Last updated: 2020-12-04

Checks: 7 0

Knit directory: IITA_2020GS/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200915) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 79b6430. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    data/.DS_Store
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  data/GEBV_IITA_OutliersRemovedTRUE_73119.csv
    Untracked:  data/PedigreeGeneticGainCycleTime_aafolabi_01122020.csv
    Untracked:  data/iita_blupsForCrossVal_outliersRemoved_73019.rds
    Untracked:  output/DosageMatrix_IITA_2020Sep16.rds
    Untracked:  output/IITA_CleanedTrialData_2020Dec03.rds
    Untracked:  output/IITA_ExptDesignsDetected_2020Dec03.rds
    Untracked:  output/Kinship_AA_IITA_2020Sep16.rds
    Untracked:  output/Kinship_AD_IITA_2020Sep16.rds
    Untracked:  output/Kinship_A_IITA_2020Sep16.rds
    Untracked:  output/Kinship_DD_IITA2020Sep16.rds
    Untracked:  output/Kinship_D_IITA_2020Sep16.rds
    Untracked:  output/cvresults_ModelADE_chunk1.rds
    Untracked:  output/cvresults_ModelADE_chunk2.rds
    Untracked:  output/cvresults_ModelADE_chunk3.rds
    Untracked:  output/genomicPredictions_ModelADE_threestage_IITA_2020Sep21.rds
    Untracked:  output/genomicPredictions_ModelADE_twostage_IITA_2020Dec03.rds
    Untracked:  output/genomicPredictions_ModelA_threestage_IITA_2020Sep21.rds
    Untracked:  output/iita_blupsForModelTraining_twostage_asreml_2020Dec03.rds
    Untracked:  output/model_meangetgvs_vs_year.csv
    Untracked:  output/model_rawgetgvs_vs_year.csv
    Untracked:  output/training_data_summary.csv
    Untracked:  workflowr_log.R

Unstaged changes:
    Modified:   output/IITA_ExptDesignsDetected.rds
    Modified:   output/iita_blupsForModelTraining.rds
    Modified:   output/meanGETGVbyYear_IITA_2020Dec03.csv

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/05-GetGBLUPs.Rmd) and HTML (docs/05-GetGBLUPs.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 7bae38d wolfemd 2020-12-03 Build site.
html b9bb6f8 wolfemd 2020-12-03 Build site.
html d72a9ed wolfemd 2020-09-21 Build site.
html 9194239 wolfemd 2020-09-21 Build site.
Rmd 97778e7 wolfemd 2020-09-21 Big update. Two types of pipeline to get BLUPs, GEBVs and GETGVs:
html d6d72f8 wolfemd 2020-09-17 Build site.
html 7e156dd wolfemd 2020-09-17 Build site.
Rmd 7ea8b80 wolfemd 2020-09-17 All steps including genomic predicting (excluding cross-validation),

Previous step

  1. Check prediction accuracy: Evaluate prediction accuracy with cross-validation.

Objective

Current Step

  1. Genomic prediction: Predict genomic BLUPs (GEBV and GETGV) for all selection candidates using all available data.

Prediction using three-stages

Set-up

# activate multithread OpenBLAS 
export OMP_NUM_THREADS=1
library(tidyverse)
library(magrittr)
source(here::here("code", "gsFunctions.R"))

A <- readRDS(file = here::here("output", "Kinship_A_IITA_2020Sep16.rds"))
D <- readRDS(file = here::here("output", "Kinship_D_IITA_2020Sep16.rds"))
AD <- readRDS(file = here::here("output", "Kinship_AD_IITA_2020Sep16.rds"))

blups <- readRDS(file = here::here("output", "iita_blupsForModelTraining.rds")) %>% 
    select(Trait, modelOutput) %>% unnest(modelOutput) %>% select(Trait, BLUPs) %>% 
    unnest(BLUPs) %>% filter(GID %in% rownames(A)) %>% nest(TrainingData = -Trait)

Prediction

cbsurobbins (112 cores; 512GB)

