Last updated: 2021-08-19
Checks: 7 0
Knit directory: IITA_2021GS/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20210504)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 182b83c. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: code/.DS_Store
Ignored: data/.DS_Store
Untracked files:
Untracked: data/DatabaseDownload_2021Aug08/
Untracked: data/DatabaseDownload_2021May04/
Untracked: data/GBSdataMasterList_31818.csv
Untracked: data/IITA_GBStoPhenoMaster_33018.csv
Untracked: data/NRCRI_GBStoPhenoMaster_40318.csv
Untracked: data/PedigreeGeneticGainCycleTime_aafolabi_01122020.xls
Untracked: data/Report-DCas21-6038/
Untracked: data/blups_forGP.rds
Untracked: data/chr1_RefPanelAndGSprogeny_ReadyForGP_72719.fam
Untracked: data/dosages_IITA_2021Aug09.rds
Untracked: data/haps_IITA_2021Aug09.rds
Untracked: data/recombFreqMat_1minus2c_2021Aug02.qs
Untracked: output/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/07-Results.Rmd
) and HTML (docs/07-Results.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | e029efc | wolfemd | 2021-08-12 | Build site. |
Rmd | efebeab | wolfemd | 2021-08-12 | Cross-validation and genomic mate predictions complete. All results updated. |
html | f0a71e4 | wolfemd | 2021-08-11 | Build site. |
Rmd | ab2c1ec | wolfemd | 2021-08-11 | workflowr::wflow_publish(files = “analysis/07-Results.Rmd”) |
html | 934141c | wolfemd | 2021-07-14 | Build site. |
html | cc1eb4b | wolfemd | 2021-07-14 | Build site. |
Rmd | 772750a | wolfemd | 2021-07-14 | DirDom model and selection index calc fully integrated functions. |
The summaries below correspond to the results of analyses outlined here and linked in the navbar above.
Summary of the number of unique plots, locations, years, etc. in the cleaned plot-basis data (output/IITA_ExptDesignsDetected_2021May10.rds
, download from FTP). See the data cleaning step here for details.
library(tidyverse); library(magrittr); library(ragg)
<-readRDS(file=here::here("output","IITA_ExptDesignsDetected_2021Aug08.rds"))
rawdata%>%
rawdata summarise(Nplots=nrow(.),
across(c(locationName,studyYear,studyName,TrialType,GID), ~length(unique(.)),.names = "N_{.col}")) %>%
::paged_table() rmarkdown
This is not the same number of clones as are expected to be genotyped-and-phenotyped.
Next, a break down of the plots based on the trial design and TrialType (really a grouping of the population that is breeding program specific), captured by two logical variables, CompleteBlocks and IncompleteBlocks.
%>%
rawdata count(TrialType,CompleteBlocks,IncompleteBlocks) %>%
spread(TrialType,n) %>%
::paged_table() rmarkdown
Next, look at breakdown of plots by TrialType (rows) and locations (columns):
%>%
rawdata count(locationName,TrialType) %>%
spread(locationName,n) %>%
::paged_table() rmarkdown
<-c("MCMDS","DM","PLTHT","BRNHT1","BRLVLS","HI",
traits"logDYLD", # <-- logDYLD now included.
"logFYLD","logTOPYLD","logRTNO","TCHART","LCHROMO","ACHROMO","BCHROMO")
%>%
rawdata select(locationName,studyYear,studyName,TrialType,any_of(traits)) %>%
pivot_longer(cols = any_of(traits), values_to = "Value", names_to = "Trait") %>%
ggplot(.,aes(x=Value,fill=Trait)) + geom_histogram() + facet_wrap(~Trait, scales='free') +
theme_bw() + scale_fill_viridis_d() +
labs(title = "Distribution of Raw Phenotypic Values")
How many genotyped-and-phenotyped clones?
<-rawdata %>%
genotypedAndPhenotypedClonesselect(locationName,studyYear,studyName,TrialType,germplasmName,FullSampleName,GID,any_of(traits)) %>%
pivot_longer(cols = any_of(traits), values_to = "Value", names_to = "Trait") %>%
filter(!is.na(Value),!is.na(FullSampleName)) %>%
distinct(germplasmName,FullSampleName,GID)
There are 8962 genotyped-and-phenotyped clones!
%>%
genotypedAndPhenotypedClones ::paged_table() rmarkdown
Summarize the BLUPs from the training data, leveraging for each clone data across trials/locations without genomic information and to be used as input for genomic prediction downstream (data/blups_forCrossVal.rds
, download from FTP). See the mixed-model analysis step here and a subsequent processing step here for details.
<-readRDS(file=here::here("data","blups_forGP.rds"))
blups<-blups %>% select(Trait,blups) %>% unnest(blups) %$% unique(GID)
gidWithBLUPs%>%
rawdata select(observationUnitDbId,GID,any_of(blups$Trait)) %>%
pivot_longer(cols = any_of(blups$Trait),
names_to = "Trait",
values_to = "Value",values_drop_na = T) %>%
filter(GID %in% gidWithBLUPs) %>%
group_by(Trait) %>%
summarize(Nplots=n()) %>%
ungroup() %>%
left_join(blups %>%
mutate(Nclones=map_dbl(blups,~nrow(.)),
avgREL=map_dbl(blups,~mean(.$REL)),
Vg=map_dbl(varcomp,~.["GID!GID.var","component"]),
Ve=map_dbl(varcomp,~.["R!variance","component"]),
H2=Vg/(Vg+Ve)) %>%
select(-blups,-varcomp)) %>%
mutate(across(is.numeric,~round(.,3))) %>% arrange(desc(H2)) %>%
::paged_table() rmarkdown
Nplots
, Nclones
: the number of unique plots and clones per traitavgREL
: the mean reliability of BLUPs, where for the jth clone, \(REL_j = 1 - \frac{PEV_j}{V_g}\)Vg
, Ve
, H2
: the genetic and residual variance components and the broad sense heritability (\(H^2=\frac{V_g}{V_g+V_e}\)).%>%
blups select(Trait,blups) %>%
unnest(blups) %>%
ggplot(.,aes(x=drgBLUP,fill=Trait)) + geom_histogram() + facet_wrap(~Trait, scales='free') +
theme_bw() + scale_fill_viridis_d() + theme(legend.position = 'none') +
labs(title = "Distribution of de-regressed BLUP Values")
%>%
blups select(Trait,blups) %>%
unnest(blups) %>%
ggplot(.,aes(x=Trait,y=REL,fill=Trait)) + geom_boxplot(notch=T) + #facet_wrap(~Trait, scales='free') +
theme_bw() + scale_fill_viridis_d() +
theme(axis.text.x = element_text(angle=90),
legend.position = 'none') +
labs(title = "Distribution of BLUP Reliabilities")
Summarize the marker data (data/dosages_IITA_filtered_2021May13.rds
, download from FTP). See the pre-processing steps here.
