Last updated: 2022-05-19

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version bcaadf3. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .ipynb_checkpoints/

Untracked files:
    Untracked:  G_list.RData
    Untracked:  Rplot.png
    Untracked:  SCZ_annotation.xlsx
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2018_S_out/
    Untracked:  code/SCZ_2018_out/
    Untracked:  code/SCZ_2020_Single_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/process_scz_2018_snps.R
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_analysis.sbatch
    Untracked:  code/run_SCZ_2018_analysis.sh
    Untracked:  code/run_SCZ_2018_analysis_S.sbatch
    Untracked:  code/run_SCZ_2018_analysis_S.sh
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2020_Single_analysis.sbatch
    Untracked:  code/run_SCZ_2020_Single_analysis.sh
    Untracked:  code/run_SCZ_2020_Single_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/GO_Terms/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2018/
    Untracked:  data/SCZ_2018_S/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/Supplementary Table 15 - MAGMA.xlsx
    Untracked:  data/Supplementary Table 20 - Prioritised Genes.xlsx
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/scz_2018.RDS
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt
    Untracked:  top_genes_32.txt
    Untracked:  top_genes_37.txt
    Untracked:  top_genes_43.txt
    Untracked:  top_genes_54.txt
    Untracked:  top_genes_81.txt
    Untracked:  z_snp_pos_SCZ.RData
    Untracked:  z_snp_pos_SCZ_2014_EUR.RData
    Untracked:  z_snp_pos_SCZ_2018.RData
    Untracked:  z_snp_pos_SCZ_2020.RData

Unstaged changes:
    Deleted:    analysis/BMI_S_results.Rmd
    Modified:   analysis/SCZ_2018_Brain_Amygdala_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Caudate_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellar_Hemisphere_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellum_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cortex_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Frontal_Cortex_BA9_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hippocampus_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hypothalamus_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Putamen_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Substantia_nigra_S.Rmd
    Modified:   analysis/ttt.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Hypothalamus_S.Rmd) and HTML (docs/SCZ_2018_Brain_Hypothalamus_S.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd bcaadf3 sq-96 2022-05-19 update
html bcaadf3 sq-96 2022-05-19 update
Rmd be614ed sq-96 2022-05-19 update
html be614ed sq-96 2022-05-19 update
Rmd 7d08c9b sq-96 2022-05-18 update
html 7d08c9b sq-96 2022-05-18 update
Rmd 2749be9 sq-96 2022-05-12 update
html 2749be9 sq-96 2022-05-12 update
html 011327d sq-96 2022-05-12 update
Rmd 6c6abbd sq-96 2022-05-12 update

library(reticulate)
use_python("/scratch/midway2/shengqian/miniconda3/envs/PythonForR/bin/python",required=T)

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 19902
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1843 1406 1208  781  846 1042 1147  677  814  921 1170 1073  396  705  657  781 
  17   18   19   20   21   22 
1382  282 1439  658   36  638 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 17601
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8844
INFO:numexpr.utils:Note: NumExpr detected 56 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
finish

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union

Check convergence of parameters

Version Author Date
2749be9 sq-96 2022-05-12
     gene       snp 
0.0083920 0.0003085 
 gene   snp 
11.94 10.24 
[1] 105318
[1]    7334 6309950
    gene      snp 
0.006979 0.189243 
[1] 0.01838 1.05816

Genes with highest PIPs

Version Author Date
bcaadf3 sq-96 2022-05-19
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
      genename region_tag susie_pip   mu2       PVE      z num_intron num_sqtl
4991    R3HDM2      12_36    1.1229 43.52 0.0004828 -6.634          4        4
2390     FEZF1       7_74    1.0238 24.62 0.0002438 -4.812          3        3
3351 LINC00320       21_6    0.9653 29.24 0.0002429 -5.336          5        5
3449      LRP8       1_33    0.9575 23.82 0.0002046  4.654          3        4
286       AKT3      1_128    0.9508 34.79 0.0002780 -6.291          8        8
2566    GIGYF2      2_137    0.9417 56.62 0.0004418  8.128          3        3
712       BDNF      11_19    0.9141 23.31 0.0001849 -4.348          2        2
4239     NRXN2      11_36    0.9073 24.81 0.0001918  4.723          3        3
7140      ZIC4       3_91    0.9031 23.46 0.0001755 -4.221          3        4
6335     THAP8      19_25    0.8792 19.47 0.0001426  3.847          2        2
4951     PTPRF       1_27    0.8792 37.18 0.0002644  6.680          4        4
1545     CRTAP       3_24    0.8764 19.92 0.0001445  3.929          2        2
148     ACTR1B       2_57    0.8316 19.24 0.0001263 -3.978          4        4
2565    GIGYF1       7_63    0.8088 28.55 0.0001764 -5.266          3        3
3873    MRPS33       7_87    0.7742 23.44 0.0001275 -4.304          4        5
6663   TSNARE1       8_93    0.7719 28.75 0.0001581  5.782          7       10
1922    DPYSL3       5_86    0.7459 22.30 0.0001178  4.157          1        1
2181      ETF1       5_82    0.7438 33.82 0.0001776  6.112          1        1
5639     SF3B1      2_117    0.7398 45.62 0.0002320  7.053          2        2
6848    UQCRC2      16_19    0.7381 22.09 0.0001143  4.716          2        2

