(full.gene.pip.summary, ., by=c("chr"="chr")) %>%
# Add a cumulative position of each SNP
arrange(chr, start) %>%
mutate( BPcum=start+tot)
axisdf <- don %>% group_by(chr) %>% summarize(center=( max(BPcum) + min(BPcum) ) / 2 )
x_axis_labels <- axisdf$chr
x_axis_labels[seq(1,21,2)] <- ""
ggplot(don, aes(x=BPcum, y=gene_pip)) +
# Show all points
ggrastr::geom_point_rast(aes(color=as.factor(chr)), size=2) +
scale_color_manual(values = rep(c("grey", "skyblue"), 22 )) +
# custom X axis:
# scale_x_continuous(label = axisdf$chr,
# breaks= axisdf$center,
# guide = guide_axis(n.dodge = 2)) +
scale_x_continuous(label = x_axis_labels,
breaks = axisdf$center) +
scale_y_continuous(expand = c(0, 0), limits = c(0,1.25), breaks=(1:5)*0.2, minor_breaks=(1:10)*0.1) + # remove space between plot area and x axis
# Add highlighted points
ggrastr::geom_point_rast(data=subset(don, is_highlight==T), color="orange", size=2) +
# Add label using ggrepel to avoid overlapping
ggrepel::geom_label_repel(data=subset(don, is_highlight==T),
aes(label=gene_name),
size=4,
min.segment.length = 0,
label.size = NA,
fill = alpha(c("white"),0)) +
# Custom the theme:
theme_bw() +
theme(
text = element_text(size = 14),
legend.position="none",
panel.border = element_blank(),
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank()
) +
xlab("Chromosome") +
ylab("cTWAS PIP")
#number of SNPs at PIP>0.8 threshold
sum(out_table$susie_pip>0.8)
[1] 32
#number of SNPs at PIP>0.5 threshold
sum(out_table$susie_pip>0.5)
[1] 68
#genes with PIP>0.8
head(out_table[order(-out_table$susie_pip),report_cols], sum(out_table$susie_pip>0.8))
genename region_tag susie_pip z num_eqtl silver
2293 CAV1 7_70 1.0000000 15.567870 3 FALSE
3275 PRRX1 1_84 0.9998808 14.667578 2 FALSE
4009 DEK 6_14 0.9925129 -9.000000 1 FALSE
3527 CCND2 12_4 0.9906174 -5.283784 1 FALSE
1310 PXN 12_75 0.9826498 -5.328302 1 FALSE
12836 RP11-325L7.2 5_82 0.9826020 12.356322 1 FALSE
9257 AGAP5 10_49 0.9779202 11.518590 2 FALSE
3523 KLF12 13_36 0.9770829 -5.072464 1 FALSE
6621 AKAP6 14_8 0.9721549 -9.197368 1 FALSE
6914 JAM2 21_9 0.9640543 4.563232 2 FALSE
9639 DLEU1 13_21 0.9586468 4.697095 1 FALSE
11818 DPF3 14_34 0.9574312 6.264960 3 FALSE
10521 FAM43A 3_120 0.9569176 -5.487179 1 FALSE
2444 SEC23IP 10_74 0.9517809 -4.565228 2 FALSE
13075 LINC01629 14_36 0.9471613 -5.695652 1 FALSE
2138 AES 19_4 0.9403219 4.182804 3 FALSE
4658 POPDC3 6_70 0.9252511 -4.758170 1 FALSE
10290 NKX2-5 5_103 0.9228745 -9.391892 1 FALSE