Model A

options(future.globals.maxSize = 1500 * 1024^2)
predModelA <- runGenomicPredictions(blups, modelType = "A", grms = list(A = A), gid = "GID", 
    ncores = 13)
saveRDS(predModelA, file = here::here("output", "genomicPredictions_ModelA_threestage_IITA_2020Sep21.rds"))

Model ADE

options(future.globals.maxSize = 3000 * 1024^2)
predModelADE <- runGenomicPredictions(blups, modelType = "ADE", grms = list(A = A, 
    D = D, AD = AD), gid = "GID", ncores = 13)
saveRDS(predModelADE, file = here::here("output", "genomicPredictions_ModelADE_threestage_IITA_2020Sep21.rds"))

Write GEBVs

library(tidyverse)
library(magrittr)
predModelA <- readRDS(file = here::here("output", "genomicPredictions_ModelA_threestage_IITA_2020Sep21.rds"))
predModelADE <- readRDS(file = here::here("output", "genomicPredictions_ModelADE_threestage_IITA_2020Sep21.rds"))
traits <- c("MCMDS", "DM", "PLTHT", "BRNHT1", "BRLVLS", "HI", "logFYLD", "logTOPYLD", 
    "logRTNO", "TCHART", "LCHROMO", "ACHROMO", "BCHROMO")
predModelA %>% dplyr::select(Trait, genomicPredOut) %>% unnest(genomicPredOut) %>% 
    select(-varcomps) %>% unnest(gblups) %>% select(-GETGV) %>% spread(Trait, GEBV) %>% 
    mutate(GeneticGroup = NA, GeneticGroup = ifelse(grepl("TMS18", GID, ignore.case = T), 
        "TMS18", ifelse(grepl("TMS15", GID, ignore.case = T), "TMS15", ifelse(grepl("TMS14", 
            GID, ignore.case = T), "TMS14", ifelse(grepl("TMS13|2013_", GID, ignore.case = T), 
            "TMS13", "GGetc"))))) %>% select(GeneticGroup, GID, all_of(traits)) %>% 
    arrange(desc(GeneticGroup)) %>% write.csv(., file = here::here("output", "GEBV_IITA_ModelA_threestage_IITA_2020Sep21.csv"), 
    row.names = F)
## Format and write GETGV
predModelADE %>% dplyr::select(Trait, genomicPredOut) %>% unnest(genomicPredOut) %>% 
    select(-varcomps) %>% unnest(gblups) %>% select(Trait, GID, GETGV) %>% spread(Trait, 
    GETGV) %>% mutate(GeneticGroup = NA, GeneticGroup = ifelse(grepl("TMS18", GID, 
    ignore.case = T), "TMS18", ifelse(grepl("TMS15", GID, ignore.case = T), "TMS15", 
    ifelse(grepl("TMS14", GID, ignore.case = T), "TMS14", ifelse(grepl("TMS13|2013_", 
        GID, ignore.case = T), "TMS13", "GGetc"))))) %>% select(GeneticGroup, GID, 
    all_of(traits)) %>% arrange(desc(GeneticGroup)) %>% write.csv(., file = here::here("output", 
    "GETGV_IITA_ModelADE_threestage_IITA_2020Sep21.csv"), row.names = F)
# gebv_vs_getgv<-predModelA %>% dplyr::select(Trait,genomicPredOut) %>%
# unnest(genomicPredOut) %>% select(-varcomps) %>% unnest(gblups) %>%
# select(-GETGV) %>% left_join(predModelADE %>%
# dplyr::select(Trait,genomicPredOut) %>% unnest(genomicPredOut) %>%
# select(-varcomps) %>% unnest(gblups) %>% select(Trait,GID,GETGV)) %>%
# mutate(GeneticGroup=NA, GeneticGroup=ifelse(grepl('TMS18',GID,ignore.case =
# T),'TMS18', ifelse(grepl('TMS15',GID,ignore.case = T),'TMS15',
# ifelse(grepl('TMS14',GID,ignore.case = T),'TMS14',
# ifelse(grepl('TMS13|2013_',GID,ignore.case = T),'TMS13','GGetc')))))
# gebv_vs_getgv %>% ggplot(.,aes(x=GEBV,y=GETGV,color=GeneticGroup)) +
# geom_point(alpha=0.7) + geom_abline(slope=1, color='darkred',
# linetype='dashed') + theme_bw() + facet_wrap(~Trait, ncol=3, scales='free') +
# scale_color_viridis_d()

