Last updated: 2021-07-14

Checks: 7 0

Knit directory: implementGMSinCassava/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210504) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 2953ee6. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/accuracies.png
    Ignored:    analysis/fig2.png
    Ignored:    analysis/fig3.png
    Ignored:    analysis/fig4.png
    Ignored:    code/.DS_Store
    Ignored:    data/.DS_Store

Untracked files:
    Untracked:  accuracies.png
    Untracked:  analysis/docs/
    Untracked:  analysis/speedUpPredCrossVar.Rmd
    Untracked:  code/AlphaAssign-Python/
    Untracked:  code/calcGameticLD.cpp
    Untracked:  code/col_sums.cpp
    Untracked:  code/convertDart2vcf.R
    Untracked:  code/helloworld.cpp
    Untracked:  code/imputationFunctions.R
    Untracked:  code/matmult.cpp
    Untracked:  code/misc.cpp
    Untracked:  code/test.cpp
    Untracked:  data/CassavaGeneticMap/
    Untracked:  data/DatabaseDownload_2021May04/
    Untracked:  data/GBSdataMasterList_31818.csv
    Untracked:  data/IITA_GBStoPhenoMaster_33018.csv
    Untracked:  data/NRCRI_GBStoPhenoMaster_40318.csv
    Untracked:  data/PedigreeGeneticGainCycleTime_aafolabi_01122020.xls
    Untracked:  data/blups_forCrossVal.rds
    Untracked:  data/chr1_RefPanelAndGSprogeny_ReadyForGP_72719.fam
    Untracked:  data/dosages_IITA_filtered_2021May13.rds
    Untracked:  data/genmap_2021May13.rds
    Untracked:  data/haps_IITA_filtered_2021May13.rds
    Untracked:  data/recombFreqMat_1minus2c_2021May13.rds
    Untracked:  fig2.png
    Untracked:  fig3.png
    Untracked:  figure/
    Untracked:  output/IITA_CleanedTrialData_2021May10.rds
    Untracked:  output/IITA_ExptDesignsDetected_2021May10.rds
    Untracked:  output/IITA_blupsForModelTraining_twostage_asreml_2021May10.rds
    Untracked:  output/IITA_trials_NOT_identifiable.csv
    Untracked:  output/crossValPredsA.rds
    Untracked:  output/crossValPredsAD.rds
    Untracked:  output/cvAD_5rep5fold_markerEffects.rds
    Untracked:  output/cvAD_5rep5fold_meanPredAccuracy.rds
    Untracked:  output/cvAD_5rep5fold_parentfolds.rds
    Untracked:  output/cvAD_5rep5fold_predMeans.rds
    Untracked:  output/cvAD_5rep5fold_predVars.rds
    Untracked:  output/cvAD_5rep5fold_varPredAccuracy.rds
    Untracked:  output/cvDirDom_5rep5fold_markerEffects.rds
    Untracked:  output/cvDirDom_5rep5fold_meanPredAccuracy.rds
    Untracked:  output/cvDirDom_5rep5fold_parentfolds.rds
    Untracked:  output/cvDirDom_5rep5fold_predMeans.rds
    Untracked:  output/cvDirDom_5rep5fold_predVars.rds
    Untracked:  output/cvDirDom_5rep5fold_varPredAccuracy.rds
    Untracked:  output/cvMeanPredAccuracyA.rds
    Untracked:  output/cvMeanPredAccuracyAD.rds
    Untracked:  output/cvPredMeansA.rds
    Untracked:  output/cvPredMeansAD.rds
    Untracked:  output/cvVarPredAccuracyA.rds
    Untracked:  output/cvVarPredAccuracyAD.rds
    Untracked:  output/genomicPredictions_ModelAD.rds
    Untracked:  output/genomicPredictions_ModelDirDom.rds
    Untracked:  output/kinship_A_IITA_2021May13.rds
    Untracked:  output/kinship_D_IITA_2021May13.rds
    Untracked:  output/markEffsTest.rds
    Untracked:  output/markerEffects.rds
    Untracked:  output/markerEffectsA.rds
    Untracked:  output/markerEffectsAD.rds
    Untracked:  output/maxNOHAV_byStudy.csv
    Untracked:  output/obsCrossMeansAndVars.rds
    Untracked:  output/parentfolds.rds
    Untracked:  output/ped2check_genome.rds
    Untracked:  output/ped2genos.txt
    Untracked:  output/pednames2keep.txt
    Untracked:  output/pednames_Prune100_25_pt25.log
    Untracked:  output/pednames_Prune100_25_pt25.nosex
    Untracked:  output/pednames_Prune100_25_pt25.prune.in
    Untracked:  output/pednames_Prune100_25_pt25.prune.out
    Untracked:  output/potential_dams.txt
    Untracked:  output/potential_sires.txt
    Untracked:  output/predVarTest.rds
    Untracked:  output/samples2keep_IITA_2021May13.txt
    Untracked:  output/samples2keep_IITA_MAFpt01_prune50_25_pt98.log
    Untracked:  output/samples2keep_IITA_MAFpt01_prune50_25_pt98.nosex
    Untracked:  output/samples2keep_IITA_MAFpt01_prune50_25_pt98.prune.in
    Untracked:  output/samples2keep_IITA_MAFpt01_prune50_25_pt98.prune.out
    Untracked:  output/verified_ped.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/02-GetBLUPs.Rmd) and HTML (docs/02-GetBLUPs.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 2953ee6 wolfemd 2021-07-14 Correct the link to the Results.html page throughout.
html e66bdad wolfemd 2021-06-10 Build site.
Rmd a8452ba wolfemd 2021-06-10 Initial build of the entire page upon completion of all