7515 TNFSF13 17_7 0.9135188 -5.883117 1 FALSE
5185 GYPC 2_74 0.9068050 -6.380531 1 FALSE
8248 CMTM5 14_3 0.9067300 -5.472727 1 FALSE
10548 SCN10A 3_28 0.8867624 -8.814286 1 FALSE
13967 RP5-890E16.5 17_28 0.8660551 -4.761194 1 FALSE
712 SP100 2_135 0.8658723 -3.671335 2 FALSE
9012 MTSS1 8_82 0.8594108 4.402634 2 FALSE
8992 MURC 9_50 0.8478869 4.911964 2 FALSE
5223 PSMB7 9_64 0.8430652 -4.820896 1 FALSE
6114 STK11IP 2_130 0.8406381 -3.868022 2 FALSE
10416 PGP 16_2 0.8298586 5.943820 1 FALSE
9691 BOK 2_144 0.8255975 3.910125 3 FALSE
8420 MARS 12_36 0.8180336 -3.366197 1 FALSE
3088 GNB4 3_110 0.8097696 -5.583333 1 FALSE
GO_overlap_silver bystander
2293 31 FALSE
3275 0 FALSE
4009 0 FALSE
3527 0 FALSE
1310 0 FALSE
12836 0 FALSE
9257 0 FALSE
3523 0 FALSE
6621 3 FALSE
6914 0 FALSE
9639 0 FALSE
11818 0 FALSE
10521 0 FALSE
2444 3 FALSE
13075 0 FALSE
2138 0 FALSE
4658 0 FALSE
10290 1 FALSE
7515 0 FALSE
5185 0 FALSE
8248 0 FALSE
10548 0 FALSE
13967 0 FALSE
712 4 FALSE
9012 1 FALSE
8992 0 FALSE
5223 4 FALSE
6114 5 TRUE
10416 4 FALSE
9691 9 FALSE
8420 0 FALSE
3088 3 FALSE
head(out_table[order(-out_table$susie_pip),report_cols[-(7:8)]], sum(out_table$susie_pip>0.8))
genename region_tag susie_pip z num_eqtl silver
2293 CAV1 7_70 1.0000000 15.567870 3 FALSE
3275 PRRX1 1_84 0.9998808 14.667578 2 FALSE
4009 DEK 6_14 0.9925129 -9.000000 1 FALSE
3527 CCND2 12_4 0.9906174 -5.283784 1 FALSE
1310 PXN 12_75 0.9826498 -5.328302 1 FALSE
12836 RP11-325L7.2 5_82 0.9826020 12.356322 1 FALSE
9257 AGAP5 10_49 0.9779202 11.518590 2 FALSE
3523 KLF12 13_36 0.9770829 -5.072464 1 FALSE
6621 AKAP6 14_8 0.9721549 -9.197368 1 FALSE
6914 JAM2 21_9 0.9640543 4.563232 2 FALSE
9639 DLEU1 13_21 0.9586468 4.697095 1 FALSE
11818 DPF3 14_34 0.9574312 6.264960 3 FALSE
10521 FAM43A 3_120 0.9569176 -5.487179 1 FALSE
2444 SEC23IP 10_74 0.9517809 -4.565228 2 FALSE
13075 LINC01629 14_36 0.9471613 -5.695652 1 FALSE
2138 AES 19_4 0.9403219 4.182804 3 FALSE
4658 POPDC3 6_70 0.9252511 -4.758170 1 FALSE
10290 NKX2-5 5_103 0.9228745 -9.391892 1 FALSE
7515 TNFSF13 17_7 0.9135188 -5.883117 1 FALSE
5185 GYPC 2_74 0.9068050 -6.380531 1 FALSE
8248 CMTM5 14_3 0.9067300 -5.472727 1 FALSE
10548 SCN10A 3_28 0.8867624 -8.814286 1 FALSE
13967 RP5-890E16.5 17_28 0.8660551 -4.761194 1 FALSE
712 SP100 2_135 0.8658723 -3.671335 2 FALSE
9012 MTSS1 8_82 0.8594108 4.402634 2 FALSE
8992 MURC 9_50 0.8478869 4.911964 2 FALSE
5223 PSMB7 9_64 0.8430652 -4.820896 1 FALSE
6114 STK11IP 2_130 0.8406381 -3.868022 2 FALSE
10416 PGP 16_2 0.8298586 5.943820 1 FALSE
