Last updated: 2021-02-04
Checks: 7 0
Knit directory: scATACseq-topics/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it's best to always run the code in an empty environment.
The command set.seed(20200729)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 4d59d77. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: output/plotly/Buenrostro_2018_Chen2019pipeline/
Untracked files:
Untracked: analysis/gene_analysis_Buenrostro2018_Chen2019pipeline.Rmd
Untracked: analysis/process_data_Buenrostro2018_Chen2019.Rmd
Untracked: output/clustering-Cusanovich2018.rds
Untracked: output/plotly/Cusanovich2018/gsea_topic_10_genebody-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_10_genebody-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_10_genebody-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/gsea_topic_10_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_10_genebody-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_10_tss-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_10_tss-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_10_tss-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/gsea_topic_10_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_10_tss-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_11_genebody-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_11_genebody-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_11_genebody-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/gsea_topic_11_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_11_genebody-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_11_tss-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_11_tss-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_11_tss-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/gsea_topic_11_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_11_tss-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_12_genebody-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_12_genebody-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_12_genebody-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/gsea_topic_12_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_12_genebody-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_12_tss-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_12_tss-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_12_tss-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/gsea_topic_12_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_12_tss-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_13_genebody-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_13_genebody-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_13_genebody-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/gsea_topic_13_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_13_genebody-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_13_tss-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_13_tss-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_13_tss-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/gsea_topic_13_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_13_tss-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_1_genebody-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_1_genebody-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_1_genebody-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/gsea_topic_1_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_1_genebody-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_1_tss-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_1_tss-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_1_tss-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/gsea_topic_1_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_1_tss-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_2_genebody-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_2_genebody-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_2_genebody-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/gsea_topic_2_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_2_genebody-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_2_tss-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_2_tss-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_2_tss-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/gsea_topic_2_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_2_tss-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_3_genebody-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_3_genebody-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_3_genebody-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/gsea_topic_3_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_3_genebody-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_3_tss-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_3_tss-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_3_tss-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/gsea_topic_3_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_3_tss-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_4_genebody-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_4_genebody-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_4_genebody-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/gsea_topic_4_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_4_genebody-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_4_tss-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_4_tss-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_4_tss-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/gsea_topic_4_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_4_tss-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_5_genebody-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_5_genebody-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_5_genebody-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/gsea_topic_5_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_5_genebody-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_5_tss-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_5_tss-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_5_tss-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/gsea_topic_5_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_5_tss-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_6_genebody-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_6_genebody-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_6_genebody-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/gsea_topic_6_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_6_genebody-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_6_tss-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_6_tss-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_6_tss-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/gsea_topic_6_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_6_tss-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_7_genebody-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_7_genebody-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_7_genebody-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/gsea_topic_7_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_7_genebody-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_7_tss-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_7_tss-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_7_tss-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/gsea_topic_7_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_7_tss-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_8_genebody-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_8_genebody-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_8_genebody-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/gsea_topic_8_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_8_genebody-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_8_tss-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_8_tss-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_8_tss-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/gsea_topic_8_