Previous step

  1. Prepare training dataset: Download data from DB, “Clean” and format DB data.

Get multi-trial BLUPs from raw data (two-stage)

Two-stage procedure:

  1. Fit mixed-model to multi-trial dataset and extract BLUPs, de-regressed BLUPs and weights. Include two rounds of outlier removal.
  2. Genomic prediction with drg-BLUPs from multi-trial analysis as input.

Work below represents Stage 1 of the Two-stage procedure.

Set-up training datasets

# activate multithread OpenBLAS for fast matrix algebra
export OMP_NUM_THREADS=56
rm(list=ls())
library(tidyverse); library(magrittr);
source(here::here("code","gsFunctions.R"))
dbdata<-readRDS(here::here("output","IITA_ExptDesignsDetected_2021May10.rds"))
traits<-c("MCMDS","DM","PLTHT","BRNHT1","BRLVLS","HI",
          "logDYLD", # <-- logDYLD now included. 
          "logFYLD","logTOPYLD","logRTNO","TCHART","LCHROMO","ACHROMO","BCHROMO")

# **Nest by trait.** Need to restructure the data from per-trial by regrouping by trait. 
dbdata<-nestDesignsDetectedByTraits(dbdata,traits)
dbdata %>% mutate(N_blups=map_dbl(MultiTrialTraitData,nrow)) %>% rmarkdown::paged_table()

To fit the mixed-model I used last year, I am again resorting to asreml. I fit random effects for rep and block only where complete and incomplete blocks, respectively are indicated in the trial design variables. sommer should be able to fit the same model via the at() function, but I am having trouble with it and sommer is much slower even without a dense covariance (i.e. a kinship), compared to lme4::lmer() or asreml().