Genes with highest PVE

      genename region_tag susie_pip   mu2       PVE      z num_intron num_sqtl
4991    R3HDM2      12_36    1.1229 43.52 0.0004828 -6.634          4        4
2566    GIGYF2      2_137    0.9417 56.62 0.0004418  8.128          3        3
286       AKT3      1_128    0.9508 34.79 0.0002780 -6.291          8        8
4951     PTPRF       1_27    0.8792 37.18 0.0002644  6.680          4        4
2390     FEZF1       7_74    1.0238 24.62 0.0002438 -4.812          3        3
3351 LINC00320       21_6    0.9653 29.24 0.0002429 -5.336          5        5
5639     SF3B1      2_117    0.7398 45.62 0.0002320  7.053          2        2
442     APOPT1      14_54    0.6940 46.11 0.0002066  7.429          4        7
3449      LRP8       1_33    0.9575 23.82 0.0002046  4.654          3        4
4239     NRXN2      11_36    0.9073 24.81 0.0001918  4.723          3        3
712       BDNF      11_19    0.9141 23.31 0.0001849 -4.348          2        2
2181      ETF1       5_82    0.7438 33.82 0.0001776  6.112          1        1
2565    GIGYF1       7_63    0.8088 28.55 0.0001764 -5.266          3        3
7140      ZIC4       3_91    0.9031 23.46 0.0001755 -4.221          3        4
6663   TSNARE1       8_93    0.7719 28.75 0.0001581  5.782          7       10
6221     TAOK2      16_24    0.6069 47.40 0.0001572 -7.024          5        5
1545     CRTAP       3_24    0.8764 19.92 0.0001445  3.929          2        2
6335     THAP8      19_25    0.8792 19.47 0.0001426  3.847          2        2
3873    MRPS33       7_87    0.7742 23.44 0.0001275 -4.304          4        5
148     ACTR1B       2_57    0.8316 19.24 0.0001263 -3.978          4        4

Comparing z scores and PIPs

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12

Version Author Date
bcaadf3 sq-96 2022-05-19
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
[1] 0.01773
         genename region_tag susie_pip    mu2       PVE       z num_intron
4531        PGBD1       6_22 4.933e-02 161.09 1.444e-06 -13.087          2
6901         VARS       6_26 8.163e-05 217.29 1.375e-11 -11.548          1
441          APOM       6_26 8.357e-05 217.08 1.434e-11 -11.541          2
1747         DDR1       6_25 1.495e-01 101.78 2.106e-05  11.175          2
6902        VARS2       6_25 1.018e-01 100.66 9.907e-06 -11.137          1
914      C6orf136       6_24 9.472e-02  80.92 6.894e-06 -11.031          2
2421        FLOT1       6_24 2.537e-01  79.57 4.851e-05  10.981          7
781        BTN3A2       6_20 1.183e-01  91.37 4.454e-06 -10.659          6
668          BAG6       6_26 3.175e-05 166.08 1.360e-12  10.247          7
2849        HLA-B       6_25 7.365e-02  79.14 1.418e-06  10.150         10
5245         RNF5       6_26 2.893e-05 150.34 1.195e-12 -10.045          1
1123       CCHCR1       6_25 5.652e-02  66.51 1.192e-06   9.508          9
2682        GPSM3       6_26 1.971e-06 122.29 4.509e-15  -9.377          1
4257        NT5C2      10_66 4.641e-01  48.79 9.244e-05  -8.511          8
5383 RP5-874C20.8       6_22 3.788e-02  46.81 4.314e-07   8.304          4
2566       GIGYF2      2_137 9.417e-01  56.62 4.418e-04   8.128          3
3887         MSH5       6_26 1.908e-05  72.41 1.864e-13   7.892          3
814      C12orf65      12_75 2.009e-01  55.60 2.131e-05  -7.754          1
7141      ZKSCAN3       6_22 2.099e-02  36.54 8.960e-08  -7.740          2
780        BTN3A1       6_20 7.314e-02  47.48 7.925e-07   7.490          5
     num_sqtl
4531        3
6901        1
441         2
1747        2
6902        1
914         2
2421        8
781         7
668        10
2849       19
5245        1
1123       13
2682        1
4257       12
5383        5
2566        3
3887        3
814         1
7141        2
780         5

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 65
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

Version Author Date
bcaadf3 sq-96 2022-05-19
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

Version Author Date
bcaadf3 sq-96 2022-05-19
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

