Last updated: 2024-09-04

Checks: 7 0

Knit directory: KODAMA-Analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240618) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version b0a97fe. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory

Untracked files:
    Untracked:  Elemina.RData
    Untracked:  data/spots_classification_ALL.csv
    Untracked:  data/trajectories.RData
    Untracked:  data/trajectories_VISIUMHD.RData
    Untracked:  elimina_table.RData
    Untracked:  output/DLFPC-All-2-3000-300-0.4.RData
    Untracked:  output/DLFPC-All.RData
    Untracked:  output/DLFPC-Br5292-2-3000-300-0.3.RData
    Untracked:  output/DLFPC-Br5292.RData
    Untracked:  output/DLFPC-Br5595-2-3000-300-0.3.RData
    Untracked:  output/DLFPC-Br5595.RData
    Untracked:  output/DLFPC-Br8100-2-3000-300-0.3.RData
    Untracked:  output/DLFPC-Br8100.RData
    Untracked:  output/MERFISH.RData
    Untracked:  output/Prostate.RData
    Untracked:  output/VisiumHD.RData
    Untracked:  output/VisiumHD2.RData
    Untracked:  output/VisiumHD3.RData
    Untracked:  output/image.RData

Unstaged changes:
    Deleted:    analysis/DLPFC-12.Rmd
    Deleted:    analysis/DLPFC-4.Rmd
    Modified:   analysis/DLPFC.Rmd
    Modified:   analysis/Giotto.Rmd
    Modified:   analysis/MERFISH.Rmd
    Modified:   analysis/Prostate.Rmd
    Deleted:    analysis/STARmap.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/VisiumHD.Rmd) and HTML (docs/VisiumHD.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd b0a97fe Stefano Cacciatore 2024-09-04 Start my new project
html 9bdaa70 Stefano Cacciatore 2024-09-04 Build site.
Rmd ca72951 Stefano Cacciatore 2024-09-04 Start my new project
html 098b08e Stefano Cacciatore 2024-09-04 Build site.
Rmd eb8066e Stefano Cacciatore 2024-09-04 Start my new project
html 0010f3c Stefano Cacciatore 2024-09-04 Build site.
Rmd 3f515c0 Stefano Cacciatore 2024-09-04 Start my new project
html 51b0452 Stefano Cacciatore 2024-09-03 Build site.
Rmd c257b0e Stefano Cacciatore 2024-09-03 Start my new project
Rmd 22e2ac6 Stefano Cacciatore 2024-08-26 Start my new project
html d1192e9 Stefano Cacciatore 2024-08-12 Build site.
Rmd 5ef8148 Stefano Cacciatore 2024-08-12 Start my new project
html 3374e66 Stefano Cacciatore 2024-08-06 Build site.
html 35ce733 Stefano Cacciatore 2024-08-03 Build site.
html 82fe167 Stefano Cacciatore 2024-07-24 Build site.
Rmd b422e43 Stefano Cacciatore 2024-07-24 Start my new project
html 6f7daac Stefano Cacciatore 2024-07-19 Build site.
Rmd 5b97082 tkcaccia 2024-07-15 updates
Rmd 7be8f59 tkcaccia 2024-07-15 updates
html 7be8f59 tkcaccia 2024-07-15 updates
Rmd 79f73a2 GitHub 2024-07-14 Update VisiumHD.Rmd
html f8ca54a tkcaccia 2024-07-14 update
html d04c1e7 GitHub 2024-07-08 Update VisiumHD.html
html 754c8bf GitHub 2024-07-04 Update VisiumHD.html
html ee4ee17 GitHub 2024-06-19 Add files via upload
Rmd 615fc05 GitHub 2024-06-19 Add files via upload

Describe your project. The data can be downloaded using the following script: VisiumHD_CRC_download.sh. This script facilitates access to the raw data, which will then be preprocessed and analyzed in the subsequent steps of our pipeline.