dbdata %<>% 
  mutate(fixedFormula=ifelse(Trait %in% c("logDYLD","logFYLD","logRTNO","logTOPYLD"),
                             "Value ~ yearInLoc + PropNOHAV","Value ~ yearInLoc"),
         randFormula=paste0("~idv(GID) + idv(trialInLocYr) + at(CompleteBlocks,'Yes'):repInTrial ",
                            "+ at(IncompleteBlocks,'Yes'):blockInRep"))
dbdata %>% 
  mutate(Nobs=map_dbl(MultiTrialTraitData,nrow)) %>% 
  select(Trait,Nobs,fixedFormula,randFormula) %>% 
  rmarkdown::paged_table()
# randFormula<-paste0("~vs(GID) + vs(trialInLocYr) + vs(at(CompleteBlocks,'Yes'),repInTrial) + vs(at(IncompleteBlocks,'Yes'),blockInRep)")
# library(sommer)
# fit <- mmer(fixed = Value ~ 1 + yearInLoc,
#             random = as.formula(randFormula),
#             data=trainingdata,
#             getPEV=TRUE)

Function to run asreml

Includes rounds of outlier removal and re-fitting.

fitASfunc<-function(fixedFormula,randFormula,MultiTrialTraitData,...){
  # test arguments for function
  # ----------------------
  # MultiTrialTraitData<-dbdata$MultiTrialTraitData[[7]]
  # #Trait<-dbdata$Trait[[3]]
  # fixedFormula<-dbdata$fixedFormula[[7]]
  # randFormula<-dbdata$randFormula[[7]]
  # test<-fitASfunc(fixedFormula,randFormula,MultiTrialTraitData)
  # ----------------------
  require(asreml); 
  fixedFormula<-as.formula(fixedFormula)
  randFormula<-as.formula(randFormula)
  # fit asreml 
  out<-asreml(fixed = fixedFormula,
              random = randFormula,
              data = MultiTrialTraitData, 
              maxiter = 40, workspace=800e6, na.method.X = "omit")
  #### extract residuals - Round 1
  
  outliers1<-which(abs(scale(out$residuals))>3.3)
  
  if(length(outliers1)>0){
    
    x<-MultiTrialTraitData[-outliers1,]
    # re-fit
    out<-asreml(fixed = fixedFormula,
                random = randFormula,
                data = x, 
                maxiter = 40, workspace=800e6, na.method.X = "omit")
    #### extract residuals - Round 2
    outliers2<-which(abs(scale(out$residuals))>3.3)
    if(length(outliers2)>0){
      #### remove outliers
      x<-x[-outliers2,]
      # final re-fit
      out<-asreml(fixed = fixedFormula,
                  random = randFormula,
                  data = x, maxiter = 40,workspace=800e6, na.method.X = "omit")
    }
  }
  if(length(outliers1)==0){ outliers1<-NULL }
  if(length(outliers2)==0){ outliers2<-NULL }
  
  ll<-summary(out,all=T)$loglik
  varcomp<-summary(out,all=T)$varcomp
  Vg<-varcomp["GID!GID.var","component"]
  Ve<-varcomp["R!variance","component"]
  H2=Vg/(Vg+Ve)
  blups<-summary(out,all=T)$coef.random %>%
    as.data.frame %>%
    rownames_to_column(var = "GID") %>%
    dplyr::select(GID,solution,`std error`) %>%
    filter(grepl("GID",GID)) %>%
    rename(BLUP=solution) %>%
    mutate(GID=gsub("GID_","",GID),
           PEV=`std error`^2, # asreml specific
           REL=1-(PEV/Vg), # Reliability
           drgBLUP=BLUP/REL, # deregressed BLUP
           WT=(1-H2)/((0.1 + (1-REL)/REL)*H2)) # weight for use in Stage 2
  out<-tibble(loglik=ll,Vg,Ve,H2,
              blups=list(blups),
              varcomp=list(varcomp),
              outliers1=list(outliers1),
              outliers2=list(outliers2))
  return(out) }

Run asreml

library(furrr); options(mc.cores=14); plan(multiprocess)
library(asreml)
dbdata %<>% 
  mutate(fitAS=future_pmap(.,fitASfunc))
dbdata %<>%
  select(-fixedