Processing math: 100%

Last updated: 2020-10-18

Checks: 7 0

Knit directory: single-cell-topics/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2.9000). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(1) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 5d7ff64. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    data/droplet.RData
    Ignored:    data/pbmc_68k.RData
    Ignored:    data/pbmc_purified.RData
    Ignored:    data/pulseseq.RData
    Ignored:    output/droplet/diff-count-droplet.RData
    Ignored:    output/droplet/fits-droplet.RData
    Ignored:    output/droplet/rds/
    Ignored:    output/pbmc-68k/fits-pbmc-68k.RData
    Ignored:    output/pbmc-68k/rds/
    Ignored:    output/pbmc-purified/fits-pbmc-purified.RData
    Ignored:    output/pbmc-purified/rds/
    Ignored:    output/pulseseq/diff-count-pulseseq.RData
    Ignored:    output/pulseseq/fits-pulseseq.RData
    Ignored:    output/pulseseq/rds/

Untracked files:
    Untracked:  analysis/temp.RData

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/clusters_pulseseq.Rmd) and HTML (docs/clusters_pulseseq.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 5d7ff64 Peter Carbonetto 2020-10-18 Added analysis of single-cell likelihoods to clusters_pulseseq.Rmd.
Rmd 199ca88 Peter Carbonetto 2020-10-17 Working on analysis of single-cell likelihoods in clusters_droplet.Rmd.
html 66e749a Peter Carbonetto 2020-10-16 Added PCA plots to clusters_pulseseq showing Montoro et al clustering.
Rmd a9647c7 Peter Carbonetto 2020-10-16 workflowr::wflow_publish(“clusters_pulseseq.Rmd”)
html 8d4dd34 Peter Carbonetto 2020-10-16 Revised PCA plots showing clustering in clusters_pulseseq analysis.
Rmd c0fce73 Peter Carbonetto 2020-10-16 workflowr::wflow_publish(“clusters_pulseseq.Rmd”)
html ad0c23b Peter Carbonetto 2020-10-11 Added comparison of total variational distance among clusters and
Rmd ef0fa23 Peter Carbonetto 2020-10-11 workflowr::wflow_publish(“clusters_pulseseq.Rmd”)
Rmd d2377ec Peter Carbonetto 2020-10-06 Simplified implementation of cellcycle_pca_plot by making use of a new pca_plot interface from the fastTopics package.
html d94566a Peter Carbonetto 2020-10-06 Added Chga and Gnat3 plots to clusters_pulseseq analysis.
Rmd 98da2fe Peter Carbonetto 2020-10-06 workflowr::wflow_publish(“clusters_pulseseq.Rmd”, verbose = TRUE)
html 072ef40 Peter Carbonetto 2020-10-06 Build site.
Rmd 2a4239a Peter Carbonetto 2020-10-06 workflowr::wflow_publish(“clusters_pulseseq.Rmd”, verbose = TRUE)
Rmd 5e57ced Peter Carbonetto 2020-10-03 Working on plots highlighting substructure in T+N cluster.
html aed0276 Peter Carbonetto 2020-09-27 Resized the plots once more.
Rmd 11192fc Peter Carbonetto 2020-09-27 workflowr::wflow_publish(“clusters_pulseseq.Rmd”)
html 7d78e71 Peter Carbonetto 2020-09-27 Resized a figure in clusters_pulseseq analysis.
Rmd a853b60 Peter Carbonetto 2020-09-27 workflowr::wflow_publish(“clusters_pulseseq.Rmd”)
html a67196a Peter Carbonetto 2020-09-27 Use pca_plot_with_counts in clusters_pulseseq analysis.
Rmd c2a357c Peter Carbonetto 2020-09-27 workflowr::wflow_publish(“clusters_pulseseq.Rmd”)
html 310ef96 Peter Carbonetto 2020-09-22 Fixed up figure dimensions in clusters_pulseseq analysis.
Rmd eee6fed Peter Carbonetto 2020-09-22 workflowr::wflow_publish(“clusters_pulseseq.Rmd”)
html 56d99a3 Peter Carbonetto 2020-09-22 Added Structure plot and PCA plot to clusters_pulseseq analysis.
Rmd ec4a70a Peter Carbonetto 2020-09-22 workflowr::wflow_publish(“clusters_pulseseq.Rmd”)
html 6e4ccdd Peter Carbonetto 2020-09-22 Made a few minor improvements to the clusters_pulseseq analysis.
Rmd 62fef5a Peter Carbonetto 2020-09-22 workflowr::wflow_publish(“clusters_pulseseq.Rmd”)
Rmd 5af46f1 Peter Carbonetto 2020-09-20 Working on Structure plot for droplet data.
Rmd 6a7b9cb Peter Carbonetto 2020-09-19 Minor edit to clusters_pulseseq.Rmd.
Rmd 04e1761 Peter Carbonetto 2020-09-19 A couple minor edits to the R Markdown.
html 7489099 Peter Carbonetto 2020-09-18 Re-built clusters_pulseseq page after merge conflict.
html 942486b Peter Carbonetto 2020-09-18 Fixing merge issue.
html d052ec8 Peter Carbonetto 2020-09-18 Build site.
html 65f104e Peter Carbonetto 2020-09-18 Adjusted figure dimensions in clusters_pulseseq analysis.
Rmd 60fd1ae Peter Carbonetto 2020-09-18 workflowr::wflow_publish(“clusters_pulseseq.Rmd”)
html 775fb91 Peter Carbonetto 2020-09-18 Added step to save results in clusters_pulseseq analysis.
Rmd 9cea9db Peter Carbonetto 2020-09-18 workflowr::wflow_publish(“clusters_pulseseq.Rmd”)
html e62fb43 Peter Carbonetto 2020-09-18 Refined clustering of pulseseq data.
Rmd ded741c Peter Carbonetto 2020-09-18 workflowr::wflow_publish(“clusters_pulseseq.Rmd”)
html 4b4b233 Peter Carbonetto 2020-09-18 Make some improvements to clusters_pulseseq analysis.
html 571b311 Peter Carbonetto 2020-09-16 Build site.
Rmd d2cb602 Peter Carbonetto 2020-09-16 workflowr::wflow_publish(“clusters_pulseseq.Rmd”)
html 13a5956 Peter Carbonetto 2020-09-16 Built clusters_pulseseq page.
Rmd 5e0ee23 Peter Carbonetto 2020-09-16 Completed first rough draft of clustering in clusters_pulseseq.Rmd.
Rmd 337d6fc Peter Carbonetto 2020-09-16 Added clusters identified in PCs 5 and 6 of k=11 pulse-seq fit.
Rmd c0a27bd Peter Carbonetto 2020-09-16 Added clustering of pulseseq data along PCs 3 and 4.
html e7383b2 Peter Carbonetto 2020-09-16 Produced first rendering of clusters_pulseseq analysis.
Rmd 1dd20d4 Peter Carbonetto 2020-09-16 workflowr::wflow_publish(“clusters_pulseseq.Rmd”)
Rmd da9ac09 Peter Carbonetto 2020-09-16 Added hexbin plots to clusters_pulseseq analysis.
Rmd 485639a Peter Carbonetto 2020-09-16 Working on clusters_pulseseq analysis.
Rmd c8dd3af Peter Carbonetto 2020-09-16 Implemented basic_pca_plot; improved labeled_pca_plot function.

