Last updated: 2021-06-10

Checks: 7 0

Knit directory: implementGMSinCassava/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210504) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version a8452ba. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/accuracies.png
    Ignored:    analysis/fig2.png
    Ignored:    analysis/fig3.png
    Ignored:    analysis/fig4.png
    Ignored:    code/.DS_Store
    Ignored:    data/.DS_Store

Untracked files:
    Untracked:  accuracies.png
    Untracked:  analysis/docs/
    Untracked:  analysis/speedUpPredCrossVar.Rmd
    Untracked:  code/AlphaAssign-Python/
    Untracked:  code/calcGameticLD.cpp
    Untracked:  code/col_sums.cpp
    Untracked:  code/convertDart2vcf.R
    Untracked:  code/gsFunctions.R
    Untracked:  code/helloworld.cpp
    Untracked:  code/imputationFunctions.R
    Untracked:  code/matmult.cpp
    Untracked:  code/misc.cpp
    Untracked:  code/test.cpp
    Untracked:  data/CassavaGeneticMap/
    Untracked:  data/DatabaseDownload_2021May04/
    Untracked:  data/GBSdataMasterList_31818.csv
    Untracked:  data/IITA_GBStoPhenoMaster_33018.csv
    Untracked:  data/NRCRI_GBStoPhenoMaster_40318.csv
    Untracked:  data/blups_forCrossVal.rds
    Untracked:  data/chr1_RefPanelAndGSprogeny_ReadyForGP_72719.fam
    Untracked:  data/dosages_IITA_filtered_2021May13.rds
    Untracked:  data/genmap_2021May13.rds
    Untracked:  data/haps_IITA_filtered_2021May13.rds
    Untracked:  data/recombFreqMat_1minus2c_2021May13.rds
    Untracked:  fig2.png
    Untracked:  fig3.png
    Untracked:  figure/
    Untracked:  output/IITA_CleanedTrialData_2021May10.rds
    Untracked:  output/IITA_ExptDesignsDetected_2021May10.rds
    Untracked:  output/IITA_blupsForModelTraining_twostage_asreml_2021May10.rds
    Untracked:  output/IITA_trials_NOT_identifiable.csv
    Untracked:  output/crossValPredsA.rds
    Untracked:  output/crossValPredsAD.rds
    Untracked:  output/cvMeanPredAccuracyA.rds
    Untracked:  output/cvMeanPredAccuracyAD.rds
    Untracked:  output/cvPredMeansA.rds
    Untracked:  output/cvPredMeansAD.rds
    Untracked:  output/cvVarPredAccuracyA.rds
    Untracked:  output/cvVarPredAccuracyAD.rds
    Untracked:  output/kinship_A_IITA_2021May13.rds
    Untracked:  output/kinship_D_IITA_2021May13.rds
    Untracked:  output/markEffsTest.rds
    Untracked:  output/markerEffects.rds
    Untracked:  output/markerEffectsA.rds
    Untracked:  output/markerEffectsAD.rds
    Untracked:  output/maxNOHAV_byStudy.csv
    Untracked:  output/obsCrossMeansAndVars.rds
    Untracked:  output/parentfolds.rds
    Untracked:  output/ped2check_genome.rds
    Untracked:  output/ped2genos.txt
    Untracked:  output/pednames2keep.txt
    Untracked:  output/pednames_Prune100_25_pt25.log
    Untracked:  output/pednames_Prune100_25_pt25.nosex
    Untracked:  output/pednames_Prune100_25_pt25.prune.in
    Untracked:  output/pednames_Prune100_25_pt25.prune.out
    Untracked:  output/potential_dams.txt
    Untracked:  output/potential_sires.txt
    Untracked:  output/predVarTest.rds
    Untracked:  output/samples2keep_IITA_2021May13.txt
    Untracked:  output/samples2keep_IITA_MAFpt01_prune50_25_pt98.log
    Untracked:  output/samples2keep_IITA_MAFpt01_prune50_25_pt98.nosex
    Untracked:  output/samples2keep_IITA_MAFpt01_prune50_25_pt98.prune.in
    Untracked:  output/samples2keep_IITA_MAFpt01_prune50_25_pt98.prune.out
    Untracked:  output/verified_ped.txt

Unstaged changes:
    Modified:   README.md

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/01-cleanTPdata.Rmd) and HTML (docs/01-cleanTPdata.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd a8452ba wolfemd 2021-06-10 Initial build of the entire page upon completion of all

Follow outlined GenomicPredictionChecklist and previous pipeline to process cassavabase data for ultimate genomic prediction.

