Last updated: 2020-12-03
Checks: 7 0
Knit directory: IITA_2020GS/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200915)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 9718666. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: data/.DS_Store
Ignored: output/.DS_Store
Untracked files:
Untracked: data/GEBV_IITA_OutliersRemovedTRUE_73119.csv
Untracked: data/PedigreeGeneticGainCycleTime_aafolabi_01122020.csv
Untracked: data/PedigreeGeneticGainCycleTime_aafolabi_01122020.xls
Untracked: data/iita_blupsForCrossVal_outliersRemoved_73019.rds
Untracked: output/DosageMatrix_IITA_2020Sep16.rds
Untracked: output/GETGV_IITA_ModelADE_twostage_IITA_2020Dec03.csv
Untracked: output/GETGV_IITA_ModelADE_twostage_IITA_2020Dec03_withAccessionYear.csv
Untracked: output/IITA_CleanedTrialData_2020Dec03.rds
Untracked: output/IITA_ExptDesignsDetected_2020Dec03.rds
Untracked: output/Kinship_AA_IITA_2020Sep16.rds
Untracked: output/Kinship_AD_IITA_2020Sep16.rds
Untracked: output/Kinship_A_IITA_2020Sep16.rds
Untracked: output/Kinship_DD_IITA2020Sep16.rds
Untracked: output/Kinship_D_IITA_2020Sep16.rds
Untracked: output/all_iita_metadata_Dec2020.csv
Untracked: output/cvresults_ModelADE_chunk1.rds
Untracked: output/cvresults_ModelADE_chunk2.rds
Untracked: output/cvresults_ModelADE_chunk3.rds
Untracked: output/genomicPredictions_ModelADE_threestage_IITA_2020Sep21.rds
Untracked: output/genomicPredictions_ModelADE_twostage_IITA_2020Dec03.rds
Untracked: output/genomicPredictions_ModelA_threestage_IITA_2020Sep21.rds
Untracked: output/iita_blupsForModelTraining_twostage_asreml_2020Dec03.rds
Untracked: output/iita_trials_NOT_identifiable_Dec2020.csv
Untracked: output/meanGETGVbyYear_IITA_2020Dec03.csv
Untracked: output/trials_uploaded_by_Nharvested_15Sep2020.csv
Untracked: workflowr_log.R
Unstaged changes:
Modified: output/maxNOHAV_byStudy.csv
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/08-GetBLUPs_Dec2020.Rmd
) and HTML (docs/08-GetBLUPs_Dec2020.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 9718666 | wolfemd | 2020-12-03 | Refresh BLUPs and GBLUPs with trials harvested so far. Include |
rm(list = ls())
library(tidyverse)
library(magrittr)
dbdata <- readRDS(here::here("output", "IITA_CleanedTrialData_2020Dec03.rds"))
source(here::here("code", "gsFunctions.R"))
dbdata <- nestByTrials(dbdata)
The next step is to check the experimental design of each trial. If you are absolutely certain of the usage of the design variables in your dataset, you might not need this step.
Examples of reasons to do the step below:
One reason it might be important to get this right is that the variance among complete blocks might not be the same among incomplete blocks. If we treat a mixture of complete and incomplete blocks as part of the same random-effect (replicated-within-trial), we assume they have the same variance.
Also error variances might be heterogeneous among different trial-types (blocking scheme available) and/or plot sizes (maxNOHAV).
Detect designs
dbdata <- detectExptDesigns(dbdata)
dbdata %>% count(programName, CompleteBlocks, IncompleteBlocks) %>% rmarkdown::paged_table()
saveRDS(dbdata, file = here::here("output", "IITA_ExptDesignsDetected_2020Dec03.rds"))
Two-stage procedure:
Work below represents Stage 1 of the Two-stage procedure.