Here we perform PCA on the topic proportions to identify clusters in the pulse-seq data.

Load the packages used in the analysis below, as well as additional functions that we will use to generate some of the plots.

library(Matrix)
library(dplyr)
library(fastTopics)
library(ggplot2)
library(cowplot)
source("../code/plots.R")

Load data and results

Load the pulse-seq data.

load("../data/pulseseq.RData")
x <- as.character(samples$tissue)
x[x == "club (hillock-associated)"] <- "club"
x[x == "goblet.1" | x == "goblet.2" | x == "goblet.progenitor"] <- "goblet"
x[x == "tuft.1" | x == "tuft.2" | x == "tuft.progenitor"] <- "tuft"
samples$tissue <- factor(x)

Load the k=11 Poisson NMF model fit.

fit <- readRDS("../output/pulseseq/rds/fit-pulseseq-scd-ex-k=11.rds")$fit

Identify clusters from principal components

To identify clusters, we begin by plotting PCs computed from the topic proportions. (Note that only 10 PCs are needed for 11 topics.)

p1 <- pca_plot(poisson2multinom(fit),pcs = 1:2,fill = "none")
p2 <- pca_plot(poisson2multinom(fit),pcs = 3:4,fill = "none")
p3 <- pca_plot(poisson2multinom(fit),pcs = 5:6,fill = "none")
p4 <- pca_plot(poisson2multinom(fit),pcs = 7:8,fill = "none")
p5 <- pca_plot(poisson2multinom(fit),pcs = 9:10,fill = "none")
plot_grid(p1,p2,p3,p4,p5,nrow = 2,ncol = 3)

