Last updated: 2021-12-07
Checks: 7 0
Knit directory: single-cell-topics/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(1)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version acb3763. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: data/droplet.RData
Ignored: data/pbmc_68k.RData
Ignored: data/pbmc_purified.RData
Ignored: data/pulseseq.RData
Ignored: output/droplet/diff-count-droplet.RData
Ignored: output/droplet/fits-droplet.RData
Ignored: output/droplet/rds/
Ignored: output/pbmc-68k/fits-pbmc-68k.RData
Ignored: output/pbmc-68k/rds/
Ignored: output/pbmc-purified/fits-pbmc-purified.RData
Ignored: output/pbmc-purified/rds/
Ignored: output/pulseseq/diff-count-pulseseq.RData
Ignored: output/pulseseq/fits-pulseseq.RData
Ignored: output/pulseseq/rds/
Untracked files:
Untracked: analysis/de_analysis_detailed_look_cache/
Untracked: analysis/de_analysis_detailed_look_more_cache/
Untracked: plots/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/clusters_purified_pbmc.Rmd
) and HTML (docs/clusters_purified_pbmc.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | acb3763 | Peter Carbonetto | 2021-12-07 | workflowr::wflow_publish(“clusters_purified_pbmc.Rmd”, verbose = TRUE) |
html | 5e6f88c | Peter Carbonetto | 2021-12-07 | Added checks for cluster labels to clusters_purified_pbmc analysis. |
Rmd | 5be067b | Peter Carbonetto | 2021-12-07 | workflowr::wflow_publish(“clusters_purified_pbmc.Rmd”, verbose = TRUE) |
html | f5c1c59 | Peter Carbonetto | 2021-12-01 | A few small updates to the clusters_purified_pbmc analysis. |
Rmd | 1938a3a | Peter Carbonetto | 2021-12-01 | workflowr::wflow_publish(“clusters_purified_pbmc.Rmd”, verbose = TRUE) |
Rmd | 52d16f3 | Peter Carbonetto | 2021-02-10 | Created topic volcano plots for paper in plots_purified_pbmc analysis. |
html | 890a1ce | Peter Carbonetto | 2021-01-21 | Added short note to plots_purified_pbmc analysis. |
html | 6f3c83a | Peter Carbonetto | 2021-01-21 | Added short note to plots_purified_pbmc analysis. |
Rmd | 08e3b98 | Peter Carbonetto | 2021-01-21 | workflowr::wflow_publish(“clusters_purified_pbmc.Rmd”) |
html | 410fd1a | Peter Carbonetto | 2021-01-05 | Added CD8+ subpopulation to Structure plot in clusters_purified_pbmc |
Rmd | 0d58849 | Peter Carbonetto | 2021-01-05 | workflowr::wflow_publish(“clusters_purified_pbmc.Rmd”) |
Rmd | 12e7154 | Peter Carbonetto | 2021-01-04 | Minor edit. |
html | a7c641f | Peter Carbonetto | 2021-01-04 | Fixed PCA plot in clusters_purified_pbmc analysis showing FACS |
Rmd | 742b1c3 | Peter Carbonetto | 2021-01-04 | workflowr::wflow_publish(“clusters_purified_pbmc.Rmd”) |
html | 97c9bec | Peter Carbonetto | 2021-01-03 | Adjusted Structure plot in clusters_purified_pbmc analysis. |
Rmd | dc46e8e | Peter Carbonetto | 2021-01-03 | workflowr::wflow_publish(“clusters_purified_pbmc.Rmd”, verbose = TRUE) |
html | b137aaa | Peter Carbonetto | 2021-01-03 | Reworked clusters_purified_pbmc analysis, and added second Structure plot. |
Rmd | 113614e | Peter Carbonetto | 2021-01-03 | workflowr::wflow_publish(“clusters_purified_pbmc.Rmd”) |
html | edaec3f | Peter Carbonetto | 2021-01-03 | Build site. |
Rmd | 6e77a95 | Peter Carbonetto | 2021-01-03 | workflowr::wflow_publish(“clusters_purified_pbmc.Rmd”) |
Rmd | 517d00f | Peter Carbonetto | 2021-01-03 | Re-organized the R Markdown a bit. |
Rmd | 2d71c87 | Peter Carbonetto | 2020-12-30 | Did some re-organizing. |
html | 9ecb991 | Peter Carbonetto | 2020-12-29 | Build site. |
html | 5712896 | Peter Carbonetto | 2020-12-29 | Build site. |
Rmd | 809d0a1 | Peter Carbonetto | 2020-12-29 | workflowr::wflow_publish(“clusters_purified_pbmc.Rmd”, verbose = TRUE) |
html | 761d2c0 | Peter Carbonetto | 2020-11-29 | Fixed loadings plot in clusters_purified_pbmc analysis. |
Rmd | 674817c | Peter Carbonetto | 2020-11-29 | workflowr::wflow_publish(“clusters_purified_pbmc.Rmd”) |
html | aa73ee1 | Peter Carbonetto | 2020-11-29 | Working on adding loadings plot to clusters_purified_pbmc analysis. |
Rmd | ed4dd7b | Peter Carbonetto | 2020-11-29 | workflowr::wflow_publish(“clusters_purified_pbmc.Rmd”) |
html | c8fb5be | Peter Carbonetto | 2020-11-29 | Improved PCA expression plots in clusters_purified_pbmc analysis. |
Rmd | 95f7750 | Peter Carbonetto | 2020-11-29 | workflowr::wflow_publish(“clusters_purified_pbmc.Rmd”) |
html | a42db50 | Peter Carbonetto | 2020-11-28 | Added PCA expression plots to clusters_purified_pbmc analysis. |
Rmd | 2de8504 | Peter Carbonetto | 2020-11-28 | workflowr::wflow_publish(“clusters_purified_pbmc.Rmd”) |
html | 07f6bca | Peter Carbonetto | 2020-11-28 | Made a few minor improvements to the PCA vs. t-SNE + UMAP demo. |
Rmd | 82b549f | Peter Carbonetto | 2020-11-28 | workflowr::wflow_publish(“clusters_purified_pbmc.Rmd”) |
html | 3501298 | Peter Carbonetto | 2020-11-28 | Improved Structure plot for purified PBMC data. |
Rmd | 1f52a7c | Peter Carbonetto | 2020-11-28 | workflowr::wflow_publish(“clusters_purified_pbmc.Rmd”) |
html | f7e773e | Peter Carbonetto | 2020-11-28 | Build site. |
Rmd | 31103b8 | Peter Carbonetto | 2020-11-28 | workflowr::wflow_publish(“clusters_purified_pbmc.Rmd”) |
html | 4781407 | Peter Carbonetto | 2020-11-28 | Made some improvements to the PCA plots in clusters_purified_pbmc. |
Rmd | 80787eb | Peter Carbonetto | 2020-11-28 | workflowr::wflow_publish(“clusters_purified_pbmc.Rmd”) |
Rmd | 605ee92 | Peter Carbonetto | 2020-11-28 | Added steps to create PCA plots for paper in clusters_pbmc_purified analysis. |
Rmd | 39015bd | Peter Carbonetto | 2020-11-28 | Cluster A in PBMC data = dendritic cells. |
html | 48438b3 | Peter Carbonetto | 2020-11-26 | Added a cluster to the purified PBMC clustering. |
Rmd | 989e7ac | Peter Carbonetto | 2020-11-26 | workflowr::wflow_publish(“clusters_purified_pbmc.Rmd”) |
html | c85de93 | Peter Carbonetto | 2020-11-23 | Build site. |
Rmd | 9389b77 | Peter Carbonetto | 2020-11-23 | workflowr::wflow_publish(“clusters_purified_pbmc.Rmd”) |
html | e7411a0 | Peter Carbonetto | 2020-11-23 | Added plots comparing PCA with t-SNE and UMAP in |
Rmd | 9167310 | Peter Carbonetto | 2020-11-23 | workflowr::wflow_publish(“clusters_purified_pbmc.Rmd”) |
html | 8abec44 | Peter Carbonetto | 2020-11-23 | Added PCA plots to clusters_purified_pbmc analysis. |
Rmd | a7e6fbc | Peter Carbonetto | 2020-11-23 | Various improvements to the analysis of the PBMC data sets. |
Rmd | 884b869 | Peter Carbonetto | 2020-11-23 | Working on new plots for clusters_purified_pbmc analysis. |
Rmd | 4a8b2bd | Peter Carbonetto | 2020-11-23 | A couple additions to clusters_purified_pbmc.Rmd. |
html | 1845721 | Peter Carbonetto | 2020-11-22 | Added Structure plot to clusters_purified_pbmc. |
Rmd | 90d201b | Peter Carbonetto | 2020-11-22 | workflowr::wflow_publish(“clusters_purified_pbmc.Rmd”) |
html | 015e254 | Peter Carbonetto | 2020-11-22 | Fixed up some of the text and plots in clusters_purified_pbmc analysis. |
Rmd | b512864 | Peter Carbonetto | 2020-11-22 | workflowr::wflow_publish(“clusters_purified_pbmc.Rmd”) |
html | 7cbd5e9 | Peter Carbonetto | 2020-11-22 | First build of clusters_purified_pbmc page. |
Rmd | 4e32884 | Peter Carbonetto | 2020-11-22 | workflowr::wflow_publish(“clusters_purified_pbmc.Rmd”) |
Here we identify clusters of cells from the mixture proportions estimated in the mixture of FACS-purified PBMC data.
Load the packages used in the analysis below, as well as additional functions that we will use to generate some of the plots.
library(Matrix)
library(fastTopics)
library(ggplot2)
library(cowplot)
Load the count data.
load("../data/pbmc_purified.RData")
table(samples$celltype)
#
# CD19+ B CD14+ Monocyte
# 10085 2612
# CD34+ CD4+ T Helper2
# 9232 11213
# CD56+ NK CD8+ Cytotoxic T
# 8385 10209
# CD4+/CD45RO+ Memory CD8+/CD45RA+ Naive Cytotoxic
# 10224 11953
# CD4+/CD45RA+/CD25- Naive T CD4+/CD25 T Reg
# 10479 10263
Load the \(K = 6\) Poisson NMF model fit.
fit <- readRDS(file.path("../output/pbmc-purified/rds",
"fit-pbmc-purified-scd-ex-k=6.rds"))$fit
fit <- poisson2multinom(fit)
From the PCs of the mixture proportions, we define clusters for B cells, CD14+ cells and CD34+ cells. The remaining cells are assigned to the U cluster (“U” for “unknown”). (We labels “B”, “CD14+” and “CD34+” so that we can conveniently refer to them, noting that the labels are informed by downstream analyses—see the very bottom of this analysis for quick check that these cluster labels make sense.)
pca <- prcomp(fit$L)$x
n <- nrow(pca)
x <- rep("U",n)
pc1 <- pca[,1]
pc2 <- pca[,2]
pc3 <- pca[,3]
pc4 <- pca[,4]
pc5 <- pca[,5]
x[pc2 > 0.25] <- "B"
x[pc3 < -0.2 & pc4 < 0.2] <- "CD34+"
x[(pc4 + 0.1)^2 + (pc5 - 0.8)^2 < 0.07] <- "CD14+"
Next, we define clusters for NK cells and dendritic cells from the top 2 PCs of the mixture proportions in the U cluster.
rows <- which(x == "U")
n <- length(rows)
fit2 <- select_loadings(fit,loadings = rows)
pca <- prcomp(fit2$L)$x
y <- rep("U",n)
pc1 <- pca[,1]
pc2 <- pca[,2]
pc3 <- pca[,3]
pc4 <- pca[,4]
y[pc1 < -0.3 & 1.1*pc1 < -pc2 - 0.57] <- "NK"
y[pc3 > 0.4 & pc4 < 0.2] <- "dendritic"
x[rows] <- y
Among the remaining cells, we define a cluster for CD8+ cells, noting that this is much less distinct than the other cells. The rest are labeled as T cells.
rows <- which(x == "U")
n <- length(rows)
fit2 <- select_loadings(fit,loadings = rows)
pca <- prcomp(fit2$L)$x
y <- rep("T",n)
pc1 <- pca[,1]
pc2 <- pca[,2]
y[pc1 < 0.25 & pc2 < -0.15] <- "CD8+"
x[rows] <- y
In summary, we have subdivided the cells into 7 subsets:
samples$cluster <- factor(x)
table(samples$cluster)
#
# B CD14+ CD34+ CD8+ dendritic NK T
# 10439 2956 8237 3757 308 8380 60578
This plot shows the clustering of the cells projected onto the top two PCs:
cluster_colors <- c("dodgerblue", # B cells
"forestgreen", # CD14+
"darkmagenta", # CD34+
"red", # CD8+
"skyblue", # dendritic
"gray", # NK
"darkorange") # T cells
p1 <- pca_plot(fit,fill = samples$cluster,n = Inf) +
scale_fill_manual(values = cluster_colors) +
labs(fill = "cluster")
p2 <- pca_hexbin_plot(fit)
plot_grid(p1,p2,rel_widths = c(10,11))
This clustering corresponds well to the Zheng et al (2017) FACS cell populations, although there are some differences.