library(tidyverse); library(magrittr);
<-readRDS(file=here::here("data","dosages_IITA_2021Aug09.rds"))
snps<-colnames(snps) %>%
mrkstibble(SNP_ID=.) %>%
separate(SNP_ID,c("Chr","Pos","Allele"),"_") %>%
mutate(Chr=as.integer(gsub("S","",Chr)),
Pos=as.numeric(Pos))
rm(snps);
%>%
mrks ggplot(.,aes(x=Pos,fill=as.character(Chr))) + geom_histogram() +
facet_wrap(~Chr,scales = 'free') + theme_bw() +
scale_fill_viridis_d() + theme(legend.position = 'none',
axis.text.x = element_text(angle=90))
Version | Author | Date |
---|---|---|
f0a71e4 | wolfemd | 2021-08-11 |
In total, 61239 SNPs genome-wide. Broken down by chromosome:
%>% count(Chr,name = "Nsnps") %>% rmarkdown::paged_table() mrks
Introduced new downstream procedures (the parent-wise cross-validation, which rely on a trusted pedigree. To support this, introduced a new pedigree-validation step. The pedigree and validation results are summarized below.
The verified pedigree (output/verified_ped.txt
), can be downloaded from the FTP here).
library(tidyverse); library(magrittr);
<-readRDS(file=here::here("output","ped2check_genome.rds"))
ped2check_genome%<>%
ped2check_genome select(IID1,IID2,Z0,Z1,Z2,PI_HAT)
<-read.table(file=here::here("output","ped2genos.txt"),
ped2checkheader = F, stringsAsFactors = F) %>%
rename(FullSampleName=V1,DamID=V2,SireID=V3)
%<>%
ped2check select(FullSampleName,DamID,SireID) %>%
inner_join(ped2check_genome %>%
rename(FullSampleName=IID1,DamID=IID2) %>%
bind_rows(ped2check_genome %>%
rename(FullSampleName=IID2,DamID=IID1))) %>%
%>%
distinct mutate(FemaleParent=case_when(Z0<0.32 & Z1>0.67~"Confirm",
==DamID & PI_HAT>0.6 & Z0<0.3 & Z2>0.32~"Confirm",
SireIDTRUE~"Reject")) %>%
select(-Z0,-Z1,-Z2,-PI_HAT) %>%
inner_join(ped2check_genome %>%
rename(FullSampleName=IID1,SireID=IID2) %>%
bind_rows(ped2check_genome %>%
rename(FullSampleName=IID2,SireID=IID1))) %>%
%>%
distinct mutate(MaleParent=case_when(Z0<0.32 & Z1>0.67~"Confirm",
==DamID & PI_HAT>0.6 & Z0<0.3 & Z2>0.32~"Confirm",
SireIDTRUE~"Reject")) %>%
select(-Z0,-Z1,-Z2,-PI_HAT)
rm(ped2check_genome)
%<>%
ped2check mutate(Cohort=NA,
Cohort=ifelse(grepl("TMS20",FullSampleName,ignore.case = T),"TMS20",
ifelse(grepl("TMS19",FullSampleName,ignore.case = T),"TMS19",
ifelse(grepl("TMS18",FullSampleName,ignore.case = T),"TMS18",
ifelse(grepl("TMS17",FullSampleName,ignore.case = T),"TMS17",
ifelse(grepl("TMS16",FullSampleName,ignore.case = T),"TMS16",
ifelse(grepl("TMS15",FullSampleName,ignore.case = T),"TMS15",
ifelse(grepl("TMS14",FullSampleName,ignore.case = T),"TMS14",
ifelse(grepl("TMS13|2013_",FullSampleName,ignore.case = T),"TMS13","GGetc")))))))))
Proportion of accessions with male, female or both parents in pedigree confirm-vs-rejected?
%>%
ped2check count(FemaleParent,MaleParent) %>%
mutate(Prop=round(n/sum(n),2))
FemaleParent MaleParent n Prop
1 Confirm Confirm 4473 0.72
2 Confirm Reject 715 0.12
3 Reject Confirm 442 0.07
4 Reject Reject 576 0.09
Proportion of accessions within each Cohort with pedigree records confirmed-vs-rejected?
%>%
ped2check count(Cohort,FemaleParent,MaleParent) %>%
spread(Cohort,n) %>%
mutate(across(is.numeric,~round(./sum(.),2))) %>%
::paged_table() rmarkdown
Use only fully-confirmed families / trios. Remove any without both parents confirmed.
<-read.table(here::here("output","verified_ped.txt"),
pedheader = T, stringsAsFactors = F) %>%
mutate(Cohort=NA,
Cohort=ifelse(grepl("TMS20",FullSampleName,ignore.case = T),"TMS20",
ifelse(grepl("TMS19",FullSampleName,ignore.case = T),"TMS19",
ifelse(grepl("TMS18",FullSampleName,ignore.case = T),"TMS18",
ifelse(grepl("TMS17",FullSampleName,ignore.case = T),"TMS17",
ifelse(grepl("TMS16",FullSampleName,ignore.case = T),"TMS16",
ifelse(grepl("TMS15",FullSampleName,ignore.case = T),"TMS15",
ifelse(grepl("TMS14",FullSampleName,ignore.case = T),"TMS14",
ifelse(grepl("TMS13|2013_",FullSampleName,ignore.case = T),"TMS13","GGetc")))))))))
Summary of family sizes
%>%
ped count(SireID,DamID) %$% summary(n)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 1.00 3.00 5.55 7.00 77.00
%>% nrow(.) # 4473 pedigree entries ped
[1] 4473
%>%
ped count(Cohort,name = "Number of Verified Pedigree Entries")
Cohort Number of Verified Pedigree Entries
1 GGetc 20
2 TMS13 1786
3 TMS14 1303
4 TMS15 589
5 TMS17 11
6 TMS18 592
7 TMS19 40
8 TMS20 132
%>% distinct(SireID,DamID) %>% nrow(.) ped
[1] 806
%>%
ped distinct(Cohort,SireID,DamID) %>%
count(Cohort,name = "Number of Families per Cohort")
Cohort Number of Families per Cohort
1 GGetc 18
2 TMS13 119
3 TMS14 234
4 TMS15 198
5 TMS17 10
6 TMS18 172
7 TMS19 30
8 TMS20 28
806 families. Mean size 5.55, range 1-77.
Two cross-validation procedures were used to measure prediction accuracy.
First, a brand new procedure to assess the accuracy of genomic predictions of cross means and variances, which is called (parent-wise cross-validation.
Second, I also ran the standard 5 reps of 5-fold cross-validation, which measures the accuracy of predicting individual performance.