The data can be downloaded using the following script: VisiumHD_CRC_download.sh. This script facilitates access to the raw data, which will then be preprocessed and analyzed in the subsequent steps of our pipeline.

library("ggplot2")
library("patchwork")
library("dplyr")
library("Seurat")
library("KODAMA")
library("KODAMAextra")
library("bigmemory")

localdir="../Colorectal/outs/"
object <- Load10X_Spatial(data.dir = localdir, bin.size = c(8))


 vln.plot <- VlnPlot(object, features = "nCount_Spatial.008um", pt.size = 0) + NoLegend()
 count.plot <- SpatialFeaturePlot(object, features = "nCount_Spatial.008um", pt.size.factor = 1.2) +
   theme(legend.position = "right")

nCount_Spatial=colSums(object@assays$Spatial.008um$counts)
#w= which(nCount_Spatial >10)
#object@assays$Spatial.008um$counts= object@assays$Spatial.008um$counts[,w]
#object@meta.data=object@meta.data[w,]

sp_obj <- subset(
  object,
  subset = nCount_Spatial.008um > 100)



nCount_Spatial=colSums(sp_obj@assays$Spatial.008um$counts)


 counts=sp_obj@assays$Spatial.008um$counts
 is_mito <- grepl("(^MT-)|(^mt-)", rownames(counts))
 counts <- counts[!is_mito,]

 filter_genes_ncounts=1
 filter_genes_pcspots=0.5
 nspots <- ceiling(filter_genes_pcspots/100 *  ncol(counts))
 ix_remove <- rowSums(counts >= filter_genes_ncounts) <   nspots
 counts <- counts[!ix_remove,]

 QCgenes <- rownames(counts)

 VariableFeatures(sp_obj) = QCgenes

 rm(counts)


DefaultAssay(sp_obj) <- "Spatial.008um"
sp_obj <- NormalizeData(sp_obj)


sp_obj <- FindVariableFeatures(sp_obj)
sp_obj <- ScaleData(sp_obj)

xy=as.matrix(GetTissueCoordinates(sp_obj)[,1:2])

sp_obj <- RunPCA(sp_obj, reduction.name = "pca.008um")

dim(sp_obj)
[1]  18085 428381
plot(Seurat::Embeddings(sp_obj, reduction = "pca.008um"))

Version Author Date
51b0452 Stefano Cacciatore 2024-09-03
d1192e9 Stefano Cacciatore 2024-08-12
6f7daac Stefano Cacciatore 2024-07-19
7be8f59 tkcaccia 2024-07-15
#sp_obj <- RunKODAMAmatrix(sp_obj, reduction = "pca.008um",
#                          FUN= "PLS" ,
#                          landmarks = 10000,
#                          splitting = 100,
#                          f.par.pls = 50,
#                          spatial.resolution = 0.4,
#                          n.cores=8)

#  print("KODAMA finished")
  
#     config=umap.defaults
#     config$n_threads = 8
#     config$n_sgd_threads = "auto"
#     sp_obj <- RunKODAMAvisualization(sp_obj, method = "UMAP",config=config)

     
# kk_UMAP=Seurat::Embeddings(sp_obj, reduction = "KODAMA")

# save(kk_UMAP,xy,file="output/VisiumHD.RData")

load("output/VisiumHD3.RData")   

rr=read.csv("data/spots_classification_ALL.csv",sep=",")
ss=strsplit(rr[,2],":")
ss=unlist(lapply(ss, function(x) x[2]))
ss=strsplit(ss,",")
ss=unlist(lapply(ss, function(x) x[1]))
ss=gsub("\"","",ss)

rr[,2]=ss
n=ave(1:length(rr[,1]), rr[,1], FUN = seq_along)
rr=rr[n==1,]
rownames(rr)=rr[,1]
rr=rr[rownames(kk_UMAP),]

table(rr[,"classification"])

              blood vessel     desmoplastic submucosa 
                      1370                      38054 
                 dysplasia        dysplasia_to_verify 
                     71063                      62870 
  dystrophic calcification         Invasive_carcinoma 
                       455                      39543 
  lamina propria dysplasia          muscularis mucosa 
                      6970                       4785 
        muscularis propria               normal gland 
                     18081                      29910 
     normal lamina propria       oedematous submucosa 
                     15108                       6309 
       stroma intermediate  stroma invasive carcinoma 
                      6057                      12181 
library(ggplot2)