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_8_tss-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_9_genebody-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_9_genebody-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_9_genebody-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/gsea_topic_9_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_9_genebody-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_9_tss-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_9_tss-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_9_tss-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/gsea_topic_9_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/gsea_topic_9_tss-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_10_genebody-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_10_genebody-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_10_genebody-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/volcano_topic_10_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_10_genebody-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_10_tss-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_10_tss-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_10_tss-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/volcano_topic_10_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_10_tss-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_11_genebody-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_11_genebody-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_11_genebody-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/volcano_topic_11_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_11_genebody-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_11_tss-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_11_tss-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_11_tss-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/volcano_topic_11_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_11_tss-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_12_genebody-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_12_genebody-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_12_genebody-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/volcano_topic_12_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_12_genebody-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_12_tss-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_12_tss-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_12_tss-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/volcano_topic_12_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_12_tss-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_13_genebody-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_13_genebody-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_13_genebody-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/volcano_topic_13_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_13_genebody-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_13_tss-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_13_tss-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_13_tss-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/volcano_topic_13_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_13_tss-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_1_genebody-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_1_genebody-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_1_genebody-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/volcano_topic_1_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_1_genebody-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_1_tss-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_1_tss-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_1_tss-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/volcano_topic_1_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_1_tss-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_2_genebody-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_2_genebody-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_2_genebody-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/volcano_topic_2_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_2_genebody-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_2_tss-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_2_tss-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_2_tss-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/volcano_topic_2_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_2_tss-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_3_genebody-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_3_genebody-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_3_genebody-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/volcano_topic_3_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_3_genebody-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_3_tss-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_3_tss-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_3_tss-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/volcano_topic_3_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_3_tss-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_4_genebody-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_4_genebody-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_4_genebody-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/volcano_topic_4_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_4_genebody-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_4_tss-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_4_tss-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_4_tss-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/volcano_topic_4_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_4_tss-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_5_genebody-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_5_genebody-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_5_genebody-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/volcano_topic_5_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_5_genebody-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_5_tss-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_5_tss-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_5_tss-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/volcano_topic_5_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_5_tss-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_6_genebody-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_6_genebody-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_6_genebody-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/volcano_topic_6_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_6_genebody-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_6_tss-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_6_tss-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_6_tss-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/volcano_topic_6_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_6_tss-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_7_genebody-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_7_genebody-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_7_genebody-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/volcano_topic_7_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_7_genebody-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_7_tss-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_7_tss-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_7_tss-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/volcano_topic_7_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_7_tss-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_8_genebody-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_8_genebody-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_8_genebody-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/volcano_topic_8_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_8_genebody-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_8_tss-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_8_tss-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_8_tss-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/volcano_topic_8_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_8_tss-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_9_genebody-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_9_genebody-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_9_genebody-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/volcano_topic_9_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_9_genebody-sum_files/plotly-main-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_9_tss-sum_files/crosstalk-1.1.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_9_tss-sum_files/jquery-3.5.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_9_tss-sum_files/plotly-binding-4.9.3/