9691 BOK 2_144 0.8255975 3.910125 3 FALSE
8420 MARS 12_36 0.8180336 -3.366197 1 FALSE
3088 GNB4 3_110 0.8097696 -5.583333 1 FALSE
head(out_table[order(-out_table$susie_pip),report_cols[c(1,7:8)]], sum(out_table$susie_pip>0.8))
genename GO_overlap_silver bystander
2293 CAV1 31 FALSE
3275 PRRX1 0 FALSE
4009 DEK 0 FALSE
3527 CCND2 0 FALSE
1310 PXN 0 FALSE
12836 RP11-325L7.2 0 FALSE
9257 AGAP5 0 FALSE
3523 KLF12 0 FALSE
6621 AKAP6 3 FALSE
6914 JAM2 0 FALSE
9639 DLEU1 0 FALSE
11818 DPF3 0 FALSE
10521 FAM43A 0 FALSE
2444 SEC23IP 3 FALSE
13075 LINC01629 0 FALSE
2138 AES 0 FALSE
4658 POPDC3 0 FALSE
10290 NKX2-5 1 FALSE
7515 TNFSF13 0 FALSE
5185 GYPC 0 FALSE
8248 CMTM5 0 FALSE
10548 SCN10A 0 FALSE
13967 RP5-890E16.5 0 FALSE
712 SP100 4 FALSE
9012 MTSS1 1 FALSE
8992 MURC 0 FALSE
5223 PSMB7 4 FALSE
6114 STK11IP 5 TRUE
10416 PGP 4 FALSE
9691 BOK 9 FALSE
8420 MARS 0 FALSE
3088 GNB4 3 FALSE
TNKS is a silver standard (assumed true positive gene) that is correctly detected. The bystander gene RP11-115J16.2 is significant using TWAS but has low PIP using cTWAS.
#TNKS gene
locus_plot4("8_12", label="cTWAS")
out_table[out_table$region_tag=="8_12",report_cols[-(7:8)]]
genename region_tag susie_pip z num_eqtl silver
9342 TNKS 8_12 0.04205266 -0.6212121 1 TRUE
out_table[out_table$region_tag=="8_12",report_cols[c(1,7:8)]]
genename GO_overlap_silver bystander
9342 TNKS NA FALSE
FADS1 is a silver standard gene (assumed true positive gene) that is correctly detected. There are 5 significant TWAS genes at this locus, including FADS2, another silver standard gene. FADS2 is not detected due to its high LD with FADS1. The remaining 3 bystander genes at this locus have low PIP using cTWAS.
#FADS1 gene
locus_plot3("11_34", focus="FADS1")
out_table[out_table$region_tag=="11_34",report_cols[-(7:8)]]
out_table[out_table$region_tag=="11_34",report_cols[c(1,7:8)]]
#number of significant TWAS genes at this locus
sum(abs(out_table$z[out_table$region_tag=="11_34"])>sig_thresh)
POLK is a gene that is significant using TWAS but not detected using TWAS. cTWAS places a high posterior probability on SNPs are this locus. OpenTargets suggets that the causal gene at this locus is HMGCR (note: different GWAS, similar population), which is not imputed in our dataset. cTWAS selected the variants at this locus because the causal gene is not imputed. Note that MR-JTI claims POLK is causal using their method, and their paper includes a discussion of its potential relevance to LDL.