cols=sample(rainbow(15))
labels=as.factor(rr[,"classification"])
par(xpd = T, mar = par()$mar + c(0,0,0,7))

plot(kk_UMAP,cex=0.5,pch=20,col=cols[labels])
legend(max(kk_UMAP[,1])+0.05*dist(range(kk_UMAP[,1])), max(kk_UMAP[,2]),
       levels(labels),
       col = cols,
       cex = 0.8,
       pch=20)


load("data/trajectories_VISIUMHD.RData")

data=sp_obj@assays$Spatial.008um$data[rownames(sp_obj@assays$Spatial.008um$scale.data),]
data=as.matrix(data)
Warning in asMethod(object): sparse->dense coercion: allocating vector of size
6.4 GiB
data=t(data)

mm1=new_trajectory (kk_UMAP,data = data,trace=tra1$xy)
mm2=new_trajectory (kk_UMAP,data = data,trace=tra2$xy)
mm3=new_trajectory (kk_UMAP,data = data,trace=tra3$xy)

Version Author Date
098b08e Stefano Cacciatore 2024-09-04
0010f3c Stefano Cacciatore 2024-09-04
51b0452 Stefano Cacciatore 2024-09-03
d1192e9 Stefano Cacciatore 2024-08-12
82fe167 Stefano Cacciatore 2024-07-24
traj=rbind(mm1$trajectory,
           mm2$trajectory,
           mm3$trajectory)
y=rep(1:20,3)
ma=multi_analysis(traj,y,FUN="correlation.test",method="spearman")
ma=ma[order(as.numeric(ma$`p-value`)),]
colnames(ma)=c("Feature   ","rho   ","p-value   ","FDR   ")
knitr::kable(ma[1:30,],row.names=FALSE)
Feature rho p-value FDR
LCN2 -0.90 1.22e-22 1.50e-19
CXCL2 -0.78 2.82e-13 1.48e-10
CXCL3 -0.78 3.62e-13 1.48e-10
PI3 -0.77 1.04e-12 3.21e-10
GPX2 -0.76 1.57e-12 3.85e-10
SOD2 -0.72 5.82e-11 1.19e-08
CCL20 -0.72 9.89e-11 1.74e-08
MUC1 -0.68 2.03e-09 3.12e-07
TRIM31 -0.66 8.18e-09 1.12e-06
BACE2 -0.65 1.46e-08 1.79e-06
SPINK1 -0.65 2.39e-08 2.67e-06
CXCL1 -0.64 5.02e-08 5.15e-06
CDC25B -0.63 6.51e-08 6.16e-06
S100P -0.60 4.58e-07 4.03e-05
ID1 -0.59 6.07e-07 4.98e-05
LRATD1 -0.58 1.38e-06 1.06e-04
FXYD3 -0.57 1.89e-06 1.37e-04
SELENBP1 -0.57 2.29e-06 1.56e-04
NAMPT -0.57 2.5e-06 1.62e-04
LGR5 0.56 2.72e-06 1.67e-04
AREG -0.56 3.32e-06 1.94e-04
CDC20 -0.56 3.69e-06 2.07e-04
STMN3 -0.56 3.95e-06 2.11e-04
NCOA7 -0.55 6.49e-06 3.32e-04
S100A9 -0.54 7.43e-06 3.65e-04
DNTTIP1 -0.54 8.47e-06 4.01e-04
PTP4A3 -0.53 1.22e-05 5.55e-04
UBE2C -0.53 1.28e-05 5.55e-04
CFB -0.53 1.31e-05 5.55e-04
NOS2 -0.52 1.71e-05 7.00e-04
lab=rr[,"classification"]
sel=lab==" stroma invasive carcinoma" | lab==" stroma intermediate"
data.sel=data[which(sel),]
data.sel=data.sel[,colSums(data.sel)>0]
lab=as.factor(as.vector(lab[which(sel)]))

ma=multi_analysis(data.sel,lab,range="95%CI")