Both using a additive-plus-dominance model including a directional-dominance term (modelType="DirDom"
).
Here are the Selection index weights (provided by IITA) and used to compute the SELIND accuracy displayed further below.
# SELECTION INDEX WEIGHTS
## from IYR+IK
## note that not ALL predicted traits are on index
c(logFYLD=20,
HI=10,
DM=15,
MCMDS=-10,
logRTNO=12,
logDYLD=20,
logTOPYLD=15,
PLTHT=10)
logFYLD HI DM MCMDS logRTNO logDYLD logTOPYLD PLTHT
20 10 15 -10 12 20 15 10
library(ggdist)
# PARENT-WISE CV RESULTS
<-readRDS(here::here("output","parentWiseCV_full_set_CrossPredAccuracy.rds"))
accuracy_full<-readRDS(here::here("output","parentWiseCV_medium_set_CrossPredAccuracy.rds"))
accuracy_medium<-readRDS(here::here("output","parentWiseCV_reduced_set_CrossPredAccuracy.rds"))
accuracy_reduced<-accuracy_medium$meanPredAccuracy %>%
accuracyfilter(Trait=="SELIND") %>%
mutate(VarComp=gsub("Mean","",predOf),
predOf="Mean",
Filter="LDprunedR2pt8 \n (~13K)") %>%
bind_rows(accuracy_medium$varPredAccuracy %>%
filter(Trait1=="SELIND") %>%
rename(Trait=Trait1) %>%
select(-Trait2) %>%
mutate(VarComp=gsub("Var","",predOf),
predOf="Var",
Filter="LDprunedR2pt8 \n (~13K)")) %>%
bind_rows(accuracy_reduced$meanPredAccuracy %>%
filter(Trait=="SELIND") %>%
mutate(VarComp=gsub("Mean","",predOf),
predOf="Mean",
Filter="LDprunedR2pt6 \n (~8K)") %>%
bind_rows(accuracy_reduced$varPredAccuracy %>%
filter(Trait1=="SELIND") %>%
rename(Trait=Trait1) %>%
select(-Trait2) %>%
mutate(VarComp=gsub("Var","",predOf),
predOf="Var",
Filter="LDprunedR2pt6 \n (~8K)"))) %>%
bind_rows(accuracy_full$meanPredAccuracy %>%
filter(Trait=="SELIND") %>%
mutate(VarComp=gsub("Mean","",predOf),
predOf="Mean",
Filter="FullSet \n (~33K)") %>%
bind_rows(accuracy_full$varPredAccuracy %>%
filter(Trait1=="SELIND") %>%
rename(Trait=Trait1) %>%
select(-Trait2) %>%
mutate(VarComp=gsub("Var","",predOf),
predOf="Var",
Filter="FullSet \n (~33K)")))
<-accuracy %>%
recalculated_accuracyselect(-AccuracyEst) %>%
unnest(predVSobs) %>%
select(-obsVar,-obsMean,-obsVar) %>%
mutate(predValue=ifelse(predOf=="Mean",predMean,predVar)) %>%
select(-predVar,-predMean) %>%
left_join(accuracy %>%
select(-AccuracyEst) %>%
filter(grepl("FullSet",Filter)) %>%
unnest(predVSobs) %>%
select(-predVar,-predMean) %>%
mutate(obsValue=ifelse(predOf=="Mean",obsMean,obsVar)) %>%
select(-obsMean,-obsVar,-Filter)) %>%
nest(predVSobs=c(sireID,damID,predValue,obsValue,famSize)) %>%
mutate(AccuracyEst=map_dbl(predVSobs,function(predVSobs){
<-psych::cor.wt(predVSobs[,c("predValue","obsValue")],
outw = predVSobs$famSize) %$% r[1,2] %>%
round(.,3)
return(out) })) %>%
select(-predVSobs)
# STANDARD CV RESULTS
<-readRDS(here::here("output",
standardCV_full"standardCV_full_set_ClonePredAccuracy.rds"))
<-readRDS(here::here("output",
standardCV_medium"standardCV_medium_set_ClonePredAccuracy.rds"))
<-readRDS(here::here("output",
standardCV_reduced"standardCV_reduced_set_ClonePredAccuracy.rds"))
<-standardCV_full %>%
accuracyunnest(accuracyEstOut) %>%
select(-splits,-predVSobs,-seeds) %>%
filter(Trait=="SELIND") %>%
rename(Repeat=repeats,Fold=id,VarComp=predOf,AccuracyEst=Accuracy) %>%
mutate(Repeat=paste0("Repeat",Repeat),
VarComp=gsub("GE","",VarComp),
predOf="IndivPerformance",
Filter="FullSet \n (~33K)") %>%
bind_rows(standardCV_medium %>%
unnest(accuracyEstOut) %>%
select(-splits,-predVSobs,-seeds) %>%
filter(Trait=="SELIND") %>%
rename(Repeat=repeats,Fold=id,VarComp=predOf,AccuracyEst=Accuracy) %>%
mutate(Repeat=paste0("Repeat",Repeat),
VarComp=gsub("GE","",VarComp),
predOf="IndivPerformance",
Filter="LDprunedR2pt8 \n (~13K)")) %>%
bind_rows(standardCV_reduced %>%
unnest(accuracyEstOut) %>%
select(-splits,-predVSobs,-seeds) %>%
filter(Trait=="SELIND") %>%
rename(Repeat=repeats,Fold=id,VarComp=predOf,AccuracyEst=Accuracy) %>%
mutate(Repeat=paste0("Repeat",Repeat),
VarComp=gsub("GE","",VarComp),
predOf="IndivPerformance",
Filter="LDprunedR2pt6 \n (~8K)")) %>%
bind_rows(recalculated_accuracy %>%
mutate(predOf=paste0("Cross",predOf))) %>%
mutate(Filter=factor(Filter,levels=c("FullSet \n (~33K)","LDprunedR2pt8 \n (~13K)","LDprunedR2pt6 \n (~8K)")),
predOf=factor(predOf,levels=c("IndivPerformance","CrossMean","CrossVar")),
VarComp=factor(VarComp,levels=c("BV","TGV"))) %>% droplevels
<-viridis::viridis(4)[1:2] colors
The figure below shows the ultimate summary of all cross-validation, the estimated accuracy predicting individual performance (clone means), cross-means and cross-variances on the selection index. Results from 5 repeats of 5-fold clone-wise (“standard”) and parent-wise (“NEW”) cross-validation are combined in this plot. See further below for a break down by trait. For the “CrossMean” and “CrossVar” panels, the y-axis “AccuracyEst” is the family-size weighted correlation between the predicted and observed cross means and variances. To fairly compare cross mean and variance accuracy across SNP sets, the observed means and variances from the full SNP set were used as the validation data for all sets. For the “IndivPerformance” panels, the y-axis is an un-weighted correlation between GBLUPs (i.e. GEBV/GETGV) and phenotypic (i.e. non-genomic or i.i.d. BLUPs). Predictions of breeding value (BV) and total genetic value (TGV) are distinguished in all plots and relate to the value of a cross for producing future parents and/or elite varieties, respectively among their offspring. Predictions of BV use only allele substitution effects (\(\alpha\)). Predictions of TGV incorporate dominance effects/variance. The modelType=DirDom was used.