Version Author Date
bcaadf3 sq-96 2022-05-19
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                                                  Description     FDR Ratio
73                                              Schizophrenia 0.02013 11/32
49                                                    Measles 0.03821  1/32
90                              Electroencephalogram abnormal 0.03821  1/32
96                                   Congenital absent nipple 0.03821  1/32
155           Congenital absence of breast with absent nipple 0.03821  1/32
212                                 Sporadic Breast Carcinoma 0.03821  1/32
215                              Primary peritoneal carcinoma 0.03821  1/32
221                          Osteogenesis Imperfecta Type VII 0.03821  1/32
222 Familial encephalopathy with neuroserpin inclusion bodies 0.03821  1/32
228     BREAST-OVARIAN CANCER, FAMILIAL, SUSCEPTIBILITY TO, 1 0.03821  1/32
     BgRatio
73  883/9703
49    1/9703
90    1/9703
96    1/9703
155   1/9703
212   1/9703
215   1/9703
221   1/9703
222   1/9703
228   1/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Warning: replacing previous import 'lifecycle::last_warnings' by
'rlang::last_warnings' when loading 'hms'
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Warning: ggrepel: 21 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Version Author Date
bcaadf3 sq-96 2022-05-19
be614ed sq-96 2022-05-19
7d08c9b sq-96 2022-05-18
2749be9 sq-96 2022-05-12

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 50
#significance threshold for TWAS
print(sig_thresh)
[1] 4.499
#number of ctwas genes
length(ctwas_genes)
[1] 14
#number of TWAS genes
length(twas_genes)
[1] 130
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
     genename region_tag susie_pip   mu2       PVE      z num_intron num_sqtl
148    ACTR1B       2_57    0.8316 19.24 0.0001263 -3.978          4        4
712      BDNF      11_19    0.9141 23.31 0.0001849 -4.348          2        2
1545    CRTAP       3_24    0.8764 19.92 0.0001445  3.929          2        2
6335    THAP8      19_25    0.8792 19.47 0.0001426  3.847          2        2
7140     ZIC4       3_91    0.9031 23.46 0.0001755 -4.221          3        4
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.03846 0.13077 
#specificity
print(specificity)
 ctwas   TWAS 
0.9988 0.9845 
#precision / PPV
print(precision)
 ctwas   TWAS 
0.3571 0.1308 

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.4.0      forcats_0.5.1     stringr_1.4.0     purrr_0.3.4      
 [5] readr_1.4.0       tidyr_1.1.3       tidyverse_1.3.1   tibble_3.1.7     
 [9] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.1.1    
[13] ggplot2_3.3.5     dplyr_1.0.7       reticulate_1.25   workflowr_1.7.0  

loaded via a namespace (and not attached):
 [1] fs_1.5.0          lubridate_1.7.10  doParallel_1.0.16 httr_1.4.2       
 [5] rprojroot_2.0.2   tools_4.1.0       backports_1.2.1   doRNG_1.8.2      
 [9] bslib_0.2.5.1     utf8_1.2.1        R6_2.5.0          vipor_0.4.5      
[13] DBI_1.1.1         colorspace_2.0-2  withr_2.4.2       ggrastr_1.0.1    
[17] tidyselect_1.1.1  processx_3.5.2    curl_4.3.2        compiler_4.1.0   
[21] git2r_0.28.0      rvest_1.0.0       cli_3.0.0         Cairo_1.5-15     
[25] xml2_1.3.2        labeling_0.4.2    sass_0.4.0        scales_1.1.1     
[29] callr_3.7.0       systemfonts_1.0.4 apcluster_1.4.9   digest_0.6.27    
[33] rmarkdown_2.9     svglite_2.0.0     pkgconfig_2.0.3   htmltools_0.5.1.1
[37] dbplyr_2.1.1      highr_0.9         rlang_1.0.2       rstudioapi_0.13  
[41] jquerylib_0.1.4   farver_2.1.0      generics_0.1.0    jsonlite_1.7.2   
[45] magrittr_2.0.1    Matrix_1.3-3      ggbeeswarm_0.6.0  Rcpp_1.0.7       
[49] munsell_0.5.0     fansi_0.5.0       lifecycle_1.0.0   stringi_1.6.2    
[53] whisker_0.4       yaml_2.2.1        plyr_1.8.6        grid_4.1.0       
[57] ggrepel_0.9.1     parallel_4.1.0    promises_1.2.0.1  crayon_1.4.1     
[61] lattice_0.20-44   haven_2.4.1       hms_1.1.0         knitr_1.33       
[65] ps_1.6.0          pillar_1.7.0      igraph_1.2.6      rjson_0.2.20     
[69] rngtools_1.5      reshape2_1.4.4    codetools_0.2-18  reprex_2.0.0     
[73] glue_1.4.2        evaluate_0.14     getPass_0.2-2     modelr_0.1.8     
[77] data.table_1.14.0 png_0.1-7         vctrs_0.3.8       httpuv_1.6.1     
[81] foreach_1.5.1     cellranger_1.1.0  gtable_0.3.0      assertthat_0.2.1 
[85] xfun_0.24         broom_0.7.8       later_1.2.0       iterators_1.0.13 
[89] beeswarm_0.4.0    ellipsis_0.3.2    here_1.0.1