ma=ma[order(as.numeric(ma$`p-value`)),]
knitr::kable(ma[1:30,],row.names=FALSE)
Feature stroma intermediate stroma invasive carcinoma p-value FDR
IGFBP3, median [95%CI] 0 [0 4.086] 0 [0 5.05] 2.21e-152 4.26e-149
SFRP4, median [95%CI] 0 [0 4.269] 0 [0 4.731] 3.74e-123 3.60e-120
CCN1, median [95%CI] 0 [0 4.318] 0 [0 3.856] 4.14e-119 2.66e-116
FN1, median [95%CI] 0 [0 4.399] 0 [0 4.97] 2.56e-118 1.23e-115
MMP11, median [95%CI] 0 [0 3.821] 0 [0 4.676] 5.01e-118 1.93e-115
SFRP2, median [95%CI] 0 [0 0] 0 [0 4.2] 9.59e-114 3.08e-111
FOS, median [95%CI] 0 [0 4] 0 [0 3.156] 1.46e-108 4.03e-106
COMP, median [95%CI] 0 [0 3.382] 0 [0 4.451] 1.47e-103 3.54e-101
TIMP3, median [95%CI] 0 [0 4.869] 0 [0 5.323] 8.15e-99 1.74e-96
COL11A1, median [95%CI] 0 [0 3.631] 0 [0 4.304] 1.78e-89 3.43e-87
APOE, median [95%CI] 0 [0 3.838] 0 [0 4.958] 2.09e-89 3.66e-87
CTHRC1, median [95%CI] 0 [0 3.99] 0 [0 4.462] 2.36e-84 3.78e-82
ADAMDEC1, median [95%CI] 0 [0 3.779] 0 [0 0] 2.43e-83 3.59e-81
SPP1, median [95%CI] 0 [0 0] 0 [0 4.468] 9.4e-83 1.29e-80
SULF1, median [95%CI] 0 [0 3.917] 0 [0 4.427] 2.47e-82 3.17e-80
DUSP1, median [95%CI] 0 [0 4.03] 0 [0 3.498] 6.48e-78 7.80e-76
TRAC, median [95%CI] 0 [0 4.121] 0 [0 3.77] 1.68e-77 1.90e-75
TRBC2, median [95%CI] 0 [0 4.013] 0 [0 3.533] 3.94e-76 4.22e-74
SPARC, median [95%CI] 3.757 [0 5.428] 4.124 [0 5.707] 9.43e-68 9.56e-66
HTRA3, median [95%CI] 0 [0 3.811] 0 [0 4.371] 2.42e-64 2.33e-62
COL1A2, median [95%CI] 3.72 [0 5.637] 4.163 [0 5.888] 1.09e-62 1.00e-60
AEBP1, median [95%CI] 0 [0 4.379] 0 [0 4.656] 4.14e-61 3.62e-59
SRGN, median [95%CI] 0 [0 4.326] 0 [0 4.245] 8.41e-61 7.04e-59
TRBC1, median [95%CI] 0 [0 3.649] 0 [0 0] 3.85e-60 3.09e-58
COL1A1, median [95%CI] 4.253 [0 6.143] 4.629 [0 6.406] 5.96e-60 4.59e-58
POSTN, median [95%CI] 0 [0 3.574] 0 [0 4.19] 3.94e-59 2.91e-57
LUM, median [95%CI] 0 [0 4.638] 0 [0 5.008] 9.62e-58 6.86e-56
CXCL1, median [95%CI] 0 [0 3.155] 0 [0 0] 2.54e-55 1.74e-53
ACTG2, median [95%CI] 0 [0 4.449] 0 [0 4.008] 1.71e-54 1.14e-52
IGHG1, median [95%CI] 0 [0 5.337] 0 [0 6.598] 1.68e-49 1.08e-47
lab=rr[,"classification"]
sel=lab==" stroma invasive carcinoma" | lab==" desmoplastic submucosa"
data.sel=data[which(sel),]
data.sel=data.sel[,colSums(data.sel)>0]

lab=as.factor(as.vector(lab[which(sel)]))

ma=multi_analysis(data.sel,lab,range="95%CI")