Untracked: output/plotly/Cusanovich2018/volcano_topic_9_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
Untracked: output/plotly/Cusanovich2018/volcano_topic_9_tss-sum_files/plotly-main-1.57.1/
Untracked: scripts/fit_all_models_Buenrostro_2018_chromVar_scPeaks_filtered.sbatch
Untracked: scripts/fit_models_Cusanovich2018_tissues.sh
Unstaged changes:
Modified: analysis/assess_fits_Cusanovich2018.Rmd
Modified: analysis/index.Rmd
Modified: analysis/motif_analysis_Buenrostro2018_Chen2019pipeline.Rmd
Modified: analysis/plots_Cusanovich2018.Rmd
Modified: analysis/process_data_Cusanovich2018.Rmd
Modified: output/plotly/Cusanovich2018/gsea_topic_10_genebody-sum.html
Modified: output/plotly/Cusanovich2018/gsea_topic_10_tss-sum.html
Modified: output/plotly/Cusanovich2018/gsea_topic_11_genebody-sum.html
Modified: output/plotly/Cusanovich2018/gsea_topic_11_tss-sum.html
Modified: output/plotly/Cusanovich2018/gsea_topic_12_genebody-sum.html
Modified: output/plotly/Cusanovich2018/gsea_topic_12_tss-sum.html
Modified: output/plotly/Cusanovich2018/gsea_topic_13_genebody-sum.html
Modified: output/plotly/Cusanovich2018/gsea_topic_13_tss-sum.html
Modified: output/plotly/Cusanovich2018/gsea_topic_1_genebody-sum.html
Modified: output/plotly/Cusanovich2018/gsea_topic_1_tss-sum.html
Modified: output/plotly/Cusanovich2018/gsea_topic_2_genebody-sum.html
Modified: output/plotly/Cusanovich2018/gsea_topic_2_tss-sum.html
Modified: output/plotly/Cusanovich2018/gsea_topic_3_genebody-sum.html
Modified: output/plotly/Cusanovich2018/gsea_topic_3_tss-sum.html
Modified: output/plotly/Cusanovich2018/gsea_topic_4_genebody-sum.html
Modified: output/plotly/Cusanovich2018/gsea_topic_4_tss-sum.html
Modified: output/plotly/Cusanovich2018/gsea_topic_5_genebody-sum.html
Modified: output/plotly/Cusanovich2018/gsea_topic_5_tss-sum.html
Modified: output/plotly/Cusanovich2018/gsea_topic_6_genebody-sum.html
Modified: output/plotly/Cusanovich2018/gsea_topic_6_tss-sum.html
Modified: output/plotly/Cusanovich2018/gsea_topic_7_genebody-sum.html
Modified: output/plotly/Cusanovich2018/gsea_topic_7_tss-sum.html
Modified: output/plotly/Cusanovich2018/gsea_topic_8_genebody-sum.html
Modified: output/plotly/Cusanovich2018/gsea_topic_8_tss-sum.html
Modified: output/plotly/Cusanovich2018/gsea_topic_9_genebody-sum.html
Modified: output/plotly/Cusanovich2018/gsea_topic_9_tss-sum.html
Modified: output/plotly/Cusanovich2018/volcano_topic_10_genebody-sum.html
Modified: output/plotly/Cusanovich2018/volcano_topic_10_tss-sum.html
Modified: output/plotly/Cusanovich2018/volcano_topic_11_genebody-sum.html
Modified: output/plotly/Cusanovich2018/volcano_topic_11_tss-sum.html
Modified: output/plotly/Cusanovich2018/volcano_topic_12_genebody-sum.html
Modified: output/plotly/Cusanovich2018/volcano_topic_12_tss-sum.html
Modified: output/plotly/Cusanovich2018/volcano_topic_13_genebody-sum.html
Modified: output/plotly/Cusanovich2018/volcano_topic_13_tss-sum.html
Modified: output/plotly/Cusanovich2018/volcano_topic_1_genebody-sum.html
Modified: output/plotly/Cusanovich2018/volcano_topic_1_tss-sum.html
Modified: output/plotly/Cusanovich2018/volcano_topic_2_genebody-sum.html
Modified: output/plotly/Cusanovich2018/volcano_topic_2_tss-sum.html
Modified: output/plotly/Cusanovich2018/volcano_topic_3_genebody-sum.html
Modified: output/plotly/Cusanovich2018/volcano_topic_3_tss-sum.html
Modified: output/plotly/Cusanovich2018/volcano_topic_4_genebody-sum.html
Modified: output/plotly/Cusanovich2018/volcano_topic_4_tss-sum.html
Modified: output/plotly/Cusanovich2018/volcano_topic_5_genebody-sum.html
Modified: output/plotly/Cusanovich2018/volcano_topic_5_tss-sum.html
Modified: output/plotly/Cusanovich2018/volcano_topic_6_genebody-sum.html
Modified: output/plotly/Cusanovich2018/volcano_topic_6_tss-sum.html
Modified: output/plotly/Cusanovich2018/volcano_topic_7_genebody-sum.html
Modified: output/plotly/Cusanovich2018/volcano_topic_7_tss-sum.html
Modified: output/plotly/Cusanovich2018/volcano_topic_8_genebody-sum.html
Modified: output/plotly/Cusanovich2018/volcano_topic_8_tss-sum.html
Modified: output/plotly/Cusanovich2018/volcano_topic_9_genebody-sum.html
Modified: output/plotly/Cusanovich2018/volcano_topic_9_tss-sum.html
Modified: scripts/fit_poisson_nmf.sbatch
Modified: scripts/prefit_poisson_nmf.sbatch
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/gene_analysis_Cusanovich2018.Rmd
) and HTML (docs/gene_analysis_Cusanovich2018.html
) files. If you've configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 4d59d77 | kevinlkx | 2021-02-04 | fix a typo on the topic 1 cell type |
html | df5ffa4 | kevinlkx | 2021-02-04 | Build site. |
Rmd | dd6949d | kevinlkx | 2021-02-04 | removed the DT tables of the tissue or cell composition in topics |
html | 027dab2 | kevinlkx | 2021-02-04 | Build site. |
Rmd | 2edcd80 | kevinlkx | 2021-02-04 | added marker gene plots |
html | 5e832d2 | kevinlkx | 2021-01-22 | Build site. |
Rmd | 8a44752 | kevinlkx | 2021-01-22 | minor update on highlighting the gene sets of GSEA results |
html | ca6ea6f | kevinlkx | 2021-01-22 | Build site. |
Rmd | 8f3685f | kevinlkx | 2021-01-22 | update figure directory and links to plotly html files |
Here we perform gene analysis for the Cusanovich et al (2018) scATAC-seq result inferred from the multinomial topic model with \(k = 13\).
library(Matrix)
library(fastTopics)
library(dplyr)
library(tidyr)
library(ggplot2)
library(ggrepel)
library(cowplot)
library(plotly)
library(htmlwidgets)
library(DT)
library(reshape)
source("code/plots.R")
out.dir <- "/project2/mstephens/kevinluo/scATACseq-topics/output/Cusanovich_2018/"
samples <- readRDS(paste0(out.dir, "/samples-clustering-Cusanovich2018.rds"))
fit.dir <- "/project2/mstephens/kevinluo/scATACseq-topics/output/Cusanovich_2018/"
fit <- readRDS(file.path(fit.dir, "/fit-Cusanovich2018-scd-ex-k=13.rds"))$fit
fit_multinom <- poisson2multinom(fit)
set.seed(10)
colors_topics <- c("#a6cee3","#1f78b4","#b2df8a","#33a02c","#fb9a99","#e31a1c",
"#fdbf6f","#ff7f00","#cab2d6","#6a3d9a","#ffff99","#b15928",
"gray")
rows <- sample(nrow(fit$L),4000)
samples$tissue <- as.factor(samples$tissue)
p.structure <- structure_plot(select(fit_multinom,loadings = rows),
grouping = samples[rows, "tissue"],n = Inf,gap = 40,
perplexity = 50,topics = 1:13,colors = colors_topics,
num_threads = 4,verbose = FALSE)
print(p.structure)
Load the clustering results
set.seed(10)
rows <- sample(nrow(fit$L),4000)
p.structure.kmeans <- structure_plot(select(fit_multinom,loadings = rows),
grouping = samples$cluster_kmeans[rows],n = Inf,gap = 40,
perplexity = 50,topics = 1:13,colors = colors_topics,
num_threads = 4,verbose = FALSE)
print(p.structure.kmeans)
Version | Author | Date |
---|---|---|
027dab2 | kevinlkx | 2021-02-04 |
Distribution of tissue labels by cluster.
freq_table_cluster_tissue <- with(samples,table(tissue,cluster_kmeans))
freq_table_cluster_tissue <- as.data.frame.matrix(freq_table_cluster_tissue)
# DT::datatable(freq_table_cluster_tissue,
# options = list(pageLength = nrow(freq_table_cluster_tissue)),
# rownames = T, caption = "Number of cells")
create_celllabel_cluster_heatmap(samples$tissue, samples$cluster_kmeans, normalize_by = "column")
Version | Author | Date |
---|---|---|
027dab2 | kevinlkx | 2021-02-04 |
Distribution of cell labels by cluster.