# activate multithread OpenBLAS for fast matrix algebra
export OMP_NUM_THREADS=56
rm(list=ls())
library(tidyverse); library(magrittr);
#source(here::here("code","gsFunctions.R"))
dbdata<-readRDS(here::here("output","IITA_ExptDesignsDetected_2020Dec03.rds"))
traits<-c("MCMDS","DM","PLTHT","BRNHT1","BRLVLS","HI",
"logDYLD", # <-- logDYLD now included.
"logFYLD","logTOPYLD","logRTNO","TCHART","LCHROMO","ACHROMO","BCHROMO")
Nest by trait. Need to restructure the data from per-trial by regrouping by trait.
dbdata %<>% dplyr::select(-MaxNOHAV) %>% unnest(TrialData) %>% dplyr::select(programName,
locationName, studyYear, TrialType, studyName, CompleteBlocks, IncompleteBlocks,
yearInLoc, trialInLocYr, repInTrial, blockInRep, observationUnitDbId, germplasmName,
FullSampleName, GID, all_of(traits), PropNOHAV) %>% mutate(IncompleteBlocks = ifelse(IncompleteBlocks ==
TRUE, "Yes", "No"), CompleteBlocks = ifelse(CompleteBlocks == TRUE, "Yes", "No")) %>%
pivot_longer(cols = all_of(traits), names_to = "Trait", values_to = "Value") %>%
filter(!is.na(Value), !is.na(GID)) %>% nest(MultiTrialTraitData = c(-Trait))
To fit the mixed-model I used last year, I am again resorting to asreml
. I fit random effects for rep and block only where complete and incomplete blocks, respectively are indicated in the trial design variables. sommer
should be able to fit the same model via the at()
function, but I am having trouble with it and sommer
is much slower even without a dense covariance (i.e. a kinship), compared to lme4::lmer()
or asreml()
.
dbdata %<>% mutate(fixedFormula = ifelse(Trait %in% c("logFYLD", "logRTNO", "logTOPYLD"),
"Value ~ yearInLoc", "Value ~ yearInLoc + PropNOHAV"), randFormula = paste0("~idv(GID) + idv(trialInLocYr) + at(CompleteBlocks,'Yes'):repInTrial ",
"+ at(IncompleteBlocks,'Yes'):blockInRep"))
dbdata %>% mutate(Nobs = map_dbl(MultiTrialTraitData, nrow)) %>% select(Trait, Nobs,
fixedFormula, randFormula) %>% rmarkdown::paged_table()
# randFormula<-paste0('~vs(GID) + vs(trialInLocYr) +
# vs(at(CompleteBlocks,'Yes'),repInTrial) +
# vs(at(IncompleteBlocks,'Yes'),blockInRep)') library(sommer) fit <- mmer(fixed =
# Value ~ 1 + yearInLoc, random = as.formula(randFormula), data=trainingdata,
# getPEV=TRUE)
Includes rounds of outlier removal and re-fitting.