with(samples,table(celltype,cluster))
# cluster
# celltype B CD14+ CD34+ CD8+ dendritic NK T
# CD19+ B 10073 0 0 3 7 0 2
# CD14+ Monocyte 8 2420 0 3 156 0 25
# CD34+ 352 536 8182 20 121 4 17
# CD4+ T Helper2 0 0 8 45 9 1 11150
# CD56+ NK 0 0 17 82 4 8279 3
# CD8+ Cytotoxic T 0 0 0 3146 0 93 6970
# CD4+/CD45RO+ Memory 0 0 20 355 1 0 9848
# CD8+/CD45RA+ Naive Cytotoxic 3 0 0 52 2 2 11894
# CD4+/CD45RA+/CD25- Naive T 1 0 8 27 5 1 10437
# CD4+/CD25 T Reg 2 0 2 24 3 0 10232
Compare the FACS subpopulations projected onto the top two PCs with the clustering in the PCA plot above:
facs_colors <- c("forestgreen", # CD14+
"dodgerblue", # B cells
"darkmagenta", # CD34+
"gray", # NK cells
"tomato", # cytotoxic T cells
"gold") # T cells
celltype <- as.character(samples$celltype)
celltype[celltype == "CD4+ T Helper2" |
celltype == "CD4+/CD45RO+ Memory" |
celltype == "CD8+/CD45RA+ Naive Cytotoxic" |
celltype == "CD4+/CD45RA+/CD25- Naive T" |
celltype == "CD4+/CD25 T Reg"] <- "T cell"
celltype <- factor(celltype)
p3 <- pca_plot(fit,fill = celltype,n = Inf) +
scale_fill_manual(values = facs_colors) +
labs(fill = "FACS subpopulation")
print(p3)
Version | Author | Date |
---|---|---|
5e6f88c | Peter Carbonetto | 2021-12-07 |
f5c1c59 | Peter Carbonetto | 2021-12-01 |
a7c641f | Peter Carbonetto | 2021-01-04 |
edaec3f | Peter Carbonetto | 2021-01-03 |
3501298 | Peter Carbonetto | 2020-11-28 |
f7e773e | Peter Carbonetto | 2020-11-28 |
e7411a0 | Peter Carbonetto | 2020-11-23 |
8abec44 | Peter Carbonetto | 2020-11-23 |
The Structure plot summarizes the mixture proportions in each of the 7 clusters:
set.seed(1)
topic_colors <- c("gold","forestgreen","dodgerblue","gray",
"darkmagenta","violet")
topics <- c(5,3,2,4,1,6)
x <- samples$cluster
x <- factor(x,c("B","CD14+","CD34+","dendritic","NK","CD8+","T"))
rows <- sort(c(sample(which(x == "B"),1000),
sample(which(x == "CD14+"),300),
sample(which(x == "CD34+"),500),
sample(which(x == "CD8+"),400),
sample(which(x == "NK"),500),
sample(which(x == "T"),1000),
which(samples$cluster == "dendritic")))
p4 <- structure_plot(select_loadings(fit,loadings = rows),
grouping = x[rows],topics = topics,colors = topic_colors,
perplexity = 70,n = Inf,gap = 50,num_threads = 4,
verbose = FALSE)
# Running tsne on 1000 x 6 matrix.
# Running tsne on 300 x 6 matrix.
# Running tsne on 500 x 6 matrix.
# Running tsne on 308 x 6 matrix.
# Running tsne on 500 x 6 matrix.
# Running tsne on 400 x 6 matrix.
# Running tsne on 1000 x 6 matrix.
print(p4)
This Structure plot summarizes the correspondence between the topics and the FACS cell populations. It shows the FACS mislabeling of the CD34+ cells.