Below we will clean and format training data.

  • Inputs: “Raw” field trial data
  • Expected outputs: “Cleaned” field trial data

[User input] Cassavabase download

Downloaded all IITA field trials.

  1. Cassavabase search wizard:

  2. Selected all IITA trials currently available. Make a list. Named it ALL_IITA_TRIALS_2021May04.

  3. Go to Manage –> Download here. Download phenotypes (plot-basis only) and meta-data as CSV using the corresponding boxes / drop-downs.

  4. Store flatfiles, unaltered in directory data/DatabaseDownload_2021May04/.

rm(list=ls())
library(tidyverse); library(magrittr);
source(here::here("code","gsFunctions.R"))

Read DB data.

dbdata<-readDBdata(phenotypeFile = here::here("data/DatabaseDownload_2021May04"
                                              ,"2021-05-04T193557phenotype_download.csv"),
                  metadataFile = here::here("data/DatabaseDownload_2021May04"
                                              ,"2021-05-04T194847metadata_download.csv"))

Group and select trials to analyze

Make TrialType Variable

dbdata<-makeTrialTypeVar(dbdata) 
dbdata %>% 
  count(TrialType) %>% rmarkdown::paged_table()

Trials NOT included

Looking at the studyName’s of trials getting NA for TrialType, which can’t be classified at present.

Here is the list of trials I am not including.

dbdata %>% filter(is.na(TrialType)) %$% unique(studyName) %>% 
  write.csv(.,file = here::here("output","IITA_trials_NOT_identifiable.csv"), row.names = F)

Wrote to disk a CSV in the output/ sub-directory.

Should any of these trials have been included?

Especially among the following new trials (post 2018):

dbdata %>% 
  filter(is.na(TrialType),
         as.numeric(studyYear)>2018) %$% unique(studyName)

Remove unclassified trials

dbdata %<>% 
    filter(!is.na(TrialType)) 
dbdata %>% 
    group_by(programName) %>% 
    summarize(N=n()) %>% rmarkdown::paged_table()
#   May 2021:   524390 (now including a ~200K plot seedling nursery) plots
## Dec 2020: 475097 plots (~155K are seedling nurseries which will be excluded from most analyses)

Traits and TraitAbbreviations

Making a table of abbreviations for renaming. Since July 2019 version: added chromometer traits (L, a, b) and added branching levels count (BRLVLS) at IYR’s request.

traitabbrevs<-tribble(~TraitAbbrev,~TraitName,
        "CMD1S","cassava.mosaic.disease.severity.1.month.evaluation.CO_334.0000191",
        "CMD3S","cassava.mosaic.disease.severity.3.month.evaluation.CO_334.0000192",
        "CMD6S","cassava.mosaic.disease.severity.6.month.evaluation.CO_334.0000194",
        "CMD9S","cassava.mosaic.disease.severity.9.month.evaluation.CO_334.0000193",
        "CGM","Cassava.green.mite.severity.CO_334.0000033",
        "CGMS1","cassava.green.mite.severity.first.evaluation.CO_334.0000189",
        "CGMS2","cassava.green.mite.severity.second.evaluation.CO_334.0000190",
        "DM","dry.matter.content.percentage.CO_334.0000092",
        "PLTHT","plant.height.measurement.in.cm.CO_334.0000018",
        "BRNHT1","first.apical.branch.height.measurement.in.cm.CO_334.0000106",
        "BRLVLS","branching.level.counting.CO_334.0000079",
        "SHTWT","fresh.shoot.weight.measurement.in.kg.per.plot.CO_334.0000016",
        "RTWT","fresh.storage.root.weight.per.plot.CO_334.0000012",
        "RTNO","root.number.counting.CO_334.0000011",
        "TCHART","total.carotenoid.by.chart.1.8.CO_334.0000161",
        "LCHROMO","L.chromometer.value.CO_334.0002065",
        "ACHROMO","a.chromometer.value.CO_334.0002066",
        "BCHROMO","b.chromometer.value.CO_334.0002064",
        "NOHAV","plant.stands.harvested.counting.CO_334.0000010")
traitabbrevs %>% rmarkdown::paged_table()