locus_plot("5_45", label="TWAS")
#locus_plot("5_45", label="TWAS", rerun_ctwas = T)
out_table[out_table$region_tag=="5_45",report_cols[-(7:8)]]
genename region_tag susie_pip z num_eqtl silver
2987 PDE8B 5_45 0.32802254 -3.50495050 1 FALSE
4717 ZBED3 5_45 0.03451392 -0.18829320 2 FALSE
6215 CRHBP 5_45 0.03798827 -0.53072626 1 FALSE
7949 F2RL2 5_45 0.03349611 0.06301653 3 FALSE
7954 F2RL1 5_45 0.03724985 -0.47727864 2 FALSE
7955 AGGF1 5_45 0.03590199 0.41340782 1 FALSE
7956 WDR41 5_45 0.14016344 2.12999618 3 FALSE
9106 TBCA 5_45 0.03870813 -0.60273973 1 FALSE
10108 F2R 5_45 0.03508658 -0.41198282 3 FALSE
out_table[out_table$region_tag=="5_45",report_cols[c(1,7:8)]]
genename GO_overlap_silver bystander
2987 PDE8B NA FALSE
4717 ZBED3 NA FALSE
6215 CRHBP NA FALSE
7949 F2RL2 NA FALSE
7954 F2RL1 NA FALSE
7955 AGGF1 NA FALSE
7956 WDR41 NA FALSE
9106 TBCA NA FALSE
10108 F2R NA FALSE
load(paste0(results_dir, "/known_annotations.Rd"))
load(paste0(results_dir, "/bystanders.Rd"))
#remove genes without imputed expression from bystander list
unrelated_genes <- unrelated_genes[unrelated_genes %in% ctwas_gene_res$genename]
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]
#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]
#sensitivity / recall
sensitivity <- rep(NA,2)
names(sensitivity) <- c("ctwas", "TWAS")
sensitivity["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
sensitivity["TWAS"] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
sensitivity
ctwas TWAS
0 0
#specificity / (1 - False Positive Rate)
specificity <- rep(NA,2)
names(specificity) <- c("ctwas", "TWAS")
specificity["ctwas"] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
specificity["TWAS"] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
specificity
ctwas TWAS
0.9983471 0.9966942
#precision / PPV / (1 - False Discovery Rate)
precision <- rep(NA,2)
names(precision) <- c("ctwas", "TWAS")
precision["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
precision["TWAS"] <- sum(twas_genes %in% known_annotations)/length(twas_genes)
precision
ctwas TWAS
0 0
#store sensitivity and specificity calculations for plots
sensitivity_plot <- sensitivity
specificity_plot <- specificity
#precision / PPV by PIP threshold
pip_range <- c(0.5, 0.8, 1)
precision_range <- rep(NA, length(pip_range))
number_detected <- rep(NA, length(pip_range))
for (i in 1:length(pip_range)){
pip_upper <- pip_range[i]
if (i==1){
pip_lower <- 0
} else {
pip_lower <- pip_range[i-1]
}
#assign ctwas genes using PIP threshold
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip_lower]
number_detected[i] <- length(ctwas_genes)
precision_range[i] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
}
names(precision_range) <- paste0(">= ", c(0, pip_range[-length(pip_range)]))
precision_range <- precision_range*100
precision_range <- c(precision_range, precision["TWAS"]*100)
names(precision_range)[4] <- "TWAS Bonferroni"
number_detected <- c(number_detected, length(twas_genes))
barplot(precision_range, ylim=c(0,100), main="Precision for Distinguishing Silver Standard and Bystander Genes", xlab="PIP Threshold for Detection", ylab="% of Detected Genes in Silver Standard")
abline(h=20, lty=2)
abline(h=40, lty=2)
abline(h=60, lty=2)
abline(h=80, lty=2)
xx <- barplot(precision_range, add=T, col=c(rep("darkgrey",3), "white"))
text(x = xx, y = rep(0, length(number_detected)), label = paste0(number_detected, " detected"), pos = 3, cex=0.8)
#text(x = xx, y = precision_range, label = paste0(round(precision_range,1), "%"), pos = 3, cex=0.8, offset = 1.5)
#false discovery rate by PIP threshold
barplot(100-precision_range, ylim=c(0,100), main="False Discovery Rate for Distinguishing Silver Standard and Bystander Genes", xlab="PIP Threshold for Detection", ylab="% Bystanders in Detected Genes")
abline(h=20, lty=2)
abline(h=40, lty=2)
abline(h=60, lty=2)
abline(h=80, lty=2)
xx <- barplot(100-precision_range, add=T, col=c(rep("darkgrey",3), "white"))
text(x = xx, y = rep(0, length(number_detected)), label = paste0(number_detected, " detected"), pos = 3, cex=0.8)
#text(x = xx, y = precision_range, label = paste0(round(precision_range,1), "%"), pos = 3, cex=0.8, offset = 1.5)
For all 69 silver standard genes, sequentially bin each gene using the following criteria: 1) gene not imputed; 2) gene detected by cTWAS at PIP>0.8; 3) gene insignificant by TWAS; 4) gene nearby a detected silver standard gene; 5) gene nearby a detected bystander gene; 6) gene nearby a detected SNP; 7) inconclusive.
