Last updated: 2024-07-14

Checks: 7 0

Knit directory: KODAMA-Analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240618) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 0051854. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory

Untracked files:
    Untracked:  .h5seurat
    Untracked:  analysis/Single-cell.Rmd
    Untracked:  code/VisiumHD_CRC_download.sh
    Untracked:  data/Pathology.csv

Unstaged changes:
    Deleted:    _site.yml
    Deleted:    analysis/DLPFC.Rmd
    Deleted:    analysis/about.Rmd
    Deleted:    data/Moffitt_and_Bambah-Mukku_et_al_merfish_all_cells.csv

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/DLPFC-4.Rmd) and HTML (docs/DLPFC-4.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 0051854 Stefano Cacciatore 2024-07-14 Start my new project

We will analyze all 4 slides

library("nnSVG")
library("scater")
library("scran")
library("scry")
library("SPARK")
library("harmony")
library("Seurat")
library("spatialLIBD")
library("KODAMA")
library("KODAMAextra")


sample_names=c("151507",
               "151508",
               "151509",
               "151510",
               "151669",
               "151670",
               "151671",
               "151672",
               "151673",
               "151674",
               "151675",
               "151676")

subject_names= c("Br5292","Br5595", "Br8100")

#spe <- fetch_data(type = 'spe',destdir="../Temporary")
load("../DLFPC.RData")

metaData = SingleCellExperiment::colData(spe)
expr = SingleCellExperiment::counts(spe)
sample_names <- paste0("sample_", unique(colData(spe)$sample_id))
sample_names <-  unique(colData(spe)$sample_id)
dim(spe)
[1] 33538 47681

identify mitochondrial genes

is_mito <- grepl("(^MT-)|(^mt-)", rowData(spe)$gene_name)
table(is_mito)
is_mito
FALSE  TRUE 
33525    13 

calculate per-spot QC metrics and select the QC threshoulds

spe <- addPerCellQC(spe, subsets = list(mito = is_mito))

# select QC thresholds
qc_lib_size <- colData(spe)$sum < 500
qc_detected <- colData(spe)$detected < 250
qc_mito <- colData(spe)$subsets_mito_percent > 30
qc_cell_count <- colData(spe)$cell_count > 12

Spot to discard and filter low-quality

discard <- qc_lib_size | qc_detected | qc_mito | qc_cell_count
table(discard)
discard
FALSE  TRUE 
46653  1028 
colData(spe)$discard <- discard

spe <- spe[, !colData(spe)$discard]
dim(spe)
[1] 33538 46653

Horizontalization

# readjust xy
xy=spatialCoords(spe)
samples=unique(colData(spe)$sample_id)
for(j in 1:length(samples)){
  sel=samples[j]==colData(spe)$sample_id
  xy[sel,1]=spatialCoords(spe)[sel,1]+12000*(j-1)
}
spatialCoords(spe)=xy

Gene filtering

spe <- filter_genes(
  spe,
  filter_genes_ncounts = 2,   #ncounts
  filter_genes_pcspots = 0.5,
  filter_mito = TRUE
)

dim(spe)
[1]  6623 46653

REmove the spots that have not been manually assigned

sel= !is.na(colData(spe)$layer_guess_reordered)
spe = spe[,sel]
dim(spe)
[1]  6623 46318

normalization

spe <- computeLibraryFactors(spe)
spe <- logNormCounts(spe)

Identification of the gene spatially relevvant

gene_i=NULL
pvalue_i=NULL
pvalue_mat=matrix(nrow=nrow(spe),ncol=length(sample_names))
for(i in 1:length(sample_names)){
  sel=colData(spe)$sample_id==sample_names[i]
  spe_sub= spe[,sel]

  sparkX <- sparkx(logcounts(spe_sub),spatialCoords(spe_sub),numCores=1,option="mixture")

  gene_i=c(gene_i,rowData(spe)$gene_id)
  pvalue_i=c(pvalue_i,sparkX$res_mtest$combinedPval)
  pvalue_mat[,i]=sparkX$res_mtest$combinedPval
  print(sample_names[i])
}
## ===== SPARK-X INPUT INFORMATION ==== 
## number of total samples: 4170 
## number of total genes: 6623 
## Running with single core, may take some time 
## Testing With Projection Kernel
## Testing With Gaussian Kernel 1
## Testing With Gaussian Kernel 2
## Testing With Gaussian Kernel 3
## Testing With Gaussian Kernel 4
## Testing With Gaussian Kernel 5
## Testing With Cosine Kernel 1
## Testing With Cosine Kernel 2
## Testing With Cosine Kernel 3
## Testing With Cosine Kernel 4
## Testing With Cosine Kernel 5
[1] "151507"
## ===== SPARK-X INPUT INFORMATION ==== 
## number of total samples: 4285 
## number of total genes: 6623 
## Running with single core, may take some time 
## Testing With Projection Kernel
## Testing With Gaussian Kernel 1
## Testing With Gaussian Kernel 2
## Testing With Gaussian Kernel 3
## Testing With Gaussian Kernel 4
## Testing With Gaussian Kernel 5
## Testing With Cosine Kernel 1
## Testing With Cosine Kernel 2
## Testing With Cosine Kernel 3
## Testing With Cosine Kernel 4
## Testing With Cosine Kernel 5
Warning in FUN(newX[, i], ...): There are p-values that are exactly 1!
Warning in FUN(newX[, i], ...): There are p-values that are exactly 1!
[1] "151508"
## ===== SPARK-X INPUT INFORMATION ==== 
## number of total samples: 4708 
## number of total genes: 6623 
## Running with single core, may take some time 
## Testing With Projection Kernel
## Testing With Gaussian Kernel 1
## Testing With Gaussian Kernel 2
## Testing With Gaussian Kernel 3
## Testing With Gaussian Kernel 4
## Testing With Gaussian Kernel 5
## Testing With Cosine Kernel 1
## Testing With Cosine Kernel 2
## Testing With Cosine Kernel 3
## Testing With Cosine Kernel 4
## Testing With Cosine Kernel 5
[1] "151509"
## ===== SPARK-X INPUT INFORMATION ==== 
## number of total samples: 4571 
## number of total genes: 6623 
## Running with single core, may take some time 
## Testing With Projection Kernel
## Testing With Gaussian Kernel 1
## Testing With Gaussian Kernel 2
## Testing With Gaussian Kernel 3
## Testing With Gaussian Kernel 4
## Testing With Gaussian Kernel 5
## Testing With Cosine Kernel 1
## Testing With Cosine Kernel 2
## Testing With Cosine Kernel 3
## Testing With Cosine Kernel 4
## Testing With Cosine Kernel 5
Warning in FUN(newX[, i], ...): There are p-values that are exactly 1!
Warning in FUN(newX[, i], ...): There are p-values that are exactly 1!
[1] "151510"
## ===== SPARK-X INPUT INFORMATION ==== 
## number of total samples: 3587 
## number of total genes: 6623 
## Running with single core, may take some time 
## Testing With Projection Kernel
## Testing With Gaussian Kernel 1
## Testing With Gaussian Kernel 2
## Testing With Gaussian Kernel 3
## Testing With Gaussian Kernel 4
## Testing With Gaussian Kernel 5
## Testing With Cosine Kernel 1
## Testing With Cosine Kernel 2
## Testing With Cosine Kernel 3
## Testing With Cosine Kernel 4
## Testing With Cosine Kernel 5
Warning in FUN(newX[, i], ...): There are p-values that are exactly 1!
[1] "151669"
## ===== SPARK-X INPUT INFORMATION ==== 
## number of total samples: 3274 
## number of total genes: 6623 
## Running with single core, may take some time 
## Testing With Projection Kernel
## Testing With Gaussian Kernel 1
## Testing With Gaussian Kernel 2
## Testing With Gaussian Kernel 3
## Testing With Gaussian Kernel 4
## Testing With Gaussian Kernel 5
## Testing With Cosine Kernel 1
## Testing With Cosine Kernel 2
## Testing With Cosine Kernel 3
## Testing With Cosine Kernel 4
## Testing With Cosine Kernel 5
Warning in FUN(newX[, i], ...): There are p-values that are exactly 1!
[1] "151670"
## ===== SPARK-X INPUT INFORMATION ==== 
## number of total samples: 4013 
## number of total genes: 6623 
## Running with single core, may take some time 
## Testing With Projection Kernel
## Testing With Gaussian Kernel 1
## Testing With Gaussian Kernel 2
## Testing With Gaussian Kernel 3
## Testing With Gaussian Kernel 4
## Testing With Gaussian Kernel 5
## Testing With Cosine Kernel 1
## Testing With Cosine Kernel 2
## Testing With Cosine Kernel 3
## Testing With Cosine Kernel 4
## Testing With Cosine Kernel 5
[1] "151671"
## ===== SPARK-X INPUT INFORMATION ==== 
## number of total samples: 3772 
## number of total genes: 6623 
## Running with single core, may take some time 
## Testing With Projection Kernel
## Testing With Gaussian Kernel 1
## Testing With Gaussian Kernel 2
## Testing With Gaussian Kernel 3
## Testing With Gaussian Kernel 4
## Testing With Gaussian Kernel 5
## Testing With Cosine Kernel 1
## Testing With Cosine Kernel 2
## Testing With Cosine Kernel 3
## Testing With Cosine Kernel 4
## Testing With Cosine Kernel 5
Warning in FUN(newX[, i], ...): There are p-values that are exactly 1!
[1] "151672"
## ===== SPARK-X INPUT INFORMATION ==== 
## number of total samples: 3568 
## number of total genes: 6623 
## Running with single core, may take some time 
## Testing With Projection Kernel
## Testing With Gaussian Kernel 1
## Testing With Gaussian Kernel 2
## Testing With Gaussian Kernel 3
## Testing With Gaussian Kernel 4
## Testing With Gaussian Kernel 5
## Testing With Cosine Kernel 1
## Testing With Cosine Kernel 2
## Testing With Cosine Kernel 3
## Testing With Cosine Kernel 4
## Testing With Cosine Kernel 5
[1] "151673"
## ===== SPARK-X INPUT INFORMATION ==== 
## number of total samples: 3576 
## number of total genes: 6623 
## Running with single core, may take some time 
## Testing With Projection Kernel
## Testing With Gaussian Kernel 1
## Testing With Gaussian Kernel 2
## Testing With Gaussian Kernel 3
## Testing With Gaussian Kernel 4
## Testing With Gaussian Kernel 5
## Testing With Cosine Kernel 1
## Testing With Cosine Kernel 2
## Testing With Cosine Kernel 3
## Testing With Cosine Kernel 4
## Testing With Cosine Kernel 5
[1] "151674"
## ===== SPARK-X INPUT INFORMATION ==== 
## number of total samples: 3468 
## number of total genes: 6623 
## Running with single core, may take some time 
## Testing With Projection Kernel
## Testing With Gaussian Kernel 1
## Testing With Gaussian Kernel 2
## Testing With Gaussian Kernel 3
## Testing With Gaussian Kernel 4
## Testing With Gaussian Kernel 5
## Testing With Cosine Kernel 1
## Testing With Cosine Kernel 2
## Testing With Cosine Kernel 3
## Testing With Cosine Kernel 4
## Testing With Cosine Kernel 5
Warning in FUN(newX[, i], ...): There are p-values that are exactly 1!
[1] "151675"
## ===== SPARK-X INPUT INFORMATION ==== 
## number of total samples: 3326 
## number of total genes: 6623 
## Running with single core, may take some time 
## Testing With Projection Kernel
## Testing With Gaussian Kernel 1
## Testing With Gaussian Kernel 2
## Testing With Gaussian Kernel 3
## Testing With Gaussian Kernel 4
## Testing With Gaussian Kernel 5
## Testing With Cosine Kernel 1
## Testing With Cosine Kernel 2
## Testing With Cosine Kernel 3
## Testing With Cosine Kernel 4
## Testing With Cosine Kernel 5
Warning in FUN(newX[, i], ...): There are p-values that are exactly 1!
[1] "151676"
oo=order(pvalue_i)
top_genes=gene_i[oo]
n=ave(1:length(top_genes), top_genes, FUN = seq_along)
top_genes=top_genes[n==1]

oo=order(apply(pvalue_mat,1,function(x) median(-log(x))),decreasing = TRUE)
top=gene_i[oo]

Selection of the patient Br5595

subject_names=="Br5595"
[1] FALSE  TRUE FALSE
  spe_sub <- spe[, colData(spe)$subject ==  subject_names]
Warning in colData(spe)$subject == subject_names: longer object length is not a
multiple of shorter object length
  subjects=colData(spe_sub)$subject
  dim(spe_sub)
[1]  6623 15440
  spe_sub <- runPCA(spe_sub, 50,subset_row = top[1:2000], scale=TRUE)

  pca=reducedDim(spe_sub,type = "PCA")[,1:50]
  labels=as.factor(colData(spe_sub)$layer_guess_reordered)
  xy=as.matrix(spatialCoords(spe_sub))
  samples=colData(spe_sub)$sample_id
  data=t(logcounts(spe_sub)[top[1:2000],])
  
  plot(pca, col=as.factor(colData(spe_sub)$sample_id))

KODAMA

kk=KODAMA.matrix.parallel(pca,
                            spatial = xy,
                            FUN= "PLS" ,
                            landmarks = 100000,
                            splitting = 100,
                            f.par.pls = 50,
                            spatial.resolution = 0.4,
                            n.cores=4)
socket cluster with 4 nodes on host 'localhost'
================================================================================[1] "Finished parallel computation"

[1] "Calculation of dissimilarity matrix..."
================================================================================
  print("KODAMA finished")
[1] "KODAMA finished"
     config=umap.defaults
     config$n_threads = 4
     config$n_sgd_threads = "auto"
     kk_UMAP=KODAMA.visualization(kk,method="UMAP",config=config)

     plot(kk_UMAP,col=as.factor(labels))

CLUSTER

library("mclust")

  clu=kmeans(kk_UMAP,7,nstart = 100)$cluster
  plot(kk_UMAP,col=labels,pch=20)

  plot(kk_UMAP,col=clu,pch=20)

plot(xy,col=clu,pch=20)

u=unique(samples)
for(i in 1:length(u)){
  sel=samples==u[i]
  print(adjustedRandIndex(labels[sel],clu[sel]))
}
[1] 0.5205199
[1] 0.5609284
[1] 0.5564057
[1] 0.5484287
[1] 0.3519972
[1] 0.3489148
[1] 0.4441065
[1] 0.4489396
[1] 0.475645
[1] 0.4401037
[1] 0.4238303
[1] 0.4239171
ref=refine_SVM(xy,clu,samples,cost=100)
[1] "151507"
[1] "151508"
[1] "151509"
[1] "151510"
[1] "151669"
[1] "151670"
[1] "151671"
[1] "151672"
[1] "151673"
[1] "151674"
[1] "151675"
[1] "151676"
u=unique(samples)
for(i in 1:length(u)){
  sel=samples==u[i]
  print(adjustedRandIndex(labels[sel],ref[sel]))
}
[1] 0.5254138
[1] 0.5915947
[1] 0.5895009
[1] 0.584852
[1] 0.3494789
[1] 0.3576089
[1] 0.4547297
[1] 0.4837599
[1] 0.4871104
[1] 0.4617376
[1] 0.4491465
[1] 0.4400833
plot(xy,col=ref,pch=20)


sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 20.04.6 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0 
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] mclust_6.1.1                KODAMAextra_1.0            
 [3] e1071_1.7-14                doParallel_1.0.17          
 [5] iterators_1.0.14            foreach_1.5.2              
 [7] KODAMA_3.1                  umap_0.2.10.0              
 [9] Rtsne_0.17                  minerva_1.5.10             
[11] spatialLIBD_1.16.2          SpatialExperiment_1.14.0   
[13] Seurat_5.1.0                SeuratObject_5.0.2         
[15] sp_2.1-4                    harmony_1.2.0              
[17] Rcpp_1.0.12                 SPARK_1.1.1                
[19] scry_1.16.0                 scran_1.32.0               
[21] scater_1.32.0               ggplot2_3.5.1              
[23] scuttle_1.14.0              SingleCellExperiment_1.26.0
[25] SummarizedExperiment_1.34.0 Biobase_2.64.0             
[27] GenomicRanges_1.56.1        GenomeInfoDb_1.40.1        
[29] IRanges_2.38.1              S4Vectors_0.42.1           
[31] BiocGenerics_0.50.0         MatrixGenerics_1.16.0      
[33] matrixStats_1.3.0           nnSVG_1.8.0                
[35] workflowr_1.7.1            

loaded via a namespace (and not attached):
  [1] goftest_1.2-3             DT_0.33                  
  [3] Biostrings_2.72.1         vctrs_0.6.5              
  [5] spatstat.random_3.2-3     digest_0.6.36            
  [7] png_0.1-8                 proxy_0.4-27             
  [9] git2r_0.33.0              ggrepel_0.9.5            
 [11] deldir_2.0-4              parallelly_1.37.1        
 [13] magick_2.8.3              MASS_7.3-61              
 [15] reshape2_1.4.4            httpuv_1.6.15            
 [17] withr_3.0.0               xfun_0.45                
 [19] survival_3.7-0            memoise_2.0.1            
 [21] benchmarkme_1.0.8         ggbeeswarm_0.7.2         
 [23] zoo_1.8-12                pbapply_1.7-2            
 [25] rematch2_2.1.2            KEGGREST_1.44.1          
 [27] promises_1.3.0            httr_1.4.7               
 [29] restfulr_0.0.15           globals_0.16.3           
 [31] fitdistrplus_1.1-11       ps_1.7.7                 
 [33] rstudioapi_0.16.0         UCSC.utils_1.0.0         
 [35] miniUI_0.1.1.1            generics_0.1.3           
 [37] processx_3.8.4            curl_5.2.1               
 [39] fields_16.2               zlibbioc_1.50.0          
 [41] ScaledMatrix_1.12.0       polyclip_1.10-6          
 [43] doSNOW_1.0.20             GenomeInfoDbData_1.2.12  
 [45] ExperimentHub_2.12.0      SparseArray_1.4.8        
 [47] golem_0.4.1               xtable_1.8-4             
 [49] stringr_1.5.1             pracma_2.4.4             
 [51] evaluate_0.24.0           S4Arrays_1.4.1           
 [53] BiocFileCache_2.12.0      irlba_2.3.5.1            
 [55] colorspace_2.1-0          filelock_1.0.3           
 [57] ROCR_1.0-11               reticulate_1.38.0        
 [59] spatstat.data_3.1-2       shinyWidgets_0.8.6       
 [61] magrittr_2.0.3            lmtest_0.9-40            
 [63] later_1.3.2               viridis_0.6.5            
 [65] lattice_0.22-6            spatstat.geom_3.2-9      
 [67] future.apply_1.11.2       getPass_0.2-4            
 [69] scattermore_1.2           XML_3.99-0.17            
 [71] cowplot_1.1.3             RcppAnnoy_0.0.22         
 [73] class_7.3-22              pillar_1.9.0             
 [75] nlme_3.1-165              compiler_4.4.0           