Two SNP sets, one LD-pruned more than the other (reduced_set and full_set) were tested.
plink --indep-pairwise 50 25 0.98
(considered the “full_set”)plink --indep-pairwise 1000 'kb' 50 0.6
(considered the “reduced_set”)%>%
accuracy ggplot(.,aes(x=VarComp,y=AccuracyEst,fill=VarComp)) +
::stat_halfeye(adjust=0.5,.width = 0,fill='gray',width=0.75) +
ggdistgeom_boxplot(width=0.12,notch = TRUE) +
::stat_dots(side = "left",justification = 1.1,dotsize=0.6)+
ggdisttheme_bw() +
scale_fill_manual(values = colors) +
geom_hline(data = accuracy %>% distinct(predOf) %>% mutate(yint=c(NA,NA,0)),
aes(yintercept = yint), color='black', size=0.9) +
theme(axis.text.x = element_blank(),
axis.title.x = element_blank(),
strip.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.title = element_text(face='bold',color = 'black'),
strip.text.x = element_text(face='bold',color='black',size=12),
axis.text.y = element_text(face = 'bold',color='black'),
legend.text = element_text(face='bold'),
legend.position = 'bottom') +
facet_grid(predOf~Filter,scales = 'free') +
labs(title="Accuracy predicting performance on the Selection Index",
subtitle="Predictions of clone and cross performance (cross means and variances)")
Based on the preliminary results (variance predictions not even done yet), the reduced_set (LDprunedR2pt6) suffers reduced prediction accuracy. I added a medium_set (LDprunedR2pt8) with about 13K SNP which produces GEBV/GETGV that are highly correlated with the full 33K SNP set and has the same accuracy.
Prediction accuracy estimates are in output/
(here) with filenames ending _ClonePredAccuracy.rds
and _CrossPredAccuracy.rds
.
For details on the cross-validation scheme, see the article (and for even more, the corresponding supplemental documentation here). See also the genomicMateSelectR::runParentWiseCrossVal() details section.
Results, broken down by trait, for the “standard” 5 repeats of 5-fold cross-validation on the accuracy predicting individual-level performance. Contrast to the cross-mean and cross-variance predictions newly implemented and plotted further below. c(“FullSet (~33K)”,“LDprunedR2pt8 (~13K)”,“LDprunedR2pt6 (~8K)”)
%>%
standardCV_full unnest(accuracyEstOut) %>%
select(-splits,-predVSobs,-seeds) %>%
mutate(Filter="Full") %>%
bind_rows(standardCV_medium %>%
unnest(accuracyEstOut) %>%
select(-splits,-predVSobs,-seeds) %>%
mutate(Filter="Medium")) %>%
mutate(Trait=factor(Trait,levels=c("SELIND",blups$Trait)),
predOf=factor(paste0(predOf,"_",Filter),levels=c("GEBV_Full","GETGV_Full","GEBV_Medium","GETGV_Medium"))) %>%
ggplot(.,aes(x=predOf,y=Accuracy,fill=predOf,color=predOf)) +
geom_boxplot(notch = TRUE, color='gray40') +
scale_fill_manual(values = viridis::viridis(4)[1:4]) +
scale_color_manual(values = viridis::viridis(4)[1:4]) +
#geom_hline(yintercept = 0, color='black', size=0.8) +
facet_grid(.~Trait) +
labs(title="Accuracy predicting the performance of untested clones",
subtitle="Standard 5-fold cross-validation") +
theme_bw() +
theme(axis.text.x = element_blank(),
axis.title.x = element_blank(),
strip.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position='bottom',
axis.text.y = element_text(face='bold'),
axis.title.y = element_text(face='bold'),
strip.text.x = element_text(face='bold'),
plot.title = element_text(face='bold'),
legend.title = element_text(face='bold'),
legend.text = element_text(face='bold'),
panel.spacing = unit(0.2, "lines"))
<-accuracy_medium$meanPredAccuracy %>%
accuracymutate(VarComp=gsub("Mean","",predOf),
predOf="Mean",
Filter="13K",
Trait2=Trait) %>%
rename(Trait1=Trait) %>%
bind_rows(accuracy_medium$varPredAccuracy %>%
mutate(VarComp=gsub("Var","",predOf),
predOf="Var",
Filter="13K")) %>%
bind_rows(accuracy_reduced$meanPredAccuracy %>%
mutate(VarComp=gsub("Mean","",predOf),
predOf="Mean",
Filter="8K",
Trait2=Trait) %>%
rename(Trait1=Trait) %>%
bind_rows(accuracy_reduced$varPredAccuracy %>%
mutate(VarComp=gsub("Var","",predOf),
predOf="Var",
Filter="8K"))) %>%
bind_rows(accuracy_full$meanPredAccuracy %>%
mutate(VarComp=gsub("Mean","",predOf),
predOf="Mean",
Filter="33K",
Trait2=Trait) %>%
rename(Trait1=Trait) %>%
bind_rows(accuracy_full$varPredAccuracy %>%
mutate(VarComp=gsub("Var","",predOf),
predOf="Var",
Filter="33K")))
<-accuracy %>%
recalculated_accuracyselect(-AccuracyEst) %>%
unnest(predVSobs) %>%
select(-obsVar,-obsMean,-obsVar) %>%
mutate(predValue=ifelse(predOf=="Mean",predMean,predVar)) %>%
select(-predVar,-predMean) %>%
left_join(accuracy %>%
select(-AccuracyEst) %>%
filter(grepl("33K",Filter)) %>%
unnest(predVSobs) %>%
select(-predVar,-predMean) %>%
mutate(obsValue=ifelse(predOf=="Mean",obsMean,obsVar)) %>%
select(-obsMean,-obsVar,-Filter)) %>%
nest(predVSobs=c(sireID,damID,predValue,obsValue,famSize)) %>%
mutate(AccuracyEst=map_dbl(predVSobs,function(predVSobs){
<-psych::cor.wt(predVSobs[,c("predValue","obsValue")],
outw = predVSobs$famSize) %$% r[1,2] %>%
round(.,3)
return(out) })) %>%
select(-predVSobs)
%>%
recalculated_accuracy filter(predOf=="Mean") %>%
mutate(Trait1=factor(Trait1,levels=c("SELIND",blups$Trait)),
predOf=factor(paste0("Mean",VarComp,"_",Filter),
levels=c("MeanBV_33K","MeanTGV_33K","MeanBV_13K","MeanTGV_13K","MeanBV_8K","MeanTGV_8K"))) %>%
ggplot(.,aes(x=predOf,y=AccuracyEst,fill=predOf,color=Filter)) +
geom_boxplot(notch = TRUE, color='gray40') +
scale_fill_manual(values = viridis::viridis(6)) +
scale_color_manual(values = viridis::viridis(6)) +
geom_hline(yintercept = 0, color='black', size=0.8) +
facet_grid(.~Trait1) +
labs(title="Accuracy predicting the mean performance of offspring from untested crosses",