#reload silver standard genes
known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
* `` -> ...4
* `` -> ...5
known_annotations <- unique(known_annotations$`Gene Symbol`)
#categorize silver standard genes by case
silver_standard_case <- c()
uncertain_regions <- matrix(NA, 0, 2)
for (i in 1:length(known_annotations)){
current_gene <- known_annotations[i]
if (current_gene %in% ctwas_gene_res$genename) {
if (ctwas_gene_res$susie_pip[ctwas_gene_res$genename == current_gene] > 0.8){
silver_standard_case <- c(silver_standard_case, "Detected (PIP > 0.8)")
} else {
if (abs(ctwas_gene_res$z[ctwas_gene_res$genename == current_gene]) < sig_thresh){
silver_standard_case <- c(silver_standard_case, "Insignificant z-score")
} else {
current_region <- ctwas_gene_res$region_tag[ctwas_gene_res$genename == current_gene]
current_gene_res <- ctwas_gene_res[ctwas_gene_res$region_tag==current_region,]
current_snp_res <- ctwas_snp_res[ctwas_snp_res$region_tag==current_region,]
if (any(current_gene_res$susie_pip>0.8)){
if (any(current_gene_res$genename[current_gene_res$susie_pip>0.8] %in% known_annotations)){
silver_standard_case <- c(silver_standard_case, "Nearby Silver Standard Gene")
} else {
silver_standard_case <- c(silver_standard_case, "Nearby Bystander Gene")
}
} else {
#if (any(current_snp_res$susie_pip>0.8)){
if (sum(current_snp_res$susie_pip)>0.8){
silver_standard_case <- c(silver_standard_case, "Nearby SNP(s)")
} else {
silver_standard_case <- c(silver_standard_case, "Inconclusive")
uncertain_regions <- rbind(uncertain_regions, c(current_gene, ctwas_gene_res$region_tag[ctwas_gene_res$genename == current_gene]))
print(c(current_gene, ctwas_gene_res$region_tag[ctwas_gene_res$genename == current_gene]))
}
}
}
}
} else {
silver_standard_case <- c(silver_standard_case, "Not Imputed")
}
}
names(silver_standard_case) <- known_annotations
#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
Insignificant z-score Not Imputed
44 25
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)
# for (i in 1:nrow(uncertain_regions)){
# locus_plot3(uncertain_regions[i,2], focus=uncertain_regions[i,1])
# }
#pie chart of outcomes for silver standard genes
df <- data.frame(-sort(-table(silver_standard_case)))
names(df) <- c("Outcome", "Frequency")
#df <- df[df$Outcome!="Not Imputed",] #exclude genes not imputed
df$Outcome <- droplevels(df$Outcome) #exclude genes not imputed
bp<- ggplot(df, aes(x=Outcome, y=Frequency, fill=Outcome)) + geom_bar(width = 1, stat = "identity", position=position_dodge()) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) + theme(legend.position = "none")
bp
pie <- ggplot(df, aes(x="", y=Frequency, fill=Outcome)) + geom_bar(width = 1, stat = "identity")
pie <- pie + coord_polar("y", start=0) + theme_minimal() + theme(axis.title.y=element_blank())
pie
locus_plot3(focus="KPNB1", region_tag="17_27")
locus_plot3(focus="LPIN3", region_tag="20_25")
locus_plot3(focus="LIPC", region_tag="15_26")
TTC39B is a member of the Dyslipidaemia term in the disease_GLAD4U. This gene was not included in our silver standard. This gene is not significant using TWAS but is detected by cTWAS.