Version Author Date
072ef40 Peter Carbonetto 2020-10-06
e7383b2 Peter Carbonetto 2020-09-16

Some of the structure is more evident from “hexbin” plots showing the density of the points. For example, clear clusters emerge in the hexbin plots for PCs 3 and 4, and for PCs 5 and 6:

p6  <- pca_hexbin_plot(poisson2multinom(fit),pcs = 1:2) + guides(fill = "none")
p7  <- pca_hexbin_plot(poisson2multinom(fit),pcs = 3:4) + guides(fill = "none")
p8  <- pca_hexbin_plot(poisson2multinom(fit),pcs = 5:6) + guides(fill = "none")
p9  <- pca_hexbin_plot(poisson2multinom(fit),pcs = 7:8) + guides(fill = "none")
p10 <- pca_hexbin_plot(poisson2multinom(fit),pcs = 9:10)+ guides(fill = "none")
plot_grid(p6,p7,p8,p9,p10,nrow = 2,ncol = 3)

Version Author Date
072ef40 Peter Carbonetto 2020-10-06
e7383b2 Peter Carbonetto 2020-09-16

From these PCA plots, we define 4 clusters, labeled A, D, Cil and T+N. (The reasoning behind these cluster labels will become clear later.) Points that do not fit in any of these clusters are assigned to a “background cluster”, labeled U for “unknown”.

pca <- prcomp(poisson2multinom(fit)$L)$x
x   <- rep("U",nrow(pca))
pc3 <- pca[,3]
pc4 <- pca[,4]
pc5 <- pca[,5]
pc6 <- pca[,6]
x[pc4 < 5.5*pc3 + 0.5] <- "A"
x[(pc3 + 0.7)^2 + (pc4 - 0.1)^2 < 0.18^2] <- "Cil"
x[x == "A" & pc6 > 1.3*pc5 + 0.87] <- "T+N"
x[x == "A" & pc5 > -0.4 & pc6 < 1.3*pc5 + 0.49] <- "D"

We can refine the small cluster A somewhat by plotting PCs computed from cluster A only:

rows <- which(x == "A")
fit2 <- select(poisson2multinom(fit),loadings = rows)
p11  <- pca_plot(fit2,fill = "none")
print(p11)

Version Author Date
072ef40 Peter Carbonetto 2020-10-06
65f104e Peter Carbonetto 2020-09-18
775fb91 Peter Carbonetto 2020-09-18
13a5956 Peter Carbonetto 2020-09-16

We label this refined cluster as “I”, and the rest are added back to the background cluster (U).

pca  <- prcomp(fit2$L)$x
y    <- rep("U",nrow(pca))
pc1  <- pca[,1]
y[pc1 > -0.1] <- "I"
x[rows] <- y

Similarly, we mine the much larger cluster D for substructure:

rows <- which(x == "D")
fit2 <- select(poisson2multinom(fit),loadings = rows)
p12  <- pca_plot(fit2,fill = "none")
p13  <- pca_hexbin_plot(fit2) + guides(fill = "none")
plot_grid(p12,p13)

Version Author Date
072ef40 Peter Carbonetto 2020-10-06
65f104e Peter Carbonetto 2020-09-18
775fb91 Peter Carbonetto 2020-09-18
e62fb43 Peter Carbonetto 2020-09-18
13a5956 Peter Carbonetto 2020-09-16

The hexbin plot suggests two clusters. Although these clusters are not distinct, it may nonetheless be useful to subdivide these data points (somewhat arbitrarily) into two subsets, which we label as B and C.

pca  <- prcomp(fit2$L)$x
y    <- rep("C",nrow(pca))
pc1  <- pca[,1]
pc2  <- pca[,2]
y[pc2 > -pc1 - 0.15] <- "B"
x[rows] <- y

Within cluster B, there is some interesting structure along PCs 5 and 6:

rows <- which(x == "B")
fit2 <- select(poisson2multinom(fit),loadings = rows)
p14  <- pca_plot(fit2,pcs = 5:6,fill = "none")
p15  <- pca_hexbin_plot(fit2,pcs = 5:6) + guides(fill = "none")
plot_grid(p14,p15)

Version Author Date
072ef40 Peter Carbonetto 2020-10-06
65f104e Peter Carbonetto 2020-09-18
e62fb43 Peter Carbonetto 2020-09-18
13a5956 Peter Carbonetto 2020-09-16