Run function renameAndSelectCols() to rename columns and remove everything unecessary

dbdata<-renameAndSelectCols(traitabbrevs,indata=dbdata,customColsToKeep = c("TrialType","observationUnitName"))

QC Trait values

dbdata<-dbdata %>% 
  mutate(CMD1S=ifelse(CMD1S<1 | CMD1S>5,NA,CMD1S),
         CMD3S=ifelse(CMD3S<1 | CMD3S>5,NA,CMD3S),
         CMD6S=ifelse(CMD6S<1 | CMD6S>5,NA,CMD6S), 
         CMD9S=ifelse(CMD9S<1 | CMD9S>5,NA,CMD9S),
         CGM=ifelse(CGM<1 | CGM>5,NA,CGM),
         CGMS1=ifelse(CGMS1<1 | CGMS1>5,NA,CGMS1),
         CGMS2=ifelse(CGMS2<1 | CGMS2>5,NA,CGMS2),
         DM=ifelse(DM>100 | DM<=0,NA,DM),
         RTWT=ifelse(RTWT==0 | NOHAV==0 | is.na(NOHAV),NA,RTWT),
         SHTWT=ifelse(SHTWT==0 | NOHAV==0 | is.na(NOHAV),NA,SHTWT),
         RTNO=ifelse(RTNO==0 | NOHAV==0 | is.na(NOHAV),NA,RTNO),
         NOHAV=ifelse(NOHAV==0,NA,NOHAV),
         NOHAV=ifelse(NOHAV>42,NA,NOHAV),
         RTNO=ifelse(!RTNO %in% 1:10000,NA,RTNO))

Post-QC traits

Harvest index

dbdata<-dbdata %>% 
    mutate(HI=RTWT/(RTWT+SHTWT))

Unit area traits

I anticipate this will not be necessary as it will be computed before or during data upload.

For calculating fresh root yield:

  1. PlotSpacing: Area in \(m^2\) per plant. plotWidth and plotLength metadata would hypothetically provide this info, but is missing for vast majority of trials. Therefore, use info from Fola.
  2. maxNOHAV: Instead of ExpectedNOHAV. Need to know the max number of plants in the area harvested. For some trials, only the inner (or “net”) plot is harvested, therefore the PlantsPerPlot meta-variable will not suffice. Besides, the PlantsPerPlot information is missing for the vast majority of trials. Instead, use observed max(NOHAV) for each trial. We use this plus the PlotSpacing to calc. the area over which the RTWT was measured. During analysis, variation in the actual number of plants harvested will be accounted for.
dbdata<-dbdata %>% 
    mutate(PlotSpacing=ifelse(programName!="IITA",1,
                              ifelse(studyYear<2013,1,
                              ifelse(TrialType %in% c("CET","GeneticGain","ExpCET"),1,0.8))))
maxNOHAV_byStudy<-dbdata %>% 
  group_by(programName,locationName,studyYear,studyName,studyDesign) %>% 
  summarize(MaxNOHAV=max(NOHAV, na.rm=T)) %>% 
  ungroup() %>% 
  mutate(MaxNOHAV=ifelse(MaxNOHAV=="-Inf",NA,MaxNOHAV))

write.csv(maxNOHAV_byStudy %>% arrange(studyYear),file=here::here("output","maxNOHAV_byStudy.csv"), row.names = F)
# I log transform yield traits 
# to satisfy homoskedastic residuals assumption 
# of linear mixed models
dbdata<-left_join(dbdata,maxNOHAV_byStudy) %>% 
  mutate(RTWT=ifelse(NOHAV>MaxNOHAV,NA,RTWT),
         SHTWT=ifelse(NOHAV>MaxNOHAV,NA,SHTWT),
         RTNO=ifelse(NOHAV>MaxNOHAV,NA,RTNO),
         HI=ifelse(NOHAV>MaxNOHAV,NA,HI),
         FYLD=RTWT/(MaxNOHAV*PlotSpacing)*10,
         DYLD=FYLD*(DM/100),
         logFYLD=log(FYLD),
         logDYLD=log(DYLD),
         logTOPYLD=log(SHTWT/(MaxNOHAV*PlotSpacing)*10),
         logRTNO=log(RTNO),
         PropNOHAV=NOHAV/MaxNOHAV) 
# remove non transformed / per-plot (instead of per area) traits
dbdata %<>% select(-RTWT,-SHTWT,-RTNO,-FYLD,-DYLD)