freq_table_cluster_celllabel <- with(samples,table(cell_label,cluster_kmeans))
freq_table_cluster_celllabel <- as.data.frame.matrix(freq_table_cluster_celllabel)
# DT::datatable(freq_table_cluster_celllabel,
# options = list(pageLength = nrow(freq_table_cluster_celllabel)),
# rownames = T, caption = "Number of cells")
create_celllabel_cluster_heatmap(samples$cell_label, samples$cluster_kmeans, normalize_by = "column")
Version | Author | Date |
---|---|---|
027dab2 | kevinlkx | 2021-02-04 |
Top 5 cell types
top_celltypes_table <- data.frame(matrix(nrow=5, ncol = ncol(freq_table_cluster_celllabel)))
colnames(top_celltypes_table) <- colnames(freq_table_cluster_celllabel)
for (k in 1:ncol(freq_table_cluster_celllabel)){
top_celltypes <- rownames(freq_table_cluster_celllabel)[head(order(freq_table_cluster_celllabel[,k], decreasing=TRUE), 5)]
freq_top_celltypes <- freq_table_cluster_celllabel[top_celltypes, k]
percent_top_celltypes <- freq_table_cluster_celllabel[top_celltypes, k]/sum(freq_table_cluster_celllabel[,k])
top_celltypes_table[,k] <- sprintf("%s (%.1f%%)", top_celltypes, percent_top_celltypes*100)
}
DT::datatable(top_celltypes_table, rownames = T, caption = "Top 5 cell types in each cluster")
We can see the major cell types in the clusters (topics):
# Set output directorry
fig.dir <- "output/plotly/Cusanovich2018"
dir.create(fig.dir, showWarnings = F, recursive = T)
Gene scores were computed using TSS based method as in Lareau et al Nature Biotech, 2019 as well as the model 21
in archR
paper. This model weights chromatin accessibility around gene promoters by using bi-directional exponential decays from the TSS.
gene.dir <- paste0(out.dir, "/geneanalysis-Cusanovich2018-k=13-TSS-sum")
cat(sprintf("Directory of gene analysis result: %s \n", gene.dir))
genescore_res_tss <- readRDS(file.path(gene.dir, "genescore_result_topics.rds"))
genescore_res <- genescore_res_tss
genes <- genescore_res$genes
gene_mean_acc <- genescore_res$colmeans
gene_scores <- genescore_res$Z
gene_logFC <- genescore_res$beta
topics <- colnames(gene_scores)
top_genes <- data.frame(matrix(nrow=10, ncol = ncol(gene_scores)))
colnames(top_genes) <- topics
for (k in topics){
top_genes[,k] <- genes$SYMBOL[head(order(abs(gene_scores[,k]), decreasing=TRUE), 10)]
}
DT::datatable(data.frame(rank = 1:10, top_genes), rownames = F, caption = "Top 10 genes by abs(gene z-scores)")
# Directory of gene analysis result: /project2/mstephens/kevinluo/scATACseq-topics/output/Cusanovich_2018//geneanalysis-Cusanovich2018-k=13-TSS-sum
Explore the volcano plots interactively
for ( k in 1:ncol(genescore_res$beta) ){
p.volcano.plotly <- genescore_volcano_plotly(genescore_res,k,
file = sprintf("%s/volcano_topic_%s_%s.html", fig.dir, k, "tss-sum"),
labels = genescore_res$genes$SYMBOL)
}
Topic 1 (Erythroblasts)
k <- 1
genescore_volcano_plot(genescore_res, k, label_above_quantile = 0.99,
labels = genescore_res$genes$SYMBOL, max.overlaps = 20,
subsample_below_quantile = 0.5, subsample_rate = 0.1)
Check some known marker genes
marker_genes <- c("Hbb-b1", "Hbb-b2", "Gypa")
gene_scores <- genescore_res$Z
rownames(gene_scores) <- genescore_res$genes$SYMBOL
marker_gene_scores <- gene_scores[grep(paste(sprintf("^%s$", marker_genes), collapse = "|"), rownames(gene_scores), ignore.case = T),]
par(mfrow = c(ceiling(nrow(marker_gene_scores)/2),2))
for(i in 1:nrow(marker_gene_scores)){
barplot(marker_gene_scores[i,], xlab = "topics", ylab = "gene score", main = rownames(marker_gene_scores)[i], col = colors_topics)
}
Version | Author | Date |
---|---|---|
027dab2 | kevinlkx | 2021-02-04 |
Topic 3 (Endothelial cells)
k <- 3
genescore_volcano_plot(genescore_res, k, label_above_quantile = 0.99,