From PCs 5 and 6, define a new cluster, “P”, recognizing that this cluster is not particularly distinct.

pca <- prcomp(fit2$L)$x
y   <- rep("B",nrow(pca))
pc5 <- pca[,5]
pc6 <- pca[,6]
y[pc5 > 0.1 & pc6 < 0] <- "P"
x[rows] <- y

Although subtle, there is variation in topics 2 and 11 within the T+N cluster that tracks closely with the tuft (here signaled by gene Gnat3) and pulmonary neuroendocrine (Chga) cell-types:

p16 <- pca_plot(poisson2multinom(fit),pcs = 5:6,k = 2)
p17 <- pca_plot(poisson2multinom(fit),pcs = 5:6,k = 11)
p18 <- pca_plot(poisson2multinom(fit),pcs = 5:6,
                fill = log10(counts[,"Chga"])) +
       labs(fill = "log10(count)",title = "Chga")
p19 <- pca_plot(poisson2multinom(fit),pcs = 5:6,
                fill = log10(counts[,"Gnat3"])) +
       labs(fill = "log10(count)",title = "Gnat3")
plot_grid(p16,p17,p18,p19)

Version Author Date
d94566a Peter Carbonetto 2020-10-06

In summary, we have subdivided the pulse-seq data into 7 subsets, which includes a background cluster (U). The substructure is more clear when we plot PCs separately for the abundant and rare cell-types.

samples$cluster <- factor(x,c("B","C","P","Cil","T+N","I","U"))
abundant        <- c("B","C","Cil","U")
rare            <- c("T+N","I","P")
cluster_colors  <- c("royalblue",   # B
                     "forestgreen", # C
                     "peru",        # P
                     "firebrick",   # Cil
                     "darkorange",  # T+N
                     "darkmagenta", # I
                     "gainsboro")   # U
rows1 <- which(is.element(samples$cluster,abundant))
rows2 <- which(is.element(samples$cluster,rare))
fit1  <- select(poisson2multinom(fit),loadings = rows1)
fit2  <- select(poisson2multinom(fit),loadings = rows2)
p20 <- pca_plot(fit1,pcs = 1:2,fill = samples[rows1,"cluster"]) +
       scale_fill_manual(values = cluster_colors,drop = FALSE) +
       labs(fill = "cluster")
p21 <- pca_plot(fit1,pcs = 3:4,fill = samples[rows1,"cluster"]) +
       scale_fill_manual(values = cluster_colors,drop = FALSE) +
       labs(fill = "cluster")
p22 <- pca_plot(fit2,pcs = 1:2,fill = samples[rows2,"cluster"]) +
       scale_fill_manual(values = cluster_colors,drop = FALSE) +
       labs(fill = "cluster")
plot_grid(p20,p21,p22,nrow = 1)

Version Author Date
8d4dd34 Peter Carbonetto 2020-10-16
d94566a Peter Carbonetto 2020-10-06
072ef40 Peter Carbonetto 2020-10-06
56d99a3 Peter Carbonetto 2020-09-22
7489099 Peter Carbonetto 2020-09-18
942486b Peter Carbonetto 2020-09-18
775fb91 Peter Carbonetto 2020-09-18
e62fb43 Peter Carbonetto 2020-09-18
4b4b233 Peter Carbonetto 2020-09-18
571b311 Peter Carbonetto 2020-09-16

Comparing this to the Montoro et al (2018) clustering, we observe some close correspondence (e.g., B and “basal cells”, P and “proliferating cells”).

with(samples,table(tissue,cluster))
#                 cluster
# tissue               B     C     P   Cil   T+N     I     U
#   basal          40389  1468   199     0     0     0    37
#   ciliated           0     0     6  2896     0     0   114
#   club            1766 15870    36     0     1     6    21
#   goblet             3   396     2     0     0     0     2
#   ionocyte           0    45    15     0     8   193    15
#   neuroendocrine     0     1     0     0   619     7     3
#   proliferating     61   194   914     9     0     4   231
#   tuft               0    18     4     0   691    12     9