set.seed(1)
celltype <- factor(celltype,c("CD19+ B","CD14+ Monocyte","CD34+",
"CD56+ NK","CD8+ Cytotoxic T","T cell"))
rows <- sort(c(sample(which(celltype == "CD19+ B"),500),
sample(which(celltype == "CD14+ Monocyte"),250),
sample(which(celltype == "CD34+"),500),
sample(which(celltype == "CD56+ NK"),400),
sample(which(celltype == "CD8+ Cytotoxic T"),400),
sample(which(celltype == "T cell"),1000)))
p5 <- structure_plot(select_loadings(fit,loadings = rows),
grouping = celltype[rows],topics = topics,
colors = topic_colors,perplexity = 70,n = Inf,
gap = 30,num_threads = 4,verbose = FALSE)
# Running tsne on 500 x 6 matrix.
# Running tsne on 250 x 6 matrix.
# Running tsne on 500 x 6 matrix.
# Running tsne on 400 x 6 matrix.
# Running tsne on 400 x 6 matrix.
# Running tsne on 1000 x 6 matrix.
print(p5)
Save the clustering of the PBMC data to an RDS file.
saveRDS(samples,"clustering-pbmc-purified.rds")
Here we run a “quick and dirty” analysis to check the cluster labels by computing “least extreme” LFC estimates and K-L divergence scores.
fit_clusters <- fit_multinom_model(samples$cluster,counts)
B <- fastTopics:::le_lfc(fit_clusters$F,e = 1e-8)
D <- fastTopics:::min_kl_poisson(fit_clusters$F)
Top genes in the “B cells” cluster:
k <- "B"
dat <- cbind(genes,data.frame(lfc = B[,k],kl = D[,k]))
print(subset(dat,lfc > 3 & kl > 0.001))
# ensembl symbol lfc kl
# 18945 ENSG00000156738 MS4A1 5.114135 0.002483689
# 23289 ENSG00000100721 TCL1A 5.080792 0.001804630
# 23927 ENSG00000247982 LINC00926 6.087069 0.001342164
# 27508 ENSG00000007312 CD79B 4.459434 0.004541300
# 30657 ENSG00000105369 CD79A 3.912082 0.004706088
# 31699 ENSG00000128218 VPREB3 5.217585 0.001028539
Top genes in the “CD14+” cluster:
k <- "CD14+"
dat <- cbind(genes,data.frame(lfc = B[,k],kl = D[,k]))
subset(dat,lfc > 3 & kl > 0.001)
# ensembl symbol lfc kl
# 1956 ENSG00000163220 S100A9 3.083904 0.013008237
# 1958 ENSG00000143546 S100A8 3.309013 0.013556268
# 9634 ENSG00000170458 CD14 3.300589 0.001572774
Top genes in the “CD34+” cluster:
k <- "CD34+"
dat <- cbind(genes,data.frame(lfc = B[,k],kl = D[,k]))
subset(dat,lfc > 5 & kl > 3e-4)
# ensembl symbol lfc kl
# 2744 ENSG00000174059 CD34 5.167976 0.0003279023
# 3872 ENSG00000119865 CNRIP1 6.241944 0.0003169037
# 7232 ENSG00000170891 CYTL1 5.664702 0.0011725756
# 7856 ENSG00000163106 HPGDS 6.999871 0.0003126782
# 13038 ENSG00000204983 PRSS1 5.406293 0.0007416350
# 16790 ENSG00000172889 EGFL7 5.545776 0.0007007256
# 17065 ENSG00000233968 RP11-354E11.2 6.403424 0.0005120880
# 18751 ENSG00000110492 MDK 5.195610 0.0003366275
# 28627 ENSG00000101200 AVP 6.276046 0.0004569793
# 29544 ENSG00000095932 C19orf77 5.110764 0.0006198187
Top genes in the “CD8+ T cells” cluster:
k <- "CD8+"
dat <- cbind(genes,data.frame(lfc = B[,k],kl = D[,k]))
subset(dat,lfc > 1.5 & kl > 1e-4)
# ensembl symbol lfc kl
# 561 ENSG00000176083 ZNF683 3.081122 0.0001286671
# 4065 ENSG00000153563 CD8A 1.802188 0.0001820851
# 8887 ENSG00000113088 GZMK 2.918688 0.0010744353
# 20246 ENSG00000111796 KLRB1 2.486709 0.0002181944
Top genes in the “NK cells” cluster:
k <- "NK"
dat <- cbind(genes,data.frame(lfc = B[,k],kl = D[,k]))
subset(dat,lfc > 2 & kl > 0.001)
# ensembl symbol lfc kl
# 4047 ENSG00000115523 GNLY 2.584700 0.014035967
# 16816 ENSG00000169583 CLIC3 3.369812 0.002243863
# 17450 ENSG00000180644 PRF1 2.725144 0.001059490
# 20246 ENSG00000111796 KLRB1 2.577032 0.001376575
# 20252 ENSG00000150045 KLRF1 5.309548 0.001719737
# 22590 ENSG00000100453 GZMB 2.958679 0.002752145
Top genes in the “dendritic cells” cluster:
k <- "dendritic"
dat <- cbind(genes,data.frame(lfc = B[,k],kl = D[,k]))
subset(dat,lfc > 4 & kl > 1e-4)
# ensembl symbol lfc kl
# 1583 ENSG00000155367 PPM1J 4.006179 0.0001169833
# 6028 ENSG00000163687 DNASE1L3 4.157729 0.0008080376
# 14715 ENSG00000131203 IDO1 6.134402 0.0003588578
# 20263 ENSG00000197992 CLEC9A 4.281489 0.0004500294
# 26175 ENSG00000182853 VMO1 5.309791 0.0001345992
sessionInfo()
# R version 3.6.2 (2019-12-12)
# Platform: x86_64-apple-darwin15.6.0 (64-bit)
# Running under: macOS Catalina 10.15.7
#
# Matrix products: default
# BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
# LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
#
# locale:
# [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#
# attached base packages:
# [1] stats graphics grDevices utils datasets methods base
#
# other attached packages:
# [1] cowplot_1.0.0 ggplot2_3.3.5 fastTopics_0.6-94 Matrix_1.2-18
#
# loaded via a namespace (and not attached):
# [1] httr_1.4.2 tidyr_1.1.3 jsonlite_1.7.2 viridisLite_0.3.0
# [5] RcppParallel_4.4.2 assertthat_0.2.1 mixsqp_0.3-46 yaml_2.2.0
# [9] progress_1.2.2 ggrepel_0.9.1 pillar_1.6.2 backports_1.1.5
# [13] lattice_0.20-38 quantreg_5.54 glue_1.4.2 quadprog_1.5-8
# [17] digest_0.6.23 promises_1.1.0 colorspace_1.4-1 htmltools_0.4.0
# [21] httpuv_1.5.2 pkgconfig_2.0.3 invgamma_1.1 SparseM_1.78
# [25] purrr_0.3.4 scales_1.1.0 whisker_0.4 later_1.0.0
# [29] Rtsne_0.15 MatrixModels_0.4-1 git2r_0.26.1 tibble_3.1.3
# [33] farver_2.0.1 generics_0.0.2 ellipsis_0.3.2 withr_2.4.2
# [37] ashr_2.2-51 pbapply_1.5-1 hexbin_1.28.0 lazyeval_0.2.2
# [41] magrittr_2.0.1 crayon_1.4.1 mcmc_0.9-6 evaluate_0.14
# [45] fs_1.3.1 fansi_0.4.0 MASS_7.3-51.4 truncnorm_1.0-8
# [49] tools_3.6.2 data.table_1.12.8 prettyunits_1.1.1 hms_1.1.0
# [53] lifecycle_1.0.0 stringr_1.4.0 MCMCpack_1.4-5 plotly_4.9.2
# [57] munsell_0.5.0 irlba_2.3.3 compiler_3.6.2 systemfonts_1.0.2
# [61] rlang_0.4.11 grid_3.6.2 htmlwidgets_1.5.1 labeling_0.3
# [65] rmarkdown_2.3 gtable_0.3.0 DBI_1.1.0 R6_2.4.1
# [69] knitr_1.26 dplyr_1.0.7 uwot_0.1.10 utf8_1.1.4
# [73] workflowr_1.6.2 rprojroot_1.3-2 ragg_0.3.1 stringi_1.4.3
# [77] parallel_3.6.2 SQUAREM_2017.10-1 Rcpp_1.0.7 vctrs_0.3.8
# [81] tidyselect_1.1.1 xfun_0.11 coda_0.19-3