labels = genescore_res$genes$SYMBOL, max.overlaps = 20,
subsample_below_quantile = 0.5, subsample_rate = 0.1)
Version | Author | Date |
---|---|---|
027dab2 | kevinlkx | 2021-02-04 |
Check some known marker genes
marker_genes <- c("PECAM1", "CD106", "CD62E", "Sele", "Kdr", "ENG")
gene_scores <- genescore_res$Z
rownames(gene_scores) <- genescore_res$genes$SYMBOL
marker_gene_scores <- gene_scores[grep(paste(sprintf("^%s$", marker_genes), collapse = "|"), rownames(gene_scores), ignore.case = T),]
par(mfrow = c(ceiling(nrow(marker_gene_scores)/2),2))
for(i in 1:nrow(marker_gene_scores)){
barplot(marker_gene_scores[i,], xlab = "topics", ylab = "gene score", main = rownames(marker_gene_scores)[i], col = colors_topics)
}
Version | Author | Date |
---|---|---|
027dab2 | kevinlkx | 2021-02-04 |
Topic 5 (Proximal tubule)
k <- 5
genescore_volcano_plot(genescore_res, k, label_above_quantile = 0.99,
labels = genescore_res$genes$SYMBOL, max.overlaps = 20,
subsample_below_quantile = 0.5, subsample_rate = 0.1)
Check some known marker genes
marker_genes <- c("PALDOB", "CUBN", "LRP2", "SLC34A1")
gene_scores <- genescore_res$Z
rownames(gene_scores) <- genescore_res$genes$SYMBOL
marker_gene_scores <- gene_scores[grep(paste(sprintf("^%s$", marker_genes), collapse = "|"), rownames(gene_scores), ignore.case = T),]
par(mfrow = c(ceiling(nrow(marker_gene_scores)/2),2))
for(i in 1:nrow(marker_gene_scores)){
barplot(marker_gene_scores[i,], xlab = "topics", ylab = "gene score", main = rownames(marker_gene_scores)[i], col = colors_topics)
}
Version | Author | Date |
---|---|---|
027dab2 | kevinlkx | 2021-02-04 |
Topic 7 (Cardiomyocytes)
k <- 7
genescore_volcano_plot(genescore_res, k, label_above_quantile = 0.99,
labels = genescore_res$genes$SYMBOL, max.overlaps = 20,
subsample_below_quantile = 0.5, subsample_rate = 0.1)
Check some known marker genes
marker_genes <- c("Nppa", "Myl4", "SLN", "PITX2", "Myl7", "Gja5", "Myl2", "Myl3", "IRX4", "HAND1", "HEY2")
gene_scores <- genescore_res$Z
rownames(gene_scores) <- genescore_res$genes$SYMBOL
marker_gene_scores <- gene_scores[grep(paste(sprintf("^%s$", marker_genes), collapse = "|"), rownames(gene_scores), ignore.case = T),]
par(mfrow = c(ceiling(nrow(marker_gene_scores)/3),3))
for(i in 1:nrow(marker_gene_scores)){
barplot(marker_gene_scores[i,], xlab = "topics", ylab = "gene score", main = rownames(marker_gene_scores)[i], col = colors_topics)
}
Version | Author | Date |
---|---|---|
027dab2 | kevinlkx | 2021-02-04 |
Topic 8 (Hepatocytes)
k <- 8
genescore_volcano_plot(genescore_res, k, label_above_quantile = 0.99,
labels = genescore_res$genes$SYMBOL, max.overlaps = 20,
subsample_below_quantile = 0.5, subsample_rate = 0.1)
Check some known marker genes
marker_genes <- c("SERPINA1", "TTR", "ALB","AFP","CYP3A4","CYP7A1","FABP1","ALR","Glut1","MET","FoxA1","FoxA2","CD29","PTP4A2","Prox1", "HNF1B")
gene_scores <- genescore_res$Z
rownames(gene_scores) <- genescore_res$genes$SYMBOL
marker_gene_scores <- gene_scores[grep(paste(sprintf("^%s$", marker_genes), collapse = "|"), rownames(gene_scores), ignore.case = T),]
par(mfrow = c(ceiling(nrow(marker_gene_scores)/3),3))
for(i in 1:nrow(marker_gene_scores)){
barplot(marker_gene_scores[i,], xlab = "topics", ylab = "gene score", main = rownames(marker_gene_scores)[i], col = colors_topics)
}
Version | Author | Date |
---|---|---|
027dab2 | kevinlkx | 2021-02-04 |
Gene scores were computed using the gene score model (model 42) in the archR
paper with some modifications. This model uses bi-directional exponential decays from the gene TSS (extended upstream by 5 kb by default) and the gene transcription termination site (TTS). Note: the current version of the function does not account for neighboring gene boundaries.