subtitle="5-fold 'parent-wise' cross-validation") +
theme_bw() +
theme(axis.text.x = element_blank(),
axis.title.x = element_blank(),
strip.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position='bottom',
axis.text.y = element_text(face='bold'),
axis.title.y = element_text(face='bold'),
strip.text.x = element_text(face='bold'),
plot.title = element_text(face='bold'),
legend.title = element_text(face='bold'),
legend.text = element_text(face='bold'),
panel.spacing = unit(0.2, "lines"))
%>%
recalculated_accuracy filter(predOf=="Var",
==Trait2) %>%
Trait1mutate(Trait1=factor(Trait1,levels=c("SELIND",blups$Trait)),
predOf=factor(paste0("Var",VarComp,"_",Filter),
levels=c("VarBV_33K","VarTGV_33K","VarBV_13K","VarTGV_13K","VarBV_8K","VarTGV_8K"))) %>%
ggplot(.,aes(x=predOf,y=AccuracyEst,fill=predOf,color=Filter)) +
geom_boxplot(notch = TRUE,color='gray40') +
scale_fill_manual(values = viridis::viridis(6)) +
scale_color_manual(values = viridis::viridis(6)) +
geom_hline(yintercept = 0, color='black', size=0.8) +
facet_grid(.~Trait1) +
labs(title="Accuracy predicting variance in performance among offspring of untested crosses",
subtitle="5-fold 'parent-wise' cross-validation") +
theme_bw() +
theme(axis.text.x = element_blank(),
axis.title.x = element_blank(),
strip.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position='bottom',
axis.text.y = element_text(face='bold'),
axis.title.y = element_text(face='bold'),
strip.text.x = element_text(face='bold'),
plot.title = element_text(face='bold'),
legend.title = element_text(face='bold'),
legend.text = element_text(face='bold'),
panel.spacing = unit(0.2, "lines"))
%>%
recalculated_accuracy filter(predOf=="Var",
!=Trait2) %>%
Trait1mutate(Trait1=factor(Trait1,levels=c("SELIND",blups$Trait)),
Trait2=factor(Trait2,levels=c("SELIND",blups$Trait)),
predOf=factor(paste0("Var",VarComp,"_",Filter),
levels=c("VarBV_33K","VarTGV_33K","VarBV_13K","VarTGV_13K","VarBV_8K","VarTGV_8K"))) %>%
ggplot(.,aes(x=predOf,y=AccuracyEst,fill=predOf,color=Filter)) +
geom_boxplot(notch = TRUE) +
scale_fill_manual(values = viridis::viridis(6)) +
scale_color_manual(values = viridis::viridis(6)) +
geom_hline(yintercept = 0, color='gray40', size=0.6) +
facet_wrap(~Trait1+Trait2,nrow=5) +
labs(title="Accuracy predicting covariance in trait-trait performance within previously untested families",
subtitle="5-fold 'parent-wise' cross-validation") +
theme_bw() +
theme(axis.text.x = element_blank(),
axis.title.x = element_blank(),
strip.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position='bottom',
axis.text.y = element_text(face='bold'),
axis.title.y = element_text(face='bold'),
strip.text.x = element_text(face='bold'),
plot.title = element_text(face='bold'),
legend.title = element_text(face='bold'),
legend.text = element_text(face='bold'),
panel.spacing = unit(0.2, "lines"))
Version | Author | Date |
---|---|---|
e029efc | wolfemd | 2021-08-12 |
rm(list=ls())
After evaluating prediction accuracy, the genomic prediction step implements full-training dataset predictions and outputs tidy tables of selection criteria, including rankings on the selection index.
Selection of a subset of parents among which to predict matings: Went to cassavabase wizard, made a list of all IITA accessions in field trials dated 2020 and 2021 at 4 locations (IBA, IKN, MOK, UBJ), as these can likely source for crossing nurseries. I then used the SELIND GEBV and/or GETGV to rank all clones in the dataset (not just those “likely in field”). Goal is to pick more parents than we really want to cross, then predict the huge number of possible crosses, select the top crosses and then plan the corresponding parents into the crossing nursery. Conditional on the “likely in field list” I ended up with 200 parents-to-predict.
SNP sets: With the full_set (~31K SNP) predict cross-means only. With the medium_set (~13K SNP) predict cross-means and variances. We find high cor(full_set,medium_set) for the cross-means, and therefore will select the crosses based on means predicted with all SNP and variances predicted with medium set.
Plot genetic trends using selection index GEBV and GETGV of the individuals in the population.
# GBLUPs
### Two models AD and DirDom
<-readRDS(file = here::here("output","genomicPredictions_full_set_2021Aug09.rds"))
gpreds_full<-gpreds_full$gblups[[1]] %>%
si_getgvsfilter(predOf=="GETGV") %>%
select(GID,SELIND)
## IITA Germplasm Ages
<-readxl::read_xls(here::here("data","PedigreeGeneticGainCycleTime_aafolabi_01122020.xls")) %>%
ggcycletimemutate(Year_Accession=as.numeric(Year_Accession))
# Need germplasmName field from raw trial data to match GEBV and cycle time
<-readRDS(here::here("output","IITA_ExptDesignsDetected_2021Aug08.rds"))
rawdata<-si_getgvs %>%
for_trend_plotleft_join(rawdata %>%
distinct(germplasmName,GID)) %>%
group_by(GID) %>%
slice(1) %>%
ungroup()
# table(ggcycletime$Accession %in% si_getgvs$germplasmName)
# FALSE TRUE
# 193 614
%<>%
for_trend_plot left_join(.,ggcycletime %>%
rename(germplasmName=Accession) %>%
mutate(Year_Accession=as.numeric(Year_Accession))) %>%
mutate(Year_Accession=case_when(grepl("2013_|TMS13",germplasmName)~2013,
grepl("TMS14",germplasmName)~2014,
grepl("TMS15",germplasmName)~2015,
grepl("TMS16",germplasmName)~2016,
grepl("TMS17",germplasmName)~2017,
grepl("TMS18",germplasmName)~2018,
grepl("TMS19",germplasmName)~2019,
grepl("TMS20",germplasmName)~2020,
!grepl("2013_|TMS13|TMS14|TMS15|TMS16|TMS17|TMS18|TMS19|TMS20",germplasmName)~Year_Accession))