This close correspondence is also clear from the PCA plots:

tissue_colors <- c("royalblue",   # basal
                   "firebrick",   # ciliated
                   "forestgreen", # club
                   "gold",        # goblet
                   "darkmagenta", # ionocyte
                   "darkorange",  # neuroendocrine
                   "peru",        # proliferating
                   "skyblue")     # tuft
p20 <- pca_plot(fit1,pcs = 1:2,fill = samples[rows1,"tissue"]) +
       scale_fill_manual(values = tissue_colors,drop = FALSE) +
       labs(fill = "cluster")
p21 <- pca_plot(fit1,pcs = 3:4,fill = samples[rows1,"tissue"]) +
       scale_fill_manual(values = tissue_colors,drop = FALSE) +
       labs(fill = "cluster")
p22 <- pca_plot(fit2,pcs = 1:2,fill = samples[rows2,"tissue"]) +
       scale_fill_manual(values = tissue_colors,drop = FALSE) +
       labs(fill = "cluster")
plot_grid(p20,p21,p22,nrow = 1)

Version Author Date
66e749a Peter Carbonetto 2020-10-16

By computing inter-cluster and inter-topic expression differences by the total variation distance in relative expression levels, we see that the clusters identified above show, on average, above the same level of differentiation in gene expression, and the topics show more differentiation than the clusters.

fit_montoro <- init_poisson_nmf_from_clustering(counts,samples$tissue)
fit_cluster <- init_poisson_nmf_from_clustering(counts,samples$cluster)
fit_merge   <- merge_topics(poisson2multinom(fit),c("k4","k5","k6","k8","k10"))
fit_merge   <- merge_topics(fit_merge,c("k1","k3","k9"))
d_montoro   <- totalvardist(poisson2multinom(fit_montoro)$F)
d_cluster   <- totalvardist(poisson2multinom(fit_cluster)$F[,-7])
d_topics    <- totalvardist(fit_merge$F[,-3])
cat("Montoro et al (2018) clustering:\n")
print(d_montoro,digits = 3)
cat("Our clustering:\n")
print(d_cluster,digits = 3)
cat("Topics:\n")
print(d_topics,digits = 3)
# Montoro et al (2018) clustering:
#                basal ciliated  club goblet ionocyte neuroendocrine
# basal          0.000    0.380 0.334  0.479    0.256          0.355
# ciliated       0.380    0.000 0.416  0.524    0.326          0.384
# club           0.334    0.416 0.000  0.217    0.312          0.473
# goblet         0.479    0.524 0.217  0.000    0.432          0.566
# ionocyte       0.256    0.326 0.312  0.432    0.000          0.249
# neuroendocrine 0.355    0.384 0.473  0.566    0.249          0.000
# proliferating  0.156    0.348 0.341  0.463    0.223          0.322
# tuft           0.326    0.396 0.470  0.559    0.268          0.234
#                proliferating  tuft
# basal                  0.156 0.326
# ciliated               0.348 0.396
# club                   0.341 0.470
# goblet                 0.463 0.559
# ionocyte               0.223 0.268
# neuroendocrine         0.322 0.234
# proliferating          0.000 0.303
# tuft                   0.303 0.000
# Our clustering:
#         B     C     P   Cil   T+N     I
# B   0.000 0.355 0.139 0.387 0.340 0.289
# C   0.355 0.000 0.419 0.420 0.482 0.394
# P   0.139 0.419 0.000 0.395 0.310 0.285
# Cil 0.387 0.420 0.395 0.000 0.388 0.335
# T+N 0.340 0.482 0.310 0.388 0.000 0.232
# I   0.289 0.394 0.285 0.335 0.232 0.000
# Topics:
#                    k2    k7 k4+k5+k6+k8+k10 k1+k3+k9
# k2              0.000 0.435           0.608    0.397
# k7              0.435 0.000           0.555    0.487
# k4+k5+k6+k8+k10 0.608 0.555           0.000    0.524
# k1+k3+k9        0.397 0.487           0.524    0.000

Here is a plot summarizing these differences:

pdat <-
  rbind(data.frame(method="montoro.et.al",d=d_montoro[upper.tri(d_montoro)]),
        data.frame(method="clusters",     d=d_cluster[upper.tri(d_cluster)]),
        data.frame(method="topics",       d=d_topics[upper.tri(d_topics)]))
p23 <- ggplot(pdat,aes(x = method,y = d)) +
  geom_boxplot(width = 0.25) +
  ylim(0,1) +
  labs(x = "",y = "total variation dist") +
  theme_cowplot(font_size = 9)
print(p23)

Version Author Date
66e749a Peter Carbonetto 2020-10-16
ad0c23b Peter Carbonetto 2020-10-11