gene.dir <- paste0(out.dir, "/geneanalysis-Cusanovich2018-k=13-genebody-sum")
cat(sprintf("Directory of gene analysis result: %s \n", gene.dir))
genescore_res_gb <- readRDS(file.path(gene.dir, "genescore_result_topics.rds"))
genescore_res <- genescore_res_gb
genes <- genescore_res$genes
gene_mean_acc <- genescore_res$colmeans
gene_scores <- genescore_res$Z
gene_logFC <- genescore_res$beta
topics <- colnames(gene_scores)
top_genes <- data.frame(matrix(nrow=10, ncol = ncol(gene_scores)))
colnames(top_genes) <- topics
for (k in topics){
top_genes[,k] <- genes$SYMBOL[head(order(abs(gene_scores[,k]), decreasing=TRUE), 10)]
}
DT::datatable(data.frame(rank = 1:10, top_genes), rownames = F, caption = "Top 10 genes by abs(gene z-scores)")
# Directory of gene analysis result: /project2/mstephens/kevinluo/scATACseq-topics/output/Cusanovich_2018//geneanalysis-Cusanovich2018-k=13-genebody-sum
Explore the volcano plot interactively
for ( k in 1:ncol(genescore_res$beta) ){
p.volcano.plotly <- genescore_volcano_plotly(genescore_res,k,
file = sprintf("%s/volcano_topic_%s_%s.html", fig.dir, k, "genebody-sum"),
labels = genescore_res$genes$SYMBOL)
}
Topic 1 (Erythroblasts)
k <- 1
genescore_volcano_plot(genescore_res, k, label_above_quantile = 0.99,
labels = genescore_res$genes$SYMBOL, max.overlaps = 20,
subsample_below_quantile = 0.5, subsample_rate = 0.1)
Check some known marker genes
marker_genes <- c("Hbb-b1", "Hbb-b2", "Gypa")
gene_scores <- genescore_res$Z
rownames(gene_scores) <- genescore_res$genes$SYMBOL
marker_gene_scores <- gene_scores[grep(paste(sprintf("^%s$", marker_genes), collapse = "|"), rownames(gene_scores), ignore.case = T),]
par(mfrow = c(ceiling(nrow(marker_gene_scores)/2),2))
for(i in 1:nrow(marker_gene_scores)){
barplot(marker_gene_scores[i,], xlab = "topics", ylab = "gene score", main = rownames(marker_gene_scores)[i], col = colors_topics)
}
Version | Author | Date |
---|---|---|
027dab2 | kevinlkx | 2021-02-04 |
Topic 3 (Endothelial cells)
k <- 3
genescore_volcano_plot(genescore_res, k, label_above_quantile = 0.99,
labels = genescore_res$genes$SYMBOL, max.overlaps = 20,
subsample_below_quantile = 0.5, subsample_rate = 0.1)
Check some known marker genes
marker_genes <- c("PECAM1", "CD106", "CD62E", "Sele", "Kdr", "ENG")
gene_scores <- genescore_res$Z
rownames(gene_scores) <- genescore_res$genes$SYMBOL
marker_gene_scores <- gene_scores[grep(paste(sprintf("^%s$", marker_genes), collapse = "|"), rownames(gene_scores), ignore.case = T),]
par(mfrow = c(ceiling(nrow(marker_gene_scores)/2),2))
for(i in 1:nrow(marker_gene_scores)){
barplot(marker_gene_scores[i,], xlab = "topics", ylab = "gene score", main = rownames(marker_gene_scores)[i], col = colors_topics)
}
Version | Author | Date |
---|---|---|
027dab2 | kevinlkx | 2021-02-04 |
Topic 5 (Proximal tubule)
k <- 5
genescore_volcano_plot(genescore_res, k, label_above_quantile = 0.99,
labels = genescore_res$genes$SYMBOL, max.overlaps = 20,
subsample_below_quantile = 0.5, subsample_rate = 0.1)
Version | Author | Date |
---|---|---|
027dab2 | kevinlkx | 2021-02-04 |
Check some known marker genes
marker_genes <- c("PALDOB", "CUBN", "LRP2", "SLC34A1")
gene_scores <- genescore_res$Z
rownames(gene_scores) <- genescore_res$genes$SYMBOL
marker_gene_scores <- gene_scores[grep(paste(sprintf("^%s$", marker_genes), collapse = "|"), rownames(gene_scores), ignore.case = T),]
par(mfrow = c(ceiling(nrow(marker_gene_scores)/2),2))
for(i in 1:nrow(marker_gene_scores)){
barplot(marker_gene_scores[i,], xlab = "topics", ylab = "gene score", main = rownames(marker_gene_scores)[i], col = colors_topics)
}
Version | Author | Date |
---|---|---|
027dab2 | kevinlkx | 2021-02-04 |
Topic 7 (Cardiomyocytes)
k <- 7
genescore_volcano_plot(genescore_res, k, label_above_quantile = 0.99,
labels = genescore_res$genes$SYMBOL, max.overlaps = 20,
subsample_below_quantile = 0.5, subsample_rate = 0.1)
Check some known marker genes
marker_genes <- c("Nppa", "Myl4", "SLN", "PITX2", "Myl7", "Gja5", "Myl2", "Myl3", "IRX4", "HAND1", "HEY2")
gene_scores <- genescore_res$Z
rownames(gene_scores) <- genescore_res$genes$SYMBOL
marker_gene_scores <- gene_scores[grep(paste(sprintf("^%s$", marker_genes), collapse = "|"), rownames(gene_scores), ignore.case = T),]
par(mfrow = c(ceiling(nrow(marker_gene_scores)/3),3))
for(i in 1:nrow(marker_gene_scores)){
barplot(marker_gene_scores[i,], xlab = "topics", ylab = "gene score", main = rownames(marker_gene_scores)[i], col = colors_topics)
}
Version | Author | Date |
---|---|---|
027dab2 | kevinlkx | 2021-02-04 |
Topic 8 (Hepatocytes)
k <- 8
genescore_volcano_plot(genescore_res, k, label_above_quantile = 0.99,
labels = genescore_res$genes$SYMBOL, max.overlaps = 20,
subsample_below_quantile = 0.5, subsample_rate = 0.1)
Version | Author | Date |
---|---|---|
027dab2 | kevinlkx | 2021-02-04 |
Check some known marker genes for Hepatocytes