ma=ma[order(as.numeric(ma$`p-value`)),]
knitr::kable(ma[1:30,],row.names=FALSE)
Feature desmoplastic submucosa stroma invasive carcinoma p-value FDR
HTRA3, median [95%CI] 0 [0 3.799] 0 [0 4.371] 0e+00 0.00e+00
SPP1, median [95%CI] 0 [0 0] 0 [0 4.468] 0e+00 0.00e+00
MMP12, median [95%CI] 0 [0 0] 0 [0 3.861] 0e+00 0.00e+00
MGP, median [95%CI] 0 [0 5.089] 0 [0 4.202] 0e+00 0.00e+00
IFI30, median [95%CI] 0 [0 4.008] 0 [0 4.456] 0e+00 0.00e+00
APOE, median [95%CI] 0 [0 4.024] 0 [0 4.958] 0e+00 0.00e+00
MMP9, median [95%CI] 0 [0 0] 0 [0 3.492] 0e+00 0.00e+00
MMP11, median [95%CI] 0 [0 4.014] 0 [0 4.676] 0e+00 0.00e+00
GREM1, median [95%CI] 0 [0 4.528] 0 [0 3.995] 3e-258 6.60e-256
MMP2, median [95%CI] 3.683 [0 5.426] 0 [0 5.118] 6.56e-251 1.30e-248
CTSB, median [95%CI] 0 [0 4.451] 0 [0 4.861] 1.65e-239 2.97e-237
F3, median [95%CI] 0 [0 0] 0 [0 3.554] 5.18e-236 8.55e-234
IGFBP5, median [95%CI] 0 [0 4.521] 0 [0 4.948] 1.22e-223 1.87e-221
IGKC, median [95%CI] 0 [0 8.501] 0 [0 7.989] 2.1e-216 2.98e-214
SFRP2, median [95%CI] 0 [0 4.701] 0 [0 4.2] 7.45e-208 9.85e-206
CD68, median [95%CI] 0 [0 3.683] 0 [0 3.998] 7.07e-180 8.76e-178
PHGR1, median [95%CI] 0 [0 0] 0 [0 3.279] 3.88e-171 4.52e-169
RGS5, median [95%CI] 0 [0 2.596] 0 [0 3.897] 6.88e-171 7.58e-169
IGHG1, median [95%CI] 0 [0 7.119] 0 [0 6.598] 5.59e-167 5.83e-165
COL14A1, median [95%CI] 0 [0 4.221] 0 [0 3.648] 3.46e-166 3.43e-164
CTSD, median [95%CI] 0 [0 3.064] 0 [0 3.802] 2.21e-165 2.08e-163
APOC1, median [95%CI] 0 [0 0] 0 [0 3.086] 2.73e-164 2.46e-162
LYZ, median [95%CI] 0 [0 4.163] 0 [0 4.559] 5.5e-161 4.74e-159
MME, median [95%CI] 0 [0 0] 0 [0 3.003] 2.52e-151 2.08e-149
CCN1, median [95%CI] 0 [0 4.356] 0 [0 3.856] 2.38e-147 1.89e-145
TIMP3, median [95%CI] 0 [0 5.128] 0 [0 5.323] 4.51e-146 3.43e-144
ACP5, median [95%CI] 0 [0 0] 0 [0 3.368] 6.46e-146 4.75e-144
COL1A1, median [95%CI] 5.1 [0 6.589] 4.629 [0 6.406] 3.6e-144 2.55e-142
MMP1, median [95%CI] 0 [0 0] 0 [0 3.461] 9.37e-143 6.40e-141
LPL, median [95%CI] 0 [0 0] 0 [0 0] 8.68e-142 5.73e-140

sessionInfo()
R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 20.04.6 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0 
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] parallel  stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] KODAMAextra_1.0    bigmemory_4.6.4    rgl_1.3.1          misc3d_0.9-1      
 [5] e1071_1.7-14       doParallel_1.0.17  iterators_1.0.14   foreach_1.5.2     
 [9] KODAMA_3.1         umap_0.2.10.0      Rtsne_0.17         minerva_1.5.10    
[13] Seurat_5.1.0       SeuratObject_5.0.2 sp_2.1-4           dplyr_1.1.4       
[17] patchwork_1.2.0    ggplot2_3.5.1      workflowr_1.7.1   