When we directly compare differentiation among the 6 clusters that are comparable to the Montoro et al clusters, we observe that the clusters identified here for the most part show stronger differentiation in gene expression:

fit_montoro <- merge_topics(poisson2multinom(fit_montoro),
                            c("tuft","neuroendocrine"))
d_montoro <- totalvardist(fit_montoro$F[,-4])
d_cluster <-
  totalvardist(poisson2multinom(fit_cluster)$F[,c("B","Cil","C","I","P","T+N")])
pdat <- data.frame(montoro  = d_montoro[upper.tri(d_montoro)],
                   clusters = d_cluster[upper.tri(d_cluster)])
p24 <- ggplot(pdat,aes(x = montoro,y = clusters)) +
  geom_point(shape = 21,size = 2,color = "white",fill = "dodgerblue") +
  geom_abline(intercept = 0,slope = 1,color = "black",linetype = "dotted") +
  xlim(0.1,0.5) + 
  ylim(0.1,0.5) + 
  labs(x = "Montoro et al clusters",y = "our clusters") +
  theme_cowplot(font_size = 9)
print(p24)

Version Author Date
66e749a Peter Carbonetto 2020-10-16

Structure plot

The structure plot summarizes the topic proportions in each of the 7 subsets:

set.seed(1)
topic_colors <- c("turquoise","darkorange","dodgerblue","gold","peru",
                  "greenyellow","firebrick","olivedrab","royalblue",
                  "forestgreen","gray")
topics <- c(11,1,3,4,5,6,8,10,9,2,7)
rows <- sort(c(sample(which(samples$cluster == "B"),1000),
               sample(which(samples$cluster == "C"),1000),
               sample(which(samples$cluster == "P"),500),
               sample(which(samples$cluster == "Cil"),500),
               sample(which(samples$cluster == "T+N"),500),
               which(samples$cluster == "I"),
               which(samples$cluster == "U")))
p25 <- structure_plot(select(poisson2multinom(fit),loadings = rows),
                      grouping = samples[rows,"cluster"],
                      topics = topics,
                      colors = topic_colors[topics],
                      perplexity = c(70,70,30,50,50,30,70),
                      n = Inf,gap = 30,num_threads = 4,verbose = FALSE)
print(p25)

Version Author Date
56d99a3 Peter Carbonetto 2020-09-22

Based on this structure plot, and from the other results above, we roughly subdivide the pulse-seq data into two subsets: (1) the Cil, T+N and I clusters that give rise to fairly well-separated clusters, and (2) the B, C and P subsets that contain interesting substructure but much less distinct clusters. Therefore, the cluster labels B, C and P are useful as a guide but should be taken with a grain of salt as the boundaries between these clusters are somewhat arbitrary.

The structure plot suggests that there is substantial heterogeneity in the C cluster beyond what can be captured by “hard” clusters. In particular, three topics (k=5,6,10) are largely unique to the cells in this cluster, and two other topics (k=4,8) primarily contribute to the cells in this cluster, although can be found in small proportions elsewhere.

These topics indeed pick up continuous variation in gene expression among the cells in this cluster:

rows <- which(x == "C")
fit2 <- select(poisson2multinom(fit),loadings = rows)
p26  <- pca_plot(fit2,k = c(5,8,10))
print(p26)

Version Author Date
072ef40 Peter Carbonetto 2020-10-06
310ef96 Peter Carbonetto 2020-09-22
56d99a3 Peter Carbonetto 2020-09-22

And in PCs 3 and 4:

p27 <- pca_plot(fit2,pcs = 3:4,k = c(4,5,6))
print(p27)

Version Author Date
072ef40 Peter Carbonetto 2020-10-06
310ef96 Peter Carbonetto 2020-09-22
56d99a3 Peter Carbonetto 2020-09-22

The B cluster also shows a lot of heterogeneity. Topic 1 is of particular interest because of its close connection to expression of the “hillock” gene Krt13:

rows <- which(x == "B")
fit2 <- select(poisson2multinom(fit),loadings = rows)
p28  <- pca_plot(fit2,pcs = 2:3,k = 1) + guides(fill = "none")
p29  <- pca_plot(fit2,pcs = 2:3,fill = log10(counts[rows,"Krt13"])) +
        labs(fill = "log10(count)")
plot_grid(p28,p29,rel_widths = c(4,5))

Version Author Date
072ef40 Peter Carbonetto 2020-10-06
aed0276 Peter Carbonetto 2020-09-27
7d78e71 Peter Carbonetto 2020-09-27
a67196a Peter Carbonetto 2020-09-27
310ef96 Peter Carbonetto 2020-09-22
56d99a3 Peter Carbonetto 2020-09-22