marker_genes <- c("SERPINA1", "TTR", "ALB","AFP","CYP3A4","CYP7A1","FABP1","ALR","Glut1","MET","FoxA1","FoxA2","CD29","PTP4A2","Prox1", "HNF1B")
gene_scores <- genescore_res$Z
rownames(gene_scores) <- genescore_res$genes$SYMBOL
marker_gene_scores <- gene_scores[grep(paste(sprintf("^%s$", marker_genes), collapse = "|"), rownames(gene_scores), ignore.case = T),]
par(mfrow = c(ceiling(nrow(marker_gene_scores)/3),3))
for(i in 1:nrow(marker_gene_scores)){
barplot(marker_gene_scores[i,], xlab = "topics", ylab = "gene score", main = rownames(marker_gene_scores)[i], col = colors_topics)
}
Version | Author | Date |
---|---|---|
027dab2 | kevinlkx | 2021-02-04 |
m <- ncol(genescore_res_gb$Z)
plots <- vector("list",m)
names(plots) <- colnames(genescore_res_gb$Z)
for (i in 1:m) {
dat <- data.frame(genebody = genescore_res_gb$Z[,i], tss = genescore_res_tss$Z[,i])
plots[[i]] <-
ggplot(dat,aes_string(x = "genebody",y = "tss")) +
geom_point(shape = 21, na.rm = TRUE, size = 1, alpha = 1/10) +
geom_abline(intercept = 0, slope = 1, color="blue") +
labs(x = "gene body model",y = "TSS model",
title = paste("topic",i)) +
theme_cowplot(9)
}
do.call(plot_grid,plots)
Version | Author | Date |
---|---|---|
ca6ea6f | kevinlkx | 2021-01-22 |
Top gene sets/pathways
gene.dir <- paste0(out.dir, "/geneanalysis-Cusanovich2018-k=13-TSS-sum")
cat(sprintf("Directory of gene analysis result: %s \n", gene.dir))
load(file.path(gene.dir, "genescores_gsea.Rdata"))
top_pathways_up <- top_pathways_down <- data.frame(matrix(nrow=10, ncol = ncol(gsea_res$pval)))
colnames(top_pathways_up) <- colnames(top_pathways_down) <- colnames(gsea_res$pval)
for (k in 1:ncol(gsea_res$pval)){
gsea_topic <- data.frame(pathway = rownames(gsea_res$pval),
pval = gsea_res$pval[,k],
log2err = gsea_res$log2err[,k],
ES = gsea_res$ES[,k],
NES = gsea_res$NES[,k])
gsea_up <- gsea_topic[gsea_topic$ES > 0,]
top_IDs_up <- as.character(gsea_up[head(order(gsea_up$pval), 10), "pathway"])
top_IDs_up <- gene_set_info[match(top_IDs_up, gene_set_info$id),c("name", "id")]
top_pathways_up[,k] <- paste0(top_IDs_up$name, "(", top_IDs_up$id, ")")
gsea_down <- gsea_topic[gsea_topic$ES < 0,]
top_IDs_down <- as.character(gsea_down[head(order(gsea_down$pval), 10), "pathway"])
top_IDs_down <- gene_set_info[match(top_IDs_down, gene_set_info$id),c("name", "id")]
top_pathways_down[,k] <- paste0(top_IDs_down$name, "(", top_IDs_down$id, ")")
}
DT::datatable(data.frame(rank = 1:10, top_pathways_up), rownames = F,
caption = "Top 10 pathways enriched at the top of the gene rank list.")
# Directory of gene analysis result: /project2/mstephens/kevinluo/scATACseq-topics/output/Cusanovich_2018//geneanalysis-Cusanovich2018-k=13-TSS-sum
k <- 1
name_interest <- "erythroblast"
label_geneset_ids <- gene_set_info[gsea_res$pval[,k] < 1e-6 & grepl(name_interest, gene_set_info$name, ignore.case = T), "id"]
cat(sprintf("highlighting %d %s gene sets \n", length(label_geneset_ids), name_interest))
create_genescore_gsea_plot(gene_set_info, gsea_res, k, label_geneset_ids,
title = sprintf("topic %d GSEA plot",k))
if(length(label_geneset_ids) > 0)
DT::datatable(gene_set_info[gene_set_info$id %in% label_geneset_ids,
c("name", "id", "database", "category_code", "description_brief")],
rownames = F)
# highlighting 3 erythroblast gene sets
Explore the GSEA plot interactively
for ( k in 1:ncol(gsea_res$pval)){
p.gsea.plotly <- create_genescore_gsea_plotly(gene_set_info, gsea_res, k)
saveWidget(p.gsea.plotly,file = sprintf("%s/gsea_topic_%s_%s.html", fig.dir, k, "tss-sum"),
selfcontained = TRUE,title = "GSEA")
}
gene.dir <- paste0(out.dir, "/geneanalysis-Cusanovich2018-k=13-genebody-sum")
cat(sprintf("Directory of gene analysis result: %s \n", gene.dir))
load(file.path(gene.dir, "genescores_gsea.Rdata"))
top_pathways_up <- top_pathways_down <- data.frame(matrix(nrow=10, ncol = ncol(gsea_res$pval)))
colnames(top_pathways_up) <- colnames(top_pathways_down) <- colnames(gsea_res$pval)
for (k in 1:ncol(gsea_res$pval)){
gsea_topic <- data.frame(pathway = rownames(gsea_res$pval),
pval = gsea_res$pval[,k],
log2err = gsea_res$log2err[,k],
ES = gsea_res$ES[,k],
NES = gsea_res$NES[,k])
gsea_up <- gsea_topic[gsea_topic$ES > 0,]
top_IDs_up <- as.character(gsea_up[head(order(gsea_up$pval), 10), "pathway"])
top_pathways_up[,k] <- gene_set_info[match(top_IDs_up, gene_set_info$id),c("name", "id")] %>%
unite("pathway", c("name", "id"), sep = ".", remove = TRUE)
gsea_down <- gsea_topic[gsea_topic$ES < 0,]
top_IDs_down <- as.character(gsea_down[head(order(gsea_down$pval), 10), "pathway"])
top_pathways_down[,k] <- gene_set_info[match(top_IDs_down, gene_set_info$id),c("name", "id")] %>%
unite("pathway", c("name", "id"), sep = ".", remove = TRUE)
}
DT::datatable(data.frame(rank = 1:10, top_pathways_up), rownames = F,
caption = "Top 10 pathways enriched at the top of the gene rank list.")