 [77] beachmat_2.20.0           RSpectra_0.16-1          
 [79] stringi_1.8.4             tensor_1.5               
 [81] GenomicAlignments_1.40.0  plyr_1.8.9               
 [83] crayon_1.5.3              abind_1.4-5              
 [85] BiocIO_1.14.0             locfit_1.5-9.10          
 [87] bit_4.0.5                 dplyr_1.1.4              
 [89] whisker_0.4.1             codetools_0.2-20         
 [91] BiocSingular_1.20.0       openssl_2.2.0            
 [93] bslib_0.7.0               paletteer_1.6.0          
 [95] plotly_4.10.4             mime_0.12                
 [97] splines_4.4.0             fastDummies_1.7.3        
 [99] dbplyr_2.5.0              sparseMatrixStats_1.16.0 
[101] attempt_0.3.1             knitr_1.48               
[103] blob_1.2.4                utf8_1.2.4               
[105] BiocVersion_3.19.1        fs_1.6.4                 
[107] listenv_0.9.1             DelayedMatrixStats_1.26.0
[109] rdist_0.0.5               tibble_3.2.1             
[111] Matrix_1.7-0              callr_3.7.6              
[113] statmod_1.5.0             pkgconfig_2.0.3          
[115] tools_4.4.0               BRISC_1.0.5              
[117] cachem_1.1.0              RSQLite_2.3.7            
[119] viridisLite_0.4.2         DBI_1.2.3                
[121] fastmap_1.2.0             rmarkdown_2.27           
[123] scales_1.3.0              grid_4.4.0               
[125] ica_1.0-3                 Rsamtools_2.20.0         
[127] AnnotationHub_3.12.0      sass_0.4.9               
[129] patchwork_1.2.0           BiocManager_1.30.23      
[131] dotCall64_1.1-1           RANN_2.6.1               
[133] snow_0.4-4                yaml_2.3.9               
[135] rtracklayer_1.64.0        cli_3.6.3                
[137] purrr_1.0.2               leiden_0.4.3.1           
[139] lifecycle_1.0.4           askpass_1.2.0            
[141] uwot_0.2.2                bluster_1.14.0           
[143] sessioninfo_1.2.2         BiocParallel_1.38.0      
[145] gtable_0.3.5              rjson_0.2.21             
[147] ggridges_0.5.6            progressr_0.14.0         
[149] limma_3.60.3              jsonlite_1.8.8           
[151] edgeR_4.2.0               RcppHNSW_0.6.0           
[153] bitops_1.0-7              benchmarkmeData_1.0.4    
[155] bit64_4.0.5               spatstat.utils_3.0-5     
[157] BiocNeighbors_1.22.0      matlab_1.0.4.1           
[159] jquerylib_0.1.4           highr_0.11               
[161] metapod_1.12.0            config_0.3.2             
[163] dqrng_0.4.1               lazyeval_0.2.2           
[165] shiny_1.8.1.1             htmltools_0.5.8.1        
[167] sctransform_0.4.1         rappdirs_0.3.3           
[169] glue_1.7.0                spam_2.10-0              
[171] XVector_0.44.0            RCurl_1.98-1.14          
[173] rprojroot_2.0.4           gridExtra_2.3            
[175] igraph_2.0.3              R6_2.5.1                 
[177] tidyr_1.3.1               CompQuadForm_1.4.3       
[179] cluster_2.1.6             DelayedArray_0.30.1      
[181] tidyselect_1.2.1          vipor_0.4.7              
[183] maps_3.4.2                AnnotationDbi_1.66.0     
[185] future_1.33.2             rsvd_1.0.5               
[187] munsell_0.5.1             KernSmooth_2.23-24       
[189] data.table_1.15.4         htmlwidgets_1.6.4        
[191] RColorBrewer_1.1-3        rlang_1.1.4              
[193] spatstat.sparse_3.1-0     spatstat.explore_3.2-7   
[195] fansi_1.0.6               beeswarm_0.4.0