markers.180 <- FindMarkers(seu.JAK1.180,ident.1 = "p-JAK1 high", ident.2 = "p-JAK1 low", assay = "PROT", slot = "scale.data", logfc.threshold = 0, return.thresh = 1, only.pos = F)
markers.180.RNA <- FindAllMarkers(seu.JAK1.180,assay = "RNA", slot = "data", logfc.threshold = 0.3, return.thresh = 0.01, only.pos = T,min.pct = 0.1)
markers.180.RNA <- FindMarkers(seu.JAK1.180,ident.1 = "p-JAK1 high", ident.2 = "p-JAK1 low", assay = "SCT.RNA", slot = "scale.data", logfc.threshold = 0, return.thresh = 1, only.pos = F)
markers.180$protein <-rownames(markers.180)
markers.180$diffexpressed <- "NO"
markers.180$diffexpressed[markers.180$avg_diff > 0.25 & markers.180$p_val_adj < 0.01] <- "UP"
markers.180$diffexpressed[markers.180$avg_diff < -0.25 & markers.180$p_val_adj < 0.01] <- "DOWN"
mycolors <- c("blue", "red", "black")
names(mycolors) <- c("DOWN", "UP", "NO")
markers.180$delabel <- NA
markers.180$delabel[markers.180$diffexpressed != "NO"] <- markers.180$protein[markers.180$diffexpressed != "NO"]
plot.vulcano.180min <- ggplot(data=markers.180, aes(x=avg_diff , y=-log10(p_val_adj), col=diffexpressed, label=delabel)) +
geom_point(size=0.5) +
theme_minimal() +
geom_text_repel(size=2.2) +
scale_color_manual(values=c("blue", "red", "black")) +
geom_vline(xintercept=c(-0.25, 0.25), col="red") +
geom_hline(yintercept=-log10(0.01), col="red") +
labs(x = expression("Log"[2]*" Fold Change"), y = expression("-log"[10]*" adjusted p-value"), title = "p-JAK1 high vs p-JAK1 low (t = 180 min)") &
add.textsize
sign.markers180 <- markers.180$protein[markers.180$avg_diff > 0.25 & markers.180$p_val_adj < 0.01 | markers.180$avg_diff < -0.25 & markers.180$p_val_adj < 0.01]
plot.vln.180min <- VlnPlot(seu.JAK1.180,assay = "PROT",slot = "scale.data", features = sign.markers180, group.by = "highlowpJAK1",ncol = 6, pt.size = 0.5) &
add.textsize
markers.180.RNA$protein <-rownames(markers.180.RNA)
markers.180.RNA$diffexpressed <- "NO"
markers.180.RNA$diffexpressed[markers.180.RNA$avg_diff > 0.25 & markers.180.RNA$p_val < 0.05] <- "UP"
markers.180.RNA$diffexpressed[markers.180.RNA$avg_diff < -0.25 & markers.180.RNA$p_val < 0.05] <- "DOWN"
mycolors <- c("blue", "red", "black")
names(mycolors) <- c("DOWN", "UP", "NO")
markers.180.RNA$delabel <- NA
markers.180.RNA$delabel[markers.180.RNA$diffexpressed != "NO"] <- markers.180.RNA$protein[markers.180.RNA$diffexpressed != "NO"]
plot.vulcano.180min.RNA <- ggplot(data=markers.180.RNA, aes(x=avg_diff, y=-log10(p_val), col=diffexpressed, label=delabel)) +
geom_point() +
theme_minimal() +
geom_text_repel(size=2.2) +
scale_color_manual(values=c("blue", "red", "black")) +
geom_vline(xintercept=c(-0.25, 0.25), col="red") +
geom_hline(yintercept=-log10(0.05), col="red") +
labs(x = expression("Log"[2]*" Fold Change"), y = expression("-log"[10]*" p-value"), title = "p-JAK1 high vs p-JAK1 low (t = 180 min)") &
add.textsize
sign.markers180.RNA <- markers.180.RNA$protein[markers.180.RNA$avg_diff > 0.25 & markers.180.RNA$p_val < 0.05]
plot.vln.180min.RNA <- VlnPlot(seu.JAK1.180,assay = "RNA", features = sign.markers180.RNA[1:20], group.by = "highlowpJAK1",ncol = 10) &
add.textsize
plot_180min <- plot_grid(plot.vulcano.180min, plot.vln.180min, labels = panellabels[c(5,6)], label_size = 10, ncol = 2, rel_widths = c(1,2))
seu.JAK1.006 <- subset(seu_combined_selectsamples, condition == "006.aIg.contr" & highlowpJAK1 != "middle")
seu.JAK1.006 <- SetIdent(seu.JAK1.006, value = "highlowpJAK1")
markers.006 <- FindMarkers(seu.JAK1.006,ident.1 = "p-JAK1 high", ident.2 = "p-JAK1 low", assay = "PROT", slot = "scale.data", logfc.threshold = 0, return.thresh = 1, only.pos = F)
markers.006.RNA <- FindAllMarkers(seu.JAK1.006,assay = "RNA", slot = "data", logfc.threshold = 0.3, return.thresh = 0.01, only.pos = T,min.pct = 0.1)
markers.006.RNA <- FindMarkers(seu.JAK1.006,ident.1 = "p-JAK1 high", ident.2 = "p-JAK1 low", assay = "SCT.RNA", slot = "scale.data", logfc.threshold = 0, return.thresh = 1, only.pos = F)
markers.006$protein <-rownames(markers.006)
markers.006$diffexpressed <- "NO"
markers.006$diffexpressed[markers.006$avg_diff > 0.25 & markers.006$p_val_adj < 0.01] <- "UP"
markers.006$diffexpressed[markers.006$avg_diff < -0.25 & markers.006$p_val_adj < 0.01] <- "DOWN"
mycolors <- c("blue", "red", "black")
names(mycolors) <- c("DOWN", "UP", "NO")
markers.006$delabel <- NA
markers.006$delabel[markers.006$diffexpressed != "NO"] <- markers.006$protein[markers.006$diffexpressed != "NO"]
plot.vulcano.006min <- ggplot(data=markers.006, aes(x=avg_diff , y=-log10(p_val_adj), col=diffexpressed, label=delabel)) +
geom_point(size=0.5) +
theme_minimal() +
geom_text_repel(size=2.2) +
scale_color_manual(values=c("blue", "red", "black")) +
geom_vline(xintercept=c(-0.25, 0.25), col="red") +
geom_hline(yintercept=-log10(0.01), col="red") +
labs(x = expression("Log"[2]*" Fold Change"), y = expression("-log"[10]*" adjusted p-value"), title = "p-JAK1 high vs p-JAK1 low (t = 006 min)") &
add.textsize
sign.markers006 <- markers.006$protein[markers.006$avg_diff > 0.25 & markers.006$p_val_adj < 0.01 | markers.006$avg_diff < -0.25 & markers.006$p_val_adj < 0.01]
plot.vln.006min <- VlnPlot(seu.JAK1.006,assay = "PROT",slot = "scale.data", features = sign.markers006, group.by = "highlowpJAK1",ncol = 6, pt.size = 0.5) &
add.textsize
markers.006.RNA$protein <-rownames(markers.006.RNA)
markers.006.RNA$diffexpressed <- "NO"
markers.006.RNA$diffexpressed[markers.006.RNA$avg_diff > 0.25 & markers.006.RNA$p_val < 0.05] <- "UP"
markers.006.RNA$diffexpressed[markers.006.RNA$avg_diff < -0.25 & markers.006.RNA$p_val < 0.05] <- "DOWN"
mycolors <- c("blue", "red", "black")
names(mycolors) <- c("DOWN", "UP", "NO")
markers.006.RNA$delabel <- NA
markers.006.RNA$delabel[markers.006.RNA$diffexpressed != "NO"] <- markers.006.RNA$protein[markers.006.RNA$diffexpressed != "NO"]
plot.vulcano.006min.RNA <- ggplot(data=markers.006.RNA, aes(x=avg_diff, y=-log10(p_val), col=diffexpressed, label=delabel)) +
geom_point() +
theme_minimal() +
geom_text_repel(size=2.2) +
scale_color_manual(values=c("blue", "red", "black")) +
geom_vline(xintercept=c(-0.25, 0.25), col="red") +
geom_hline(yintercept=-log10(0.05), col="red") +
labs(x = expression("Log"[2]*" Fold Change"), y = expression("-log"[10]*" p-value"), title = "p-JAK1 high vs p-JAK1 low (t = 006 min)") &
add.textsize
sign.markers006.RNA <- markers.006.RNA$protein[markers.006.RNA$avg_diff > 0.25 & markers.006.RNA$p_val < 0.05]
plot.vln.006min.RNA <- VlnPlot(seu.JAK1.006,assay = "RNA", features = sign.markers006.RNA[1:20], group.by = "highlowpJAK1",ncol = 10) &
add.textsize
plot_006min <- plot_grid(plot.vulcano.006min, plot.vln.006min, labels = panellabels[c(3,4)], label_size = 10, ncol = 2, rel_widths = c(1,2))
seu.JAK1.002 <- subset(seu_combined_selectsamples, condition == "002.aIg.contr" & highlowpJAK1 != "middle")