# Declare the "eras" as PreGS\<2012 and GS\>=2013.
%<>%
for_trend_plot filter(Year_Accession>2012 | Year_Accession<2005)
%<>%
for_trend_plot mutate(GeneticGroup=ifelse(Year_Accession>=2013,"GS","PreGS"))
<-theme_bw() +
plotthemetheme(axis.text.x = element_blank(),
axis.title.x = element_blank(),
strip.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position='bottom',
axis.text.y = element_text(face='bold'),
axis.title.y = element_text(face='bold'),
strip.text.x = element_text(face='bold'),
plot.title = element_text(face='bold'),
legend.title = element_text(face='bold'),
legend.text = element_text(face='bold'),
panel.spacing = unit(0.2, "lines"))
First, for the IITA population, I use historical data on age of clones to perform a regression of GETGV on year-cloned compared the post 2012 (GS) to pre-GS era. The plot below shows the GETGV (y-axis) versus the year each accession was cloned.
%>%
for_trend_plot select(GeneticGroup,GID,Year_Accession,SELIND) %>%
ggplot(.,aes(x=Year_Accession,y=SELIND,color=GeneticGroup)) +
geom_point(size=1.25) +
geom_smooth(method=lm, se=TRUE, size=1.5) +
+ theme(panel.grid.major = element_line()) +
plottheme scale_color_viridis_d() +
labs(title = "Selection Index GETGV vs. Accession Age by 'era' [GS vs. PreGS]",
subtitle = "SI GETGV from modelType='DirDom'")
Next, some fancy boxplot / half-violin plots to compare the distribution of GETGV across the cycles.
%>%
si_getgvs mutate(Cohort=NA,
Cohort=ifelse(grepl("TMS20",GID,ignore.case = T),"TMS20",
ifelse(grepl("TMS19",GID,ignore.case = T),"TMS19",
ifelse(grepl("TMS18",GID,ignore.case = T),"TMS18",
ifelse(grepl("TMS17",GID,ignore.case = T),"TMS17",
ifelse(grepl("TMS16",GID,ignore.case = T),"TMS16",
ifelse(grepl("TMS15",GID,ignore.case = T),"TMS15",
ifelse(grepl("TMS14",GID,ignore.case = T),"TMS14",
ifelse(grepl("TMS13|2013_",GID,ignore.case = T),"TMS13","PreGS")))))))),
Cohort=factor(Cohort,levels = c("PreGS","TMS13","TMS14","TMS15","TMS16","TMS17","TMS18","TMS19","TMS20"))) %>%
ggplot(.,aes(x=Cohort,y=SELIND,fill=Cohort)) +
::stat_halfeye(adjust=0.5,.width = 0,fill='gray',width=0.75) +
ggdistgeom_boxplot(width=0.12,notch = TRUE) +
::stat_dots(side = "left",justification = 1.1,
ggdistbinwidth = 0.03,dotsize=0.6) +
+
plottheme scale_fill_viridis_d()
Lastly, for continuity sake, barplots of the mean +/- std. error of GEBV across the cycles.
<-gpreds_full$gblups[[1]] %>%
si_gebvsfilter(predOf=="GEBV") %>%
select(GID,SELIND) %>%
mutate(Cohort=NA,
Cohort=ifelse(grepl("TMS20",GID,ignore.case = T),"TMS20",
ifelse(grepl("TMS19",GID,ignore.case = T),"TMS19",
ifelse(grepl("TMS18",GID,ignore.case = T),"TMS18",
ifelse(grepl("TMS17",GID,ignore.case = T),"TMS17",
ifelse(grepl("TMS16",GID,ignore.case = T),"TMS16",
ifelse(grepl("TMS15",GID,ignore.case = T),"TMS15",
ifelse(grepl("TMS14",GID,ignore.case = T),"TMS14",
ifelse(grepl("TMS13|2013_",GID,ignore.case = T),"TMS13","PreGS")))))))),
Cohort=factor(Cohort,levels = c("PreGS","TMS13","TMS14","TMS15","TMS16","TMS17","TMS18","TMS19","TMS20")))
%>%
si_gebvs group_by(Cohort) %>%
summarize(meanGEBV=mean(SELIND),
stdErr=sd(SELIND)/sqrt(n()),
upperSE=meanGEBV+stdErr,
lowerSE=meanGEBV-stdErr) %>%
ggplot(.,aes(x=Cohort,y=meanGEBV,fill=Cohort)) +
geom_bar(stat = 'identity', color='gray60', size=1.25) +
geom_linerange(aes(ymax=upperSE,
ymin=lowerSE), color='gray60', size=1.25) +
#facet_wrap(~Trait,scales='free_y', ncol=1) +
theme_bw() +
geom_hline(yintercept = 0, size=1.15, color='black') +
+
plottheme scale_fill_viridis_d() +
labs(x=NULL,y="Mean GEBVs",
title="Mean +/- Std. Error Selection Index GEBV by Annual Cohort")
Version | Author | Date |
---|---|---|
e029efc | wolfemd | 2021-08-12 |
I predicted 20100 crosses of 200 elite candidate parents.
Below is a plot showing the distribution of GETGV for the entire population contrasted to the selected set of parents. Fill color indicates Cohort.