Analysis of single-cell likelihoods

Here we calculate single-cell likelihoods to assess how well the multinomial topic model captures expression in different cell-types.

fit <- merge_topics(poisson2multinom(fit),c("k4","k5","k6","k8","k10"))
fit <- merge_topics(fit,c("k1","k3","k9"))
fit_cluster    <- init_poisson_nmf_from_clustering(counts,samples$cluster)
fit_montoro    <- init_poisson_nmf_from_clustering(counts,samples$tissue)
fit_cluster    <- poisson2multinom(fit_cluster)
fit_montoro    <- poisson2multinom(fit_montoro)
loglik_topics  <- loglik_multinom_topic_model(counts,fit)
loglik_cluster <- loglik_multinom_topic_model(counts,fit_cluster)
loglik_montoro <- loglik_multinom_topic_model(counts,fit_montoro)

Here we compare the likelihood under gene expression levels estimated by a hard clustering; specifically, we compare the Montoro et al (2018) clustering against our clustering. Overall, our clustering appears to better fit the observed expression, particularly in the most abundant cell types (basal, club).

minloglik <- -30000
p1 <- loglik_scatterplot(loglik_montoro,loglik_cluster,samples$tissue,"basal",
                         "royalblue",minloglik,"Montoro et al (2018) cluster",
                         "our clusters")
p2 <- loglik_scatterplot(loglik_montoro,loglik_cluster,samples$tissue,"club",
                         "forestgreen",minloglik,"Montoro et al (2018) cluster",
                         "our clusters")
p3 <- loglik_scatterplot(loglik_montoro,loglik_cluster,samples$tissue,
                         "ciliated","firebrick",minloglik,
                         "Montoro et al (2018) cluster","our clusters")
p4 <- loglik_scatterplot(loglik_montoro,loglik_cluster,samples$tissue,
                         "neuroendocrine","darkorange",minloglik,
                         "Montoro et al (2018) cluster","our clusters")
p5 <- loglik_scatterplot(loglik_montoro,loglik_cluster,samples$tissue,"tuft",
                         "dodgerblue",minloglik,"Montoro et al (2018) cluster",
                         "our clusters")
p6 <- loglik_scatterplot(loglik_montoro,loglik_cluster,samples$tissue,
                         "ionocyte","darkmagenta",minloglik,
                         "Montoro et al (2018) cluster","our clusters")
p7 <- loglik_scatterplot(loglik_montoro,loglik_cluster,samples$tissue,
                         "proliferating","peru",minloglik,
                         "Montoro et al (2018) cluster","our clusters")
p8 <- loglik_scatterplot(loglik_montoro,loglik_cluster,samples$tissue,"goblet",
                         "gold",-Inf,"Montoro et al (2018) cluster",
                         "our clusters")
plot_grid(p1,p2,p3,p4,p5,p6,p7,p8,nrow = 3,ncol = 3)

Next, we compare the topic-model likelihoods to the clustering-based likelihoods. It is interesting that although there is no topic specifically representing ionocytes, the mixture of topics capturing these cells fits the observed expression levels nearly as well as estimates from an ionocytes cluster.

minloglik <- -25000
p9  <- loglik_scatterplot(loglik_cluster,loglik_topics,samples$cluster,"B",
                  "royalblue",minloglik,"cluster","topics")
p10 <- loglik_scatterplot(loglik_cluster,loglik_topics,samples$cluster,"C",
                  "forestgreen",minloglik,"cluster","topics")
p11 <- loglik_scatterplot(loglik_cluster,loglik_topics,samples$cluster,"Cil",
                  "firebrick",minloglik,"cluster","topics")
p12 <- loglik_scatterplot(loglik_cluster,loglik_topics,samples$cluster,"T+N",
                  "darkorange",minloglik,"cluster","topics")
p13 <- loglik_scatterplot(loglik_cluster,loglik_topics,samples$cluster,"I",
                  "darkmagenta",minloglik,"cluster","topics")
p14 <- loglik_scatterplot(loglik_cluster,loglik_topics,samples$cluster,"P",
                  "peru",minloglik,"cluster","topics")
plot_grid(p9,p10,p11,p12,p13,p14,nrow = 2,ncol = 3)