seu.JAK1.002 <- SetIdent(seu.JAK1.002, value = "highlowpJAK1")
markers.002 <- FindMarkers(seu.JAK1.002,ident.1 = "p-JAK1 high", ident.2 = "p-JAK1 low", assay = "PROT", slot = "scale.data", logfc.threshold = 0, return.thresh = 1, only.pos = F)
markers.002.RNA <- FindAllMarkers(seu.JAK1.002,assay = "RNA", slot = "data", logfc.threshold = 0.3, return.thresh = 0.01, only.pos = T,min.pct = 0.1)
markers.002.RNA <- FindMarkers(seu.JAK1.002,ident.1 = "p-JAK1 high", ident.2 = "p-JAK1 low", assay = "SCT.RNA", slot = "scale.data", logfc.threshold = 0, return.thresh = 1, only.pos = F)
markers.002$protein <-rownames(markers.002)
markers.002$diffexpressed <- "NO"
markers.002$diffexpressed[markers.002$avg_diff > 0.25 & markers.002$p_val_adj < 0.01] <- "UP"
markers.002$diffexpressed[markers.002$avg_diff < -0.25 & markers.002$p_val_adj < 0.01] <- "DOWN"
mycolors <- c("blue", "red", "black")
names(mycolors) <- c("DOWN", "UP", "NO")
markers.002$delabel <- NA
markers.002$delabel[markers.002$diffexpressed != "NO"] <- markers.002$protein[markers.002$diffexpressed != "NO"]
plot.vulcano.002min <- ggplot(data=markers.002, aes(x=avg_diff , y=-log10(p_val_adj), col=diffexpressed, label=delabel)) +
geom_point(size=0.5) +
theme_minimal() +
geom_text_repel(size=2.2) +
scale_color_manual(values=c("blue", "red", "black")) +
geom_vline(xintercept=c(-0.25, 0.25), col="red") +
geom_hline(yintercept=-log10(0.01), col="red") +
labs(x = expression("Log"[2]*" Fold Change"), y = expression("-log"[10]*" adjusted p-value"), title = "p-JAK1 high vs p-JAK1 low (t = 002 min)") &
add.textsize
sign.markers002 <- markers.002$protein[markers.002$avg_diff > 0.25 & markers.002$p_val_adj < 0.01 | markers.002$avg_diff < -0.25 & markers.002$p_val_adj < 0.01]
plot.vln.002min <- VlnPlot(seu.JAK1.002,assay = "PROT",slot = "scale.data", features = sign.markers002, group.by = "highlowpJAK1",ncol = 6, pt.size = 0.5) &
add.textsize
markers.002.RNA$protein <-rownames(markers.002.RNA)
markers.002.RNA$diffexpressed <- "NO"
markers.002.RNA$diffexpressed[markers.002.RNA$avg_diff > 0.25 & markers.002.RNA$p_val < 0.05] <- "UP"
markers.002.RNA$diffexpressed[markers.002.RNA$avg_diff < -0.25 & markers.002.RNA$p_val < 0.05] <- "DOWN"
mycolors <- c("blue", "red", "black")
names(mycolors) <- c("DOWN", "UP", "NO")
markers.002.RNA$delabel <- NA
markers.002.RNA$delabel[markers.002.RNA$diffexpressed != "NO"] <- markers.002.RNA$protein[markers.002.RNA$diffexpressed != "NO"]
plot.vulcano.002min.RNA <- ggplot(data=markers.002.RNA, aes(x=avg_diff, y=-log10(p_val), col=diffexpressed, label=delabel)) +
geom_point() +
theme_minimal() +
geom_text_repel(size=2.2) +
scale_color_manual(values=c("blue", "red", "black")) +
geom_vline(xintercept=c(-0.25, 0.25), col="red") +
geom_hline(yintercept=-log10(0.05), col="red") +
labs(x = expression("Log"[2]*" Fold Change"), y = expression("-log"[10]*" p-value"), title = "p-JAK1 high vs p-JAK1 low (t = 002 min)") &
add.textsize
sign.markers002.RNA <- markers.002.RNA$protein[markers.002.RNA$avg_diff > 0.25 & markers.002.RNA$p_val < 0.05]
plot.vln.002min.RNA <- VlnPlot(seu.JAK1.002,assay = "RNA", features = sign.markers002.RNA[1:20], group.by = "highlowpJAK1",ncol = 10) &
add.textsize
plot_002min <- plot_grid(plot.vulcano.002min, plot.vln.002min, labels = panellabels[c(1,2)], label_size = 10, ncol = 2, rel_widths = c(1,2))