locus_plot3(focus="TTC39B", region_tag="9_13")
sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] GenomicRanges_1.36.1 GenomeInfoDb_1.20.0 IRanges_2.18.1
[4] S4Vectors_0.22.1 BiocGenerics_0.30.0 biomaRt_2.40.1
[7] ctwas_0.1.31 forcats_0.5.1 stringr_1.4.0
[10] dplyr_1.0.7 purrr_0.3.4 readr_2.1.1
[13] tidyr_1.1.4 tidyverse_1.3.1 tibble_3.1.6
[16] readxl_1.3.1 WebGestaltR_0.4.4 disgenet2r_0.99.2
[19] enrichR_3.0 cowplot_1.0.0 ggplot2_3.3.5
[22] workflowr_1.6.2
loaded via a namespace (and not attached):
[1] ggbeeswarm_0.6.0 colorspace_2.0-2 rjson_0.2.20
[4] ellipsis_0.3.2 rprojroot_2.0.2 XVector_0.24.0
[7] fs_1.5.2 rstudioapi_0.13 farver_2.1.0
[10] ggrepel_0.8.1 bit64_4.0.5 AnnotationDbi_1.46.0
[13] fansi_0.5.0 lubridate_1.8.0 xml2_1.3.3
[16] codetools_0.2-16 logging_0.10-108 doParallel_1.0.16
[19] cachem_1.0.6 knitr_1.36 jsonlite_1.7.2
[22] apcluster_1.4.8 Cairo_1.5-12.2 broom_0.7.10
[25] dbplyr_2.1.1 compiler_3.6.1 httr_1.4.2
[28] backports_1.4.1 assertthat_0.2.1 Matrix_1.2-18
[31] fastmap_1.1.0 cli_3.1.0 later_0.8.0
[34] prettyunits_1.1.1 htmltools_0.5.2 tools_3.6.1
[37] igraph_1.2.10 GenomeInfoDbData_1.2.1 gtable_0.3.0
[40] glue_1.5.1 reshape2_1.4.4 doRNG_1.8.2
[43] Rcpp_1.0.7 Biobase_2.44.0 cellranger_1.1.0
[46] jquerylib_0.1.4 vctrs_0.3.8 svglite_1.2.2
[49] iterators_1.0.13 xfun_0.29 rvest_1.0.2
[52] lifecycle_1.0.1 rngtools_1.5.2 XML_3.99-0.3
[55] zlibbioc_1.30.0 scales_1.1.1 vroom_1.5.7
[58] hms_1.1.1 promises_1.0.1 yaml_2.2.1
[61] curl_4.3.2 memoise_2.0.1 ggrastr_1.0.1
[64] gdtools_0.1.9 stringi_1.7.6 RSQLite_2.2.8
[67] highr_0.9 foreach_1.5.1 rlang_0.4.12
[70] pkgconfig_2.0.3 bitops_1.0-7 evaluate_0.14
[73] lattice_0.20-38 labeling_0.4.2 bit_4.0.4
[76] tidyselect_1.1.1 plyr_1.8.6 magrittr_2.0.1
[79] R6_2.5.1 generics_0.1.1 DBI_1.1.1
[82] pgenlibr_0.3.1 pillar_1.6.4 haven_2.4.3
[85] whisker_0.3-2 withr_2.4.3 RCurl_1.98-1.5
[88] modelr_0.1.8 crayon_1.4.2 utf8_1.2.2
[91] tzdb_0.2.0 rmarkdown_2.11 progress_1.2.2
[94] grid_3.6.1 data.table_1.14.2 blob_1.2.2
[97] git2r_0.26.1 reprex_2.0.1 digest_0.6.29
[100] httpuv_1.5.1 munsell_0.5.0 beeswarm_0.2.3
[103] vipor_0.4.5