Prediction using two-stages

Set-up

# activate multithread OpenBLAS 
export OMP_NUM_THREADS=1
library(tidyverse)
library(magrittr)
source(here::here("code", "gsFunctions.R"))

A <- readRDS(file = here::here("output", "Kinship_A_IITA_2020Sep16.rds"))
D <- readRDS(file = here::here("output", "Kinship_D_IITA_2020Sep16.rds"))
AD <- readRDS(file = here::here("output", "Kinship_AD_IITA_2020Sep16.rds"))

# BLUPs from the 2 stage procedure (stage 1 of 2) using the 2019 procedure
blups <- readRDS(file = here::here("output", "iita_blupsForModelTraining_twostage_asreml.rds")) %>% 
    dplyr::select(Trait, blups) %>% unnest(blups) %>% filter(GID %in% rownames(A)) %>% 
    nest(TrainingData = -Trait)

Prediction

cbsurobbins (112 cores; 512GB)

Model A

options(future.globals.maxSize = 1500 * 1024^2)
predModelA <- runGenomicPredictions(blups, modelType = "A", grms = list(A = A), gid = "GID", 
    ncores = 13)
saveRDS(predModelA, file = here::here("output", "genomicPredictions_ModelA_twostage_IITA_2020Sep21.rds"))

Model ADE

options(future.globals.maxSize = 3000 * 1024^2)
predModelADE <- runGenomicPredictions(blups, modelType = "ADE", grms = list(A = A, 
    D = D, AD = AD), gid = "GID", ncores = 13)
saveRDS(predModelADE, file = here::here("output", "genomicPredictions_ModelADE_twostage_IITA_2020Sep21.rds"))