# Directory of gene analysis result: /project2/mstephens/kevinluo/scATACseq-topics/output/Cusanovich_2018//geneanalysis-Cusanovich2018-k=13-genebody-sum
k <- 1
name_interest <- "erythroblast"
label_geneset_ids <- gene_set_info[gsea_res$pval[,k] < 1e-6 & grepl(name_interest, gene_set_info$name, ignore.case = T), "id"]
cat(sprintf("highlighting %d %s gene sets \n", length(label_geneset_ids), name_interest))
create_genescore_gsea_plot(gene_set_info, gsea_res, k, label_geneset_ids,
title = sprintf("topic %d GSEA plot",k))
if(length(label_geneset_ids) > 0)
DT::datatable(gene_set_info[gene_set_info$id %in% label_geneset_ids,
c("name", "id", "database", "category_code", "description_brief")],
rownames = F)
# highlighting 0 erythroblast gene sets
Explore the GSEA plot interactively
for ( k in 1:ncol(gsea_res$pval)){
p.gsea.plotly <- create_genescore_gsea_plotly(gene_set_info, gsea_res, k)
saveWidget(p.gsea.plotly,file = sprintf("%s/gsea_topic_%s_%s.html", fig.dir, k, "genebody-sum"),
selfcontained = TRUE,title = "GSEA")
}
sessionInfo()
# R version 3.6.1 (2019-07-05)
# Platform: x86_64-pc-linux-gnu (64-bit)
# Running under: Scientific Linux 7.4 (Nitrogen)
#
# Matrix products: default
# BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
#
# locale:
# [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
# [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
# [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
# [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
# [9] LC_ADDRESS=C LC_TELEPHONE=C
# [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#
# attached base packages:
# [1] stats graphics grDevices utils datasets methods base
#
# other attached packages:
# [1] reshape_0.8.8 DT_0.16 htmlwidgets_1.5.3 plotly_4.9.3
# [5] cowplot_1.1.1 ggrepel_0.9.1 ggplot2_3.3.3 tidyr_1.1.2
# [9] dplyr_1.0.3 fastTopics_0.4-29 Matrix_1.2-18 workflowr_1.6.2
#
# loaded via a namespace (and not attached):
# [1] Rcpp_1.0.6 lattice_0.20-41 prettyunits_1.1.1 rprojroot_2.0.2
# [5] digest_0.6.27 plyr_1.8.6 R6_2.5.0 MatrixModels_0.4-1
# [9] evaluate_0.14 coda_0.19-4 httr_1.4.2 pillar_1.4.7
# [13] rlang_0.4.10 progress_1.2.2 lazyeval_0.2.2 data.table_1.13.6
# [17] irlba_2.3.3 SparseM_1.78 whisker_0.4 rmarkdown_2.6
# [21] labeling_0.4.2 Rtsne_0.15 stringr_1.4.0 munsell_0.5.0
# [25] compiler_3.6.1 httpuv_1.5.4 xfun_0.19 pkgconfig_2.0.3
# [29] mcmc_0.9-7 htmltools_0.5.1.1 tidyselect_1.1.0 tibble_3.0.6
# [33] quadprog_1.5-8 matrixStats_0.58.0 viridisLite_0.3.0 withr_2.4.1
# [37] crayon_1.4.0 conquer_1.0.2 later_1.1.0.1 MASS_7.3-53
# [41] grid_3.6.1 jsonlite_1.7.2 gtable_0.3.0 lifecycle_0.2.0
# [45] DBI_1.1.0 git2r_0.27.1 magrittr_2.0.1 scales_1.1.1
# [49] RcppParallel_5.0.2 stringi_1.5.3 farver_2.0.3 fs_1.3.1
# [53] promises_1.1.1 ellipsis_0.3.1 generics_0.1.0 vctrs_0.3.6
# [57] tools_3.6.1 glue_1.4.2 purrr_0.3.4 crosstalk_1.1.1
# [61] hms_1.0.0 yaml_2.2.1 colorspace_2.0-0 knitr_1.30
# [65] quantreg_5.83 MCMCpack_1.5-0