loaded via a namespace (and not attached):
  [1] RColorBrewer_1.1-3     rstudioapi_0.16.0      jsonlite_1.8.8        
  [4] magrittr_2.0.3         ggbeeswarm_0.7.2       spatstat.utils_3.1-0  
  [7] farver_2.1.2           rmarkdown_2.27         fs_1.6.4              
 [10] vctrs_0.6.5            ROCR_1.0-11            spatstat.explore_3.3-2
 [13] base64enc_0.1-3        askpass_1.2.0          htmltools_0.5.8.1     
 [16] sass_0.4.9             sctransform_0.4.1      parallelly_1.38.0     
 [19] KernSmooth_2.23-24     bslib_0.7.0            htmlwidgets_1.6.4     
 [22] ica_1.0-3              plyr_1.8.9             plotly_4.10.4         
 [25] zoo_1.8-12             cachem_1.1.0           uuid_1.2-1            
 [28] whisker_0.4.1          igraph_2.0.3           mime_0.12             
 [31] lifecycle_1.0.4        pkgconfig_2.0.3        Matrix_1.7-0          
 [34] R6_2.5.1               fastmap_1.2.0          fitdistrplus_1.2-1    
 [37] future_1.34.0          shiny_1.9.1            digest_0.6.36         
 [40] colorspace_2.1-0       ps_1.7.7               rprojroot_2.0.4       
 [43] tensor_1.5             RSpectra_0.16-1        irlba_2.3.5.1         
 [46] progressr_0.14.0       fansi_1.0.6            spatstat.sparse_3.1-0 
 [49] httr_1.4.7             polyclip_1.10-7        abind_1.4-5           
 [52] compiler_4.4.1         proxy_0.4-27           bit64_4.0.5           
 [55] withr_3.0.0            fastDummies_1.7.4      highr_0.11            
 [58] MASS_7.3-61            openssl_2.2.0          tools_4.4.1           
 [61] vipor_0.4.7            lmtest_0.9-40          beeswarm_0.4.0        
 [64] httpuv_1.6.15          future.apply_1.11.2    goftest_1.2-3         
 [67] glue_1.7.0             callr_3.7.6            nlme_3.1-166          
 [70] promises_1.3.0         grid_4.4.1             getPass_0.2-4         
 [73] cluster_2.1.6          reshape2_1.4.4         generics_0.1.3        
 [76] hdf5r_1.3.11           gtable_0.3.5           spatstat.data_3.1-2   
 [79] class_7.3-22           tidyr_1.3.1            data.table_1.15.4     
 [82] utf8_1.2.4             spatstat.geom_3.3-2    RcppAnnoy_0.0.22      
 [85] ggrepel_0.9.5          RANN_2.6.2             pillar_1.9.0          
 [88] stringr_1.5.1          spam_2.10-0            RcppHNSW_0.6.0        
 [91] later_1.3.2            splines_4.4.1          lattice_0.22-6        
 [94] bit_4.0.5              survival_3.7-0         deldir_2.0-4          
 [97] tidyselect_1.2.1       miniUI_0.1.1.1         pbapply_1.7-2         
[100] knitr_1.48             git2r_0.33.0           bigmemory.sri_0.1.8   
[103] gridExtra_2.3          scattermore_1.2        xfun_0.45             
[106] matrixStats_1.3.0      stringi_1.8.4          lazyeval_0.2.2        
[109] yaml_2.3.9             evaluate_0.24.0        codetools_0.2-20      
[112] tcltk_4.4.1            tibble_3.2.1           cli_3.6.3             
[115] uwot_0.2.2             arrow_16.1.0           xtable_1.8-4          
[118] reticulate_1.38.0      munsell_0.5.1          processx_3.8.4        
[121] jquerylib_0.1.4        Rcpp_1.0.12            globals_0.16.3        
[124] spatstat.random_3.3-1  png_0.1-8              ggrastr_1.0.2         
[127] spatstat.univar_3.0-0  assertthat_0.2.1       dotCall64_1.1-1       
[130] listenv_0.9.1          viridisLite_0.4.2      scales_1.3.0          
[133] ggridges_0.5.6         leiden_0.4.3.1         purrr_1.0.2           
[136] rlang_1.1.4            cowplot_1.1.3