Season-wide mean disease severity

# [NEW AS OF APRIL 2021]
## VERSION with vs. without CBSD
## Impervious to particular timepoints between 1, 3, 6 and 9 scores

# Without CBSD (West Africa)
dbdata<-dbdata %>% 
  mutate(MCMDS=rowMeans(.[,colnames(.) %in% c("CMD1S","CMD3S","CMD6S","CMD9S")], na.rm = T)) %>% 
  select(-any_of(c("CMD1S","CMD3S","CMD6S","CMD9S")))

# With CBSD (East Africa)
# dbdata<-dbdata %>% 
#   mutate(MCMDS=rowMeans(.[,colnames(.) %in% c("CMD1S","CMD3S","CMD6S","CMD9S")], na.rm = T),
#          MCBSDS=rowMeans(.[,colnames(.) %in% c("CBSD1S","CBSD3S","CBSD6S","CBSD9S")], na.rm = T)) %>% 
#   select(-any_of(c("CMD1S","CMD3S","CMD6S","CMD9S","CBSD1S","CBSD3S","CBSD6S","CBSD9S")))

[User input] Assign genos to phenos

This step is mostly copy-pasted from previous processing of IITA- and IITA-specific data.

Uses 4 flat files, which are available e.g. here. Specifically, IITA_GBStoPhenoMaster_33018.csv, GBSdataMasterList_31818.csv and IITA_GBStoPhenoMaster_40318.csv and chr1_RefPanelAndGSprogeny_ReadyForGP_72719.fam. I copy them to the data/ sub-directory for the current analysis.

In addition, DArT-only samples are now expected to also have phenotypes. Therefore, checking for matches in new flatfiles, deposited in the data/ (see code below).

library(tidyverse); library(magrittr)
gbs2phenoMaster<-dbdata %>% 
  select(germplasmName) %>% 
  distinct %>% 
  left_join(read.csv(here::here("data","NRCRI_GBStoPhenoMaster_40318.csv"), 
                     stringsAsFactors = F)) %>% 
  mutate(FullSampleName=ifelse(grepl("C2a",germplasmName,ignore.case = T) & 
                                 is.na(FullSampleName),germplasmName,FullSampleName)) %>% 
  filter(!is.na(FullSampleName)) %>% 
  select(germplasmName,FullSampleName) %>% 
  bind_rows(dbdata %>% 
              select(germplasmName) %>% 
              distinct %>% 
              left_join(read.csv(here::here("data","IITA_GBStoPhenoMaster_33018.csv"), 
                                 stringsAsFactors = F)) %>% 
              filter(!is.na(FullSampleName)) %>% 
              select(germplasmName,FullSampleName)) %>% 
  bind_rows(dbdata %>% 
              select(germplasmName) %>% 
              distinct %>% 
              left_join(read.csv(here::here("data","GBSdataMasterList_31818.csv"), 
                                 stringsAsFactors = F) %>% 
                          select(DNASample,FullSampleName) %>% 
                          rename(germplasmName=DNASample)) %>% 
              filter(!is.na(FullSampleName)) %>% 
              select(germplasmName,FullSampleName)) %>% 
  bind_rows(dbdata %>% 
              select(germplasmName) %>% 
              distinct %>% 
              mutate(germplasmSynonyms=ifelse(grepl("^UG",germplasmName,ignore.case = T),
                                              gsub("UG","Ug",germplasmName),germplasmName)) %>% 
              left_join(read.csv(here::here("data","GBSdataMasterList_31818.csv"), 
                                 stringsAsFactors = F) %>% 
                          select(DNASample,FullSampleName) %>% 
                          rename(germplasmSynonyms=DNASample)) %>% 
              filter(!is.na(FullSampleName)) %>% 
              select(germplasmName,FullSampleName)) %>%  
  bind_rows(dbdata %>% 
              select(germplasmName) %>% 
              distinct %>% 
              mutate(germplasmSynonyms=ifelse(grepl("^TZ",germplasmName,
                                                    ignore.case = T),
                                              gsub("TZ","",germplasmName),germplasmName)) %>% 
              left_join(read.csv(here::here("data","GBSdataMasterList_31818.csv"), 
                                 stringsAsFactors = F) %>% 
                          select(DNASample,FullSampleName) %>% 
                          rename(germplasmSynonyms=DNASample)) %>% 
              filter(!is.na(FullSampleName)) %>%
              select(germplasmName,FullSampleName)) %>% 
  distinct %>% 
  left_join(read.csv(here::here("data","GBSdataMasterList_31818.csv"), 
                     stringsAsFactors = F) %>% 
              select(FullSampleName,OrigKeyFile,Institute) %>% 
              rename(OriginOfSample=Institute)) %>% 
  mutate(OrigKeyFile=ifelse(grepl("C2a",germplasmName,ignore.case = T),
                            ifelse(is.na(OrigKeyFile),"LavalGBS",OrigKeyFile),
                            OrigKeyFile),
         OriginOfSample=ifelse(grepl("C2a",germplasmName,ignore.case = T),
                               ifelse(is.na(OriginOfSample),"NRCRI",OriginOfSample),
                               OriginOfSample))