library(tidyverse); library(magrittr); library(ggdist)
<-readRDS(file = here::here("output",
parentsToPredictCrosses"parentsToPredictCrosses_2021Aug10.rds"))
<-si_getgvs %>%
for_selected_plotmutate(Cohort=NA,
Cohort=ifelse(grepl("TMS20",GID,ignore.case = T),"TMS20",
ifelse(grepl("TMS19",GID,ignore.case = T),"TMS19",
ifelse(grepl("TMS18",GID,ignore.case = T),"TMS18",
ifelse(grepl("TMS17",GID,ignore.case = T),"TMS17",
ifelse(grepl("TMS16",GID,ignore.case = T),"TMS16",
ifelse(grepl("TMS15",GID,ignore.case = T),"TMS15",
ifelse(grepl("TMS14",GID,ignore.case = T),"TMS14",
ifelse(grepl("TMS13|2013_",GID,ignore.case = T),"TMS13","PreGS")))))))),
Cohort=factor(Cohort,levels = c("PreGS","TMS13","TMS14","TMS15","TMS16","TMS17","TMS18","TMS19","TMS20")))
%>%
for_selected_plot mutate(Cycle="AllGermplasm") %>%
bind_rows(for_selected_plot %>%
filter(GID %in% parentsToPredictCrosses) %>%
mutate(Cycle="SelectedParents")) %>%
mutate(Cycle=factor(Cycle,levels = c("AllGermplasm","SelectedParents"))) %>%
ggplot(.,aes(x=Cycle,y=SELIND,fill=Cycle)) +
::stat_halfeye(adjust=0.5,.width = 0,fill='gray',width=0.75) +
ggdistgeom_boxplot(width=0.09,notch = TRUE) +
::stat_dots(aes(color=Cohort),side = "left",justification = 1.1,dotsize=.8) +
ggdistscale_fill_viridis_d() + scale_color_viridis_d() +
+
plottheme labs(title="Distribution of selection index GETGV in parents selected for mate predictions",
subtitle="compared to the overall population")
Version | Author | Date |
---|---|---|
e029efc | wolfemd | 2021-08-12 |
%>%
for_selected_plot filter(GID %in% parentsToPredictCrosses) %>%
count(Cohort, name = "NparentsToPredCrosses")
# A tibble: 7 × 2
Cohort NparentsToPredCrosses
<fct> <int>
1 PreGS 109
2 TMS13 1
3 TMS14 1
4 TMS17 9
5 TMS18 39
6 TMS19 38
7 TMS20 3
Surprisingly, a significant amount of parents from the “PreGS” (i.e. GeneticGain pop. clones is recommended). Not sure that is what we will actually want to do in practice, but it makes sense when viewed in light of the rankings plotted above: they still have elite GEBV/GETGV.
library(tidyverse); library(magrittr); library(ggdist)
<-read.csv(here::here("output","genomicMatePredictions_2021Aug10.csv"), stringsAsFactors = F, header = T)
crossPreds
<-crossPreds %>%
forplotfilter(Trait=="SELIND") %>%
select(sireID,damID,CrossGroup,predOf,predMean,predSD,predUsefulness)
<-crossPreds %>%
cross_group_orderfilter(Trait=="SELIND") %>%
distinct(sireGroup,damGroup) %>%
mutate(sireGroup=factor(sireGroup,levels=c("PreGS","TMS13","TMS14","TMS15","TMS16","TMS17","TMS18","TMS19","TMS20")),
damGroup=factor(damGroup,levels=c("PreGS","TMS13","TMS14","TMS15","TMS16","TMS17","TMS18","TMS19","TMS20"))) %>%
arrange(desc(sireGroup),desc(damGroup)) %>%
mutate(CrossGroup=paste0(sireGroup,"x",damGroup)) %$%
CrossGroup
%<>%
forplot mutate(CrossGroup=factor(CrossGroup,levels=c(cross_group_order)))
The standard budget for genotyping has been 2500 new clones per year.
Suppose we choose to create 50 families of 50 siblings each, from the 20100 predicted crosses.
The input file has a pre-computed predUsefulness
variable. I used stdSelInt=2.062
when making the predictions with the predictCrosses()
function, which corresponds to selecting the top 5% (or top 5 offspring) from each family.
Crosses may be of interest for their predicted \(UC_{parent}\) (predOf=="BV"
) and/or \(UC_{variety}\) (predOf=="TGV"
).
Each crossing nursery needs to produce both new exceptional parents and elite candidate cultivars. These will not necessarily be the same individuals or come from the same crosses.
%>%
forplot select(-predMean,-predSD) %>%
spread(predOf,predUsefulness) %$%
cor(BV,TGV)
[1] 0.3655159
# [1] 0.3655159
# The correlation between predUC BV and TGV is not high.
%>%
forplot group_by(predOf) %>%
slice_max(order_by = predUsefulness, n = 50) %>% ungroup() %>%
distinct(sireID,damID) %>% nrow() # 96
[1] 96
The correlation between predUC BV and TGV is not high.
Not many crosses are selected for both \(UC_{parent}\) (predOf=="BV"
) and \(UC_{variety}\) (predOf=="TGV"
).
This is different from what I found in the implementation analyses.
I am not sure why.
%>%
forplot filter(predOf=="TGV") %>%
sample_n(2000) %>%
# slice_max(order_by = predUsefulness, n = 1000) %>%
arrange(desc(predUsefulness)) %>%
mutate(Rank=1:nrow(.)) %>%
ggplot(aes(x = Rank, dist = "norm",
arg1 = predMean, arg2 = predSD,
fill=CrossGroup, color=CrossGroup),
alpha=0.5) +
stat_dist_pointinterval() +
#stat_dist_gradientinterval(n=50) +
scale_fill_viridis_d() + scale_color_viridis_d() +
+ theme(axis.title.x = element_text(face='bold')) +
plottheme labs(x = "Cross Rank UC_variety",
y = "Selection Index GETGV",
title = "Predicted distribution (mean and variability) of a sample of 2000 of 20100 predicted crosses",
subtitle = "Gives an idea of the range")
Version | Author | Date |
---|---|---|
e029efc | wolfemd | 2021-08-12 |
%>%
forplot filter(predOf=="BV") %>%
sample_n(2000) %>%
#slice_max(order_by = predUsefulness, n = 100) %>%
arrange(desc(predUsefulness)) %>%
mutate(Rank=1:nrow(.)) %>%
ggplot(aes(x = Rank, dist = "norm",
arg1 = predMean, arg2 = predSD,
fill=CrossGroup, color=CrossGroup),
alpha=0.5) +
stat_dist_pointinterval() +
#stat_dist_gradientinterval(n=50) +
scale_fill_viridis_d() + scale_color_viridis_d() +
+ theme(axis.title.x = element_text(face='bold')) +
plottheme labs(x = "Cross Rank UC_parent",
y = "Selection Index GEBV",
title = "Predicted distribution (mean and variability) of a sample of 2000 of 20100 predicted crosses",
subtitle = "Gives an idea of the range")
Version | Author | Date |
---|---|---|
e029efc | wolfemd | 2021-08-12 |
This first two plots of the mate predictions display the entire set of predicted crosses, ranked by their selection index \(UC^{SI}_{variety}\) and \(UC^{SI}_{parent}\) respectively. This will be more clear in the subsequent plots with fewer families: the x-axis is simply the descending rank of predicted \(UC^{SI}\) for each cross. The y-axis shows the predicted mean (dot) and distribution quantiles (linerange) based on the predicted mean and standard deviation of each cross. Crosses are color coded according to the “genetic group” of the parents.
