Last updated: 2018-07-20
workflowr checks: (Click a bullet for more information)Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
set.seed(20180714)
The command set.seed(20180714)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: docs/.DS_Store
Ignored: docs/figure/.DS_Store
Unstaged changes:
Modified: analysis/flash_em.Rmd
Modified: analysis/index.Rmd
Modified: analysis/obj_notes.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes. Here I look into the bad loadings updates some more.
First I load the flash object from just before the “bad” update discussed in the first investigation. Next, I alternately update the precision and the loadings (I do not update the factors). I do so for 20 iterations.
# devtools::install_github("stephenslab/flashr", ref="trackObj")
devtools::load_all("/Users/willwerscheid/GitHub/flashr")
Loading flashr
# devtools::install_github("stephenslab/ebnm")
devtools::load_all("/Users/willwerscheid/GitHub/ebnm")
Loading ebnm
load("data/before_bad.Rdata")
init_fl <- res2$f
data <- flash_set_data(strong)
k <- 4
fl = init_fl
all_fls = list()
niters = 20
for (i in 1:niters) {
# update precision
R2 = flashr:::flash_get_R2(data, fl)
fl$tau = flashr:::compute_precision(R2, data$missing,
"by_column", data$S)
# update loadings
s2 = 1/(fl$EF2[, k] %*% t(fl$tau))
s = sqrt(s2)
Rk = flashr:::flash_get_Rk(data, fl, k)
x = fl$EF[, k] %*% t(Rk * fl$tau) * s2
ebnm_l = flashr:::ebnm_pn(x, s, list())
KL_l = (ebnm_l$penloglik
- flashr:::NM_posterior_e_loglik(x, s, ebnm_l$postmean,
ebnm_l$postmean2))
fl$EL[, k] = ebnm_l$postmean
fl$EL2[, k] = ebnm_l$postmean2
fl$gl[[k]] = ebnm_l$fitted_g
fl$KL_l[[k]] = KL_l
all_fls[[i]] = fl
}
Interestingly, the objective function gets worse every iteration. Nonetheless, it is apparently converging to something.
for (i in 1:niters) {
message(flash_get_objective(data, all_fls[[i]])
- flash_get_objective(data, init_fl))
}
-0.115442661102861
-0.215697337407619
-0.294866794254631
-0.35520419664681
-0.400229783495888
-0.43337183073163
-0.457542995689437
-0.475060580996796
-0.487700638826936
-0.496793346246704
-0.503320154268295
-0.507998006418347
-0.511347066378221
-0.51374295167625
-0.51545600919053
-0.516680368920788
-0.517555203288794
-0.518180169630796
-0.518626571865752
-0.518945396877825
To confirm that convergence is taking place, I check the estimated prior gl after each iteration. The first list gives the values of π0; the second, the values of a:
for (i in 1:niters) {
message(all_fls[[i]]$gl[[4]]$pi0)
}
0.725369968917067
0.725667291395093
0.725879906389941
0.726031747043764
0.726140171228166
0.726217591908512
0.726272874154216
0.726312348284179
0.726340534554095
0.726360660713668
0.726375031572563
0.726385292894894
0.726392619840946
0.726397851530249
0.726401587130227
0.726404254470323
0.72640615903681
0.726407518957799
0.726408489984264
0.726409183327606
for (i in 1:niters) {
message(all_fls[[i]]$gl[[4]]$a)
}
0.0516088117170904
0.0515789373518519
0.05155757657634
0.0515423298574009
0.0515314481621149
0.0515236810522557
0.0515181364728055
0.0515141781288619
0.0515113520575102
0.0515093343000696
0.0515078936274401
0.051506864975469
0.051506130502068
0.0515056060731487
0.051505231618544
0.0515049642483025
0.0515047733386485
0.0515046370237395
0.0515045396909259
0.0515044701924125
sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ebnm_0.1-12 flashr_0.5-12
loaded via a namespace (and not attached):
[1] Rcpp_0.12.17 pillar_1.2.1 plyr_1.8.4
[4] compiler_3.4.3 git2r_0.21.0 workflowr_1.0.1
[7] R.methodsS3_1.7.1 R.utils_2.6.0 iterators_1.0.9
[10] tools_3.4.3 testthat_2.0.0 digest_0.6.15
[13] tibble_1.4.2 evaluate_0.10.1 memoise_1.1.0
[16] gtable_0.2.0 lattice_0.20-35 rlang_0.2.0
[19] Matrix_1.2-12 foreach_1.4.4 commonmark_1.4
[22] yaml_2.1.17 parallel_3.4.3 withr_2.1.1.9000
[25] stringr_1.3.0 roxygen2_6.0.1.9000 xml2_1.2.0
[28] knitr_1.20 devtools_1.13.4 rprojroot_1.3-2
[31] grid_3.4.3 R6_2.2.2 rmarkdown_1.8
[34] ggplot2_2.2.1 ashr_2.2-10 magrittr_1.5
[37] whisker_0.3-2 backports_1.1.2 scales_0.5.0
[40] codetools_0.2-15 htmltools_0.3.6 MASS_7.3-48
[43] assertthat_0.2.0 softImpute_1.4 colorspace_1.3-2
[46] stringi_1.1.6 lazyeval_0.2.1 munsell_0.4.3
[49] doParallel_1.0.11 pscl_1.5.2 truncnorm_1.0-8
[52] SQUAREM_2017.10-1 R.oo_1.21.0
This reproducible R Markdown analysis was created with workflowr 1.0.1