## NEW: check for germName-DArT name matches
germNamesWithoutGBSgenos<-dbdata %>% 
  select(programName,germplasmName) %>% 
  distinct %>% 
  left_join(gbs2phenoMaster) %>% 
  filter(is.na(FullSampleName)) %>% 
  select(-FullSampleName)
## NEW: check for germName-DArT name matches
germNamesWithoutGBSgenos<-dbdata %>% 
  select(programName,germplasmName) %>% 
  distinct %>% 
  left_join(gbs2phenoMaster) %>% 
  filter(is.na(FullSampleName)) %>% 
  select(-FullSampleName)

germNamesWithDArT<-germNamesWithoutGBSgenos %>% 
  inner_join(read.table(here::here("data","chr1_RefPanelAndGSprogeny_ReadyForGP_72719.fam"), 
                        header = F, stringsAsFactors = F)$V2 %>% 
               grep("TMS16|TMS17|TMS18|TMS19|TMS20",.,value = T, ignore.case = T) %>% 
               tibble(dartName=.) %>% 
               separate(dartName,c("germplasmName","dartID"),"_",extra = 'merge',remove = F)) %>% 
  group_by(germplasmName) %>% 
  slice(1) %>% 
  ungroup() %>% 
  rename(FullSampleName=dartName) %>% 
  mutate(OrigKeyFile="DArTseqLD", OriginOfSample="IITA") %>% 
  select(-dartID)
print(paste0(nrow(germNamesWithDArT)," germNames with DArT-only genos"))

# first, filter to just program-DNAorigin matches
germNamesWithGenos<-dbdata %>% 
  select(programName,germplasmName) %>% 
  distinct %>% 
  left_join(gbs2phenoMaster) %>% 
  filter(!is.na(FullSampleName))
print(paste0(nrow(germNamesWithGenos)," germNames with GBS genos"))

# program-germNames with locally sourced GBS samples
germNamesWithGenos_HasLocalSourcedGBS<-germNamesWithGenos %>% 
  filter(programName==OriginOfSample) %>% 
  select(programName,germplasmName) %>% 
  semi_join(germNamesWithGenos,.) %>% 
  group_by(programName,germplasmName) %>% # select one DNA per germplasmName per program
  slice(1) %>% ungroup() 
print(paste0(nrow(germNamesWithGenos_HasLocalSourcedGBS)," germNames with local GBS genos"))

# the rest (program-germNames) with GBS but coming from a different breeding program
germNamesWithGenos_NoLocalSourcedGBS<-germNamesWithGenos %>% 
  filter(programName==OriginOfSample) %>% 
  select(programName,germplasmName) %>% 
  anti_join(germNamesWithGenos,.) %>% 
  # select one DNA per germplasmName per program
  group_by(programName,germplasmName) %>% 
  slice(1) %>% ungroup() 
print(paste0(nrow(germNamesWithGenos_NoLocalSourcedGBS)," germNames without local GBS genos"))

genosForPhenos<-bind_rows(germNamesWithGenos_HasLocalSourcedGBS,
                        germNamesWithGenos_NoLocalSourcedGBS) %>% 
  bind_rows(germNamesWithDArT)

print(paste0(nrow(genosForPhenos)," total germNames with genos either GBS or DArT"))

dbdata %<>% 
    left_join(genosForPhenos) 