We observe similar trends when comparing the topic model likelihoods against likelihoods obtained by the Montoro et al (2018) clustering. One difference here is that tuft and neuroendocrine cells are split into two clusters. But, judging by the likelihoods, this split provides little improvement in fit.

minloglik <- -30000
p15 <- loglik_scatterplot(loglik_montoro,loglik_topics,samples$tissue,"basal",
                          "royalblue",minloglik,"Montoro et al (2018) cluster",
                          "topics")
p16 <- loglik_scatterplot(loglik_montoro,loglik_topics,samples$tissue,
                          "club","forestgreen",minloglik,
                          "Montoro et al (2018) cluster","topics")
p17 <- loglik_scatterplot(loglik_montoro,loglik_topics,samples$tissue,
                          "ciliated","firebrick",minloglik,
                          "Montoro et al (2018) cluster","topics")
p18 <- loglik_scatterplot(loglik_montoro,loglik_topics,samples$tissue,
                          "neuroendocrine","darkorange",minloglik,
                          "Montoro et al (2018) cluster","topics")
p19 <- loglik_scatterplot(loglik_montoro,loglik_topics,samples$tissue,"tuft",
                          "dodgerblue",minloglik,
                          "Montoro et al (2018) cluster","topics")
p20 <- loglik_scatterplot(loglik_montoro,loglik_topics,samples$tissue,
                          "ionocyte","darkmagenta",minloglik,
                          "Montoro et al (2018) cluster","topics")
p21 <- loglik_scatterplot(loglik_montoro,loglik_topics,samples$tissue,
                          "proliferating","peru",minloglik,
                          "Montoro et al (2018) cluster","topics")
plot_grid(p15,p16,p17,p18,p19,p20,p21,nrow = 3,ncol = 3)

Save results

Save the clustering of the pulse-seq data to an RDS file.

saveRDS(samples,"clustering-pulseseq.rds")

sessionInfo()
# R version 3.6.2 (2019-12-12)
# Platform: x86_64-apple-darwin15.6.0 (64-bit)
# Running under: macOS Catalina 10.15.6
# 
# Matrix products: default
# BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
# LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
# 
# locale:
# [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
# 
# attached base packages:
# [1] stats     graphics  grDevices utils     datasets  methods   base     
# 
# other attached packages:
# [1] cowplot_1.0.0      ggplot2_3.3.0      fastTopics_0.3-184 dplyr_0.8.3       
# [5] Matrix_1.2-18     
# 
# loaded via a namespace (and not attached):
#  [1] ggrepel_0.9.0        Rcpp_1.0.5           lattice_0.20-38     
#  [4] tidyr_1.0.0          prettyunits_1.1.1    assertthat_0.2.1    
#  [7] zeallot_0.1.0        rprojroot_1.3-2      digest_0.6.23       
# [10] R6_2.4.1             backports_1.1.5      MatrixModels_0.4-1  
# [13] evaluate_0.14        coda_0.19-3          httr_1.4.2          
# [16] pillar_1.4.3         rlang_0.4.5          progress_1.2.2      
# [19] lazyeval_0.2.2       data.table_1.12.8    irlba_2.3.3         
# [22] SparseM_1.78         hexbin_1.28.0        whisker_0.4         
# [25] rmarkdown_2.3        labeling_0.3         Rtsne_0.15          
# [28] stringr_1.4.0        htmlwidgets_1.5.1    munsell_0.5.0       
# [31] compiler_3.6.2       httpuv_1.5.2         xfun_0.11           
# [34] pkgconfig_2.0.3      mcmc_0.9-6           htmltools_0.4.0     
# [37] tidyselect_0.2.5     tibble_2.1.3         workflowr_1.6.2.9000
# [40] quadprog_1.5-8       viridisLite_0.3.0    crayon_1.3.4        
# [43] withr_2.1.2          later_1.0.0          MASS_7.3-51.4       
# [46] grid_3.6.2           jsonlite_1.6         gtable_0.3.0        
# [49] lifecycle_0.1.0      git2r_0.26.1         magrittr_1.5        
# [52] scales_1.1.0         RcppParallel_4.4.2   stringi_1.4.3       
# [55] farver_2.0.1         fs_1.3.1             promises_1.1.0      
# [58] vctrs_0.2.1          tools_3.6.2          glue_1.3.1          
# [61] purrr_0.3.3          hms_0.5.2            yaml_2.2.0          
# [64] colorspace_1.4-1     plotly_4.9.2         knitr_1.26          
# [67] quantreg_5.54        MCMCpack_1.4-5