%>%
forplot group_by(predOf) %>%
slice_max(order_by = predUsefulness, n = 100) %>%
arrange(predOf,desc(predUsefulness)) %>%
group_by(predOf) %>%
mutate(Rank=1:n()) %>%
ggplot(aes(x = Rank, dist = "norm",
arg1 = predMean, arg2 = predSD,
fill=CrossGroup, color=CrossGroup),
alpha=1) +
stat_dist_gradientinterval(n=100) +
scale_fill_viridis_d() + scale_color_viridis_d() +
+ theme(axis.text.x = element_text(face='bold'),
plottheme axis.title.x = element_text(face = 'bold')) +
facet_wrap(~predOf,nrow=1, scales='free') +
labs(x = "Selection Index Ranking",
y = "Selection Index GBLUP",
title = "Predicted distribution of the top 100 crosses")
Version | Author | Date |
---|---|---|
e029efc | wolfemd | 2021-08-12 |
This next plot shows only the top 100 crosses, ranked separately based on the \(UC^{SI}_{parent}\) and \(UC^{SI}_{variety}\).
%>%
forplot group_by(predOf) %>%
slice_max(order_by = predUsefulness, n = 5) %>% rmarkdown::paged_table()
The best 5 crosses to make based on \(UC^{SI}_{parent}\) and \(UC^{SI}_{variety}\):
%>%
forplot group_by(predOf) %>%
slice_max(order_by = predUsefulness, n = 50) %>%
arrange(predOf,desc(predUsefulness)) %>%
mutate(Rank=1:n()) %>%
ggplot(aes(x = Rank, dist = "norm",
arg1 = predMean, arg2 = predSD,
fill = CrossGroup,
label = CrossGroup)) +
stat_dist_gradientinterval(n=100,side='top',position = "dodgejust",
aes(fill = stat(y < (arg1+arg2*qnorm(0.95))))) +
stat_dist_dotsinterval(n=50,side='both',position = "dodgejust",
aes(fill = stat(y < (arg1+arg2*qnorm(0.95))))) +
scale_fill_viridis_d() + scale_color_viridis_d() +
+ theme(axis.text.x = element_text(face='bold'),
plottheme axis.title.x = element_text(face = 'bold'),
legend.position = 'none') +
facet_wrap(~predOf,nrow=2, scales='free') +
labs(x = expression(bold("Rank on SELIND")),
y = "Selection Index GBLUP",
title = "Predicted distribution of the top 50 crosses")
Version | Author | Date |
---|---|---|
e029efc | wolfemd | 2021-08-12 |
In this plot, the area under the top 5% of each crosses predicted distribution is filled in purple The mean of individuals from under the highlighted area is the \(UC_{parent}\) or \(UC_{variety}\). There are also 50 dots for each cross illustrating the hypothetical outcome of creating 50 progeny.
%>%
forplot group_by(predOf) %>%
slice_max(order_by = predUsefulness, n = 10) %>%
arrange(predOf,desc(predUsefulness)) %>%
mutate(Rank=1:n()) %>%
ggplot(aes(y = Rank, dist = "norm",
arg1 = predMean, arg2 = predSD,
label = paste0(sireID,"\n x ",damID)),
alpha=0.5) +
stat_dist_dotsinterval(n=50,side='top',position = "dodgejust",scale=0.85,
aes(fill = stat(x < (arg1+arg2*qnorm(0.95))))) +
stat_dist_halfeye(position = "dodgejust",scale=1.25, alpha=0.5,
aes(fill = stat(x < (arg1+arg2*qnorm(0.95))))) +
geom_label(aes(x=predMean),size=3) +
scale_fill_viridis_d() + scale_color_viridis_d() +
+ theme(axis.text.x = element_text(face='bold'),
plottheme axis.title.x = element_text(face = 'bold'),
legend.position = 'none') +
facet_wrap(~predOf,scales='free', nrow=1) +
labs(y = expression(bold("Rank on SELIND")),
x = "Selection Index GBLUP",
title = "Predicted distribution of the top 10 crosses")
Version | Author | Date |
---|---|---|
e029efc | wolfemd | 2021-08-12 |
Or for more clarity, just the top 10 crosses:
Table of Top 50 Crosses: 2 rows for each cross, one for predOf=="BV"
one for predOf=="TGV"
.
<-forplot %>%
top50crossesgroup_by(predOf) %>%
slice_max(order_by = predUsefulness, n = 50) %>%
ungroup()
%>%
top50crosses write.csv(.,file = here::here("output","top50crosses.csv"), row.names = F)
%>%
top50crosses ::paged_table() rmarkdown
sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ggdist_3.0.0 ragg_1.1.3 magrittr_2.0.1 forcats_0.5.1
[5] stringr_1.4.0 dplyr_1.0.7 purrr_0.3.4 readr_2.0.1
[9] tidyr_1.1.3 tibble_3.1.3 ggplot2_3.3.5 tidyverse_1.3.1
[13] workflowr_1.6.2
loaded via a namespace (and not attached):
[1] nlme_3.1-152 fs_1.5.0 lubridate_1.7.10
[4] httr_1.4.2 rprojroot_2.0.2 tools_4.1.0
[7] backports_1.2.1 bslib_0.2.5.1 utf8_1.2.2
[10] R6_2.5.0 DBI_1.1.1 mgcv_1.8-36
[13] colorspace_2.0-2 withr_2.4.2 tidyselect_1.1.1
[16] gridExtra_2.3 mnormt_2.0.2 compiler_4.1.0
[19] git2r_0.28.0 textshaping_0.3.5 cli_3.0.1
[22] rvest_1.0.1 xml2_1.3.2 labeling_0.4.2
[25] sass_0.4.0 scales_1.1.1 psych_2.1.6
[28] systemfonts_1.0.2 digest_0.6.27 rmarkdown_2.10
[31] pkgconfig_2.0.3 htmltools_0.5.1.1 dbplyr_2.1.1
[34] highr_0.9 rlang_0.4.11 readxl_1.3.1
[37] rstudioapi_0.13 jquerylib_0.1.4 farver_2.1.0
[40] generics_0.1.0 jsonlite_1.7.2 distributional_0.2.2
[43] Matrix_1.3-4 Rcpp_1.0.7 munsell_0.5.0
[46] fansi_0.5.0 viridis_0.6.1 lifecycle_1.0.0
[49] stringi_1.7.3 whisker_0.4 yaml_2.2.1
[52] grid_4.1.0 parallel_4.1.0 promises_1.2.0.1
[55] crayon_1.4.1 lattice_0.20-44 haven_2.4.3
[58] splines_4.1.0 hms_1.1.0 tmvnsim_1.0-2
[61] knitr_1.33 pillar_1.6.2 reprex_2.0.1
[64] glue_1.4.2 evaluate_0.14 modelr_0.1.8
[67] vctrs_0.3.8 tzdb_0.1.2 httpuv_1.6.1
[70] cellranger_1.1.0 gtable_0.3.0 assertthat_0.2.1
[73] xfun_0.25 broom_0.7.9 later_1.2.0
[76] viridisLite_0.4.0 ellipsis_0.3.2 here_1.0.1