# Create a new identifier, GID
## Equals the value SNP data name (FullSampleName) 
## else germplasmName if no SNP data
dbdata %<>% 
  mutate(GID=ifelse(is.na(FullSampleName),germplasmName,FullSampleName))
# # going to check against SNP data
# snps<-readRDS(file=url(paste0("ftp://ftp.cassavabase.org/marnin_datasets/NGC_BigData/",
#                               "DosageMatrix_RefPanelAndGSprogeny_ReadyForGP_73019.rds")))
# rownames_snps<-rownames(snps); rm(snps); gc()
# # current matches to SNP data
# dbdata %>%
#   distinct(GID,germplasmName,FullSampleName) %>%
#   semi_join(tibble(GID=rownames_snps)) %>% nrow() # 10707
# dbdata %>%
#   distinct(GID,germplasmName,FullSampleName) %>%
#   semi_join(tibble(GID=rownames_snps)) %>%
#   filter(grepl("TMS13|2013_",GID,ignore.case = F)) %>% nrow() # 2424 TMS13
# dbdata %>%
#   distinct(GID,germplasmName,FullSampleName) %>%
#   semi_join(tibble(GID=rownames_snps)) %>%
#   filter(grepl("TMS14",GID,ignore.case = F)) %>% nrow() # 2236 TMS14
# dbdata %>%
#   distinct(GID,germplasmName,FullSampleName) %>%
#   semi_join(tibble(GID=rownames_snps)) %>%
#   filter(grepl("TMS15",GID,ignore.case = F)) %>% nrow() # 2287 TMS15
# dbdata %>%
#   distinct(GID,germplasmName,FullSampleName) %>%
#   semi_join(tibble(GID=rownames_snps)) %>%
#   filter(grepl("TMS18",GID,ignore.case = F)) %>% nrow() # 2401 TMS18

[User input] Choose locations

WARNING: User input required! If I had preselected locations before downloading, this wouldn’t have been necessary.

Based on previous locations used for IITA analysis, but adding based on list of locations used in IYR’s trial list data/2019_GS_PhenoUpload.csv: “Ago-Owu” wasn’t used last year.

dbdata %<>% 
  filter(locationName %in% c("Abuja","Ago-Owu","Ibadan","Ikenne","Ilorin","Jos","Kano",
                             "Malam Madori","Mokwa","Ubiaja","Umudike","Warri","Zaria"))
nrow(dbdata) # [1] 479588

Output “cleaned” file

saveRDS(dbdata,file=here::here("output","IITA_CleanedTrialData_2021May10.rds"))

Detect experimental designs

The next step is to check the experimental design of each trial. If you are absolutely certain of the usage of the design variables in your dataset, you might not need this step.

Examples of reasons to do the step below:

  • Some trials appear to be complete blocked designs and the blockNumber is used instead of replicate, which is what most use.
  • Some complete block designs have nested, incomplete sub-blocks, others simply copy the “replicate” variable into the “blockNumber variable”
  • Some trials have only incomplete blocks but the incomplete block info might be in the replicate and/or the blockNumber column

One reason it might be important to get this right is that the variance among complete blocks might not be the same among incomplete blocks. If we treat a mixture of complete and incomplete blocks as part of the same random-effect (replicated-within-trial), we assume they have the same variance.

Also error variances might be heterogeneous among different trial-types (blocking scheme available) and/or plot sizes (maxNOHAV).

Start with cleaned data from previous step.

rm(list=ls()); gc()
library(tidyverse); library(magrittr);
source(here::here("code","gsFunctions.R"))
dbdata<-readRDS(here::here("output","IITA_CleanedTrialData_2021May10.rds"))
dbdata %>% head %>% rmarkdown::paged_table()

Detect designs

dbdata<-detectExptDesigns(dbdata)
dbdata %>% 
    count(programName,CompleteBlocks,IncompleteBlocks) %>% rmarkdown::paged_table()

Output file

saveRDS(dbdata,file=here::here("output","IITA_ExptDesignsDetected_2021May10.rds"))

Next step

  1. Get BLUPs combining all trial data: Combine data from all trait-trials to get BLUPs for downstream genomic prediction. Fit mixed-model to multi-trial dataset and extract BLUPs, de-regressed BLUPs and weights. Include two rounds of outlier removal.

sessionInfo()