Write GEBVs

library(tidyverse)
library(magrittr)
predModelA <- readRDS(file = here::here("output", "genomicPredictions_ModelA_twostage_IITA_2020Sep21.rds"))
predModelADE <- readRDS(file = here::here("output", "genomicPredictions_ModelADE_twostage_IITA_2020Sep21.rds"))
traits <- c("MCMDS", "DM", "PLTHT", "BRNHT1", "BRLVLS", "HI", "logFYLD", "logTOPYLD", 
    "logRTNO", "TCHART", "LCHROMO", "ACHROMO", "BCHROMO")
predModelA %>% dplyr::select(Trait, genomicPredOut) %>% unnest(genomicPredOut) %>% 
    select(-varcomps) %>% unnest(gblups) %>% select(-GETGV, -contains("PEV")) %>% 
    spread(Trait, GEBV) %>% mutate(GeneticGroup = NA, GeneticGroup = ifelse(grepl("TMS18", 
    GID, ignore.case = T), "TMS18", ifelse(grepl("TMS15", GID, ignore.case = T), 
    "TMS15", ifelse(grepl("TMS14", GID, ignore.case = T), "TMS14", ifelse(grepl("TMS13|2013_", 
        GID, ignore.case = T), "TMS13", "GGetc"))))) %>% select(GeneticGroup, GID, 
    any_of(traits)) %>% arrange(desc(GeneticGroup)) %>% write.csv(., file = here::here("output", 
    "GEBV_IITA_ModelA_twostage_IITA_2020Sep21.csv"), row.names = F)
## Format and write GETGV
predModelADE %>% dplyr::select(Trait, genomicPredOut) %>% unnest(genomicPredOut) %>% 
    select(-varcomps) %>% unnest(gblups) %>% select(Trait, GID, GETGV) %>% spread(Trait, 
    GETGV) %>% mutate(GeneticGroup = NA, GeneticGroup = ifelse(grepl("TMS18", GID, 
    ignore.case = T), "TMS18", ifelse(grepl("TMS15", GID, ignore.case = T), "TMS15", 
    ifelse(grepl("TMS14", GID, ignore.case = T), "TMS14", ifelse(grepl("TMS13|2013_", 
        GID, ignore.case = T), "TMS13", "GGetc"))))) %>% select(GeneticGroup, GID, 
    any_of(traits)) %>% arrange(desc(GeneticGroup)) %>% write.csv(., file = here::here("output", 
    "GETGV_IITA_ModelADE_twostage_IITA_2020Sep21.csv"), row.names = F)
gebv_vs_getgv <- predModelA %>% dplyr::select(Trait, genomicPredOut) %>% unnest(genomicPredOut) %>% 
    select(-varcomps) %>% unnest(gblups) %>% select(-GETGV) %>% left_join(predModelADE %>% 
    dplyr::select(Trait, genomicPredOut) %>% unnest(genomicPredOut) %>% select(-varcomps) %>% 
    unnest(gblups) %>% select(Trait, GID, GETGV)) %>% mutate(GeneticGroup = NA, GeneticGroup = ifelse(grepl("TMS18", 
    GID, ignore.case = T), "TMS18", ifelse(grepl("TMS15", GID, ignore.case = T), 
    "TMS15", ifelse(grepl("TMS14", GID, ignore.case = T), "TMS14", ifelse(grepl("TMS13|2013_", 
        GID, ignore.case = T), "TMS13", "GGetc")))))
gebv_vs_getgv %>% ggplot(., aes(x = GEBV, y = GETGV, color = GeneticGroup)) + geom_point(alpha = 0.7) + 
    geom_abline(slope = 1, color = "darkred", linetype = "dashed") + theme_bw() + 
    facet_wrap(~Trait, ncol = 3, scales = "free") + scale_color_viridis_d()

Version Author Date
b9bb6f8 wolfemd 2020-12-03
9194239 wolfemd 2020-09-21

Next step

  1. Results

sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.7

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] magrittr_2.0.1  forcats_0.5.0   stringr_1.4.0   dplyr_1.0.2    
 [5] purrr_0.3.4     readr_1.4.0     tidyr_1.1.2     tibble_3.0.4   
 [9] ggplot2_3.3.2   tidyverse_1.3.0 workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] tidyselect_1.1.0  xfun_0.19         haven_2.3.1       colorspace_2.0-0 
 [5] vctrs_0.3.5       generics_0.1.0    viridisLite_0.3.0 htmltools_0.5.0  
 [9] yaml_2.2.1        rlang_0.4.9       later_1.1.0.1     pillar_1.4.7     
[13] withr_2.3.0       glue_1.4.2        DBI_1.1.0         dbplyr_2.0.0     
[17] modelr_0.1.8      readxl_1.3.1      lifecycle_0.2.0   munsell_0.5.0    
[21] gtable_0.3.0      cellranger_1.1.0  rvest_0.3.6       evaluate_0.14    
[25] labeling_0.4.2    knitr_1.30        ps_1.4.0          httpuv_1.5.4     
[29] fansi_0.4.1       broom_0.7.2       Rcpp_1.0.5        promises_1.1.1   
[33] backports_1.2.0   scales_1.1.1      formatR_1.7       jsonlite_1.7.1   
[37] farver_2.0.3      fs_1.5.0          hms_0.5.3         digest_0.6.27    
[41] stringi_1.5.3     rprojroot_2.0.2   grid_4.0.2        here_1.0.0       
[45] cli_2.2.0         tools_4.0.2       crayon_1.3.4      whisker_0.4      
[49] pkgconfig_2.0.3   ellipsis_0.3.1    xml2_1.3.2        reprex_0.3.0     
[53] lubridate_1.7.9.2 rstudioapi_0.13   assertthat_0.2.1  rmarkdown_2.5    
[57] httr_1.4.2        R6_2.5.0          git2r_0.27.1      compiler_4.0.2