fitASfunc<-function(fixedFormula,randFormula,MultiTrialTraitData,...){
# test arguments for function
# ----------------------
# MultiTrialTraitData<-dbdata$MultiTrialTraitData[[7]]
# #Trait<-dbdata$Trait[[3]]
# fixedFormula<-dbdata$fixedFormula[[7]]
# randFormula<-dbdata$randFormula[[7]]
# test<-fitASfunc(fixedFormula,randFormula,MultiTrialTraitData)
# ----------------------
require(asreml);
fixedFormula<-as.formula(fixedFormula)
randFormula<-as.formula(randFormula)
# fit asreml
out<-asreml(fixed = fixedFormula,
random = randFormula,
data = MultiTrialTraitData,
maxiter = 40, workspace=800e6, na.method.X = "omit")
#### extract residuals - Round 1
outliers1<-which(abs(scale(out$residuals))>3.3)
if(length(outliers1)>0){
x<-MultiTrialTraitData[-outliers1,]
# re-fit
out<-asreml(fixed = fixedFormula,
random = randFormula,
data = x,
maxiter = 40, workspace=800e6, na.method.X = "omit")
#### extract residuals - Round 2
outliers2<-which(abs(scale(out$residuals))>3.3)
if(length(outliers2)>0){
#### remove outliers
x<-x[-outliers2,]
# final re-fit
out<-asreml(fixed = fixedFormula,
random = randFormula,
data = x, maxiter = 40,workspace=800e6, na.method.X = "omit")
}
}
if(length(outliers1)==0){ outliers1<-NULL }
if(length(outliers2)==0){ outliers2<-NULL }
ll<-summary(out,all=T)$loglik
varcomp<-summary(out,all=T)$varcomp
Vg<-varcomp["GID!GID.var","component"]
Ve<-varcomp["R!variance","component"]
H2=Vg/(Vg+Ve)
blups<-summary(out,all=T)$coef.random %>%
as.data.frame %>%
rownames_to_column(var = "GID") %>%
dplyr::select(GID,solution,`std error`) %>%
filter(grepl("GID",GID)) %>%
rename(BLUP=solution) %>%
mutate(GID=gsub("GID_","",GID),
PEV=`std error`^2, # asreml specific
REL=1-(PEV/Vg), # Reliability
drgBLUP=BLUP/REL, # deregressed BLUP
WT=(1-H2)/((0.1 + (1-REL)/REL)*H2)) # weight for use in Stage 2
out<-tibble(loglik=ll,Vg,Ve,H2,
blups=list(blups),
varcomp=list(varcomp),
outliers1=list(outliers1),
outliers2=list(outliers2))
return(out) }
library(furrr)
options(mc.cores = 14)
plan(multiprocess)
library(asreml)
dbdata %<>% mutate(fitAS = future_pmap(., fitASfunc))
dbdata %<>% select(-fixedFormula, -randFormula, -MultiTrialTraitData) %>% unnest(fitAS)
saveRDS(dbdata, file = here::here("output", "iita_blupsForModelTraining_twostage_asreml_2020Dec03.rds"))
sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.7
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] magrittr_2.0.1 forcats_0.5.0 stringr_1.4.0 dplyr_1.0.2
[5] purrr_0.3.4 readr_1.4.0 tidyr_1.1.2 tibble_3.0.4
[9] ggplot2_3.3.2 tidyverse_1.3.0 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] tidyselect_1.1.0 xfun_0.19 haven_2.3.1 colorspace_2.0-0
[5] vctrs_0.3.5 generics_0.1.0 htmltools_0.5.0 yaml_2.2.1
[9] rlang_0.4.9 later_1.1.0.1 pillar_1.4.7 withr_2.3.0
[13] glue_1.4.2 DBI_1.1.0 dbplyr_2.0.0 modelr_0.1.8
[17] readxl_1.3.1 lifecycle_0.2.0 munsell_0.5.0 gtable_0.3.0
[21] cellranger_1.1.0 rvest_0.3.6 evaluate_0.14 knitr_1.30
[25] ps_1.4.0 httpuv_1.5.4 fansi_0.4.1 broom_0.7.2
[29] Rcpp_1.0.5 promises_1.1.1 backports_1.2.0 scales_1.1.1
[33] formatR_1.7 jsonlite_1.7.1 fs_1.5.0 hms_0.5.3
[37] digest_0.6.27 stringi_1.5.3 rprojroot_2.0.2 grid_4.0.2
[41] here_1.0.0 cli_2.2.0 tools_4.0.2 crayon_1.3.4
[45] whisker_0.4 pkgconfig_2.0.3 ellipsis_0.3.1 xml2_1.3.2
[49] reprex_0.3.0 lubridate_1.7.9.2 rstudioapi_0.13 assertthat_0.2.1
[53] rmarkdown_2.5 httr_1.4.2 R6_2.5.0 git2r_0.27.1
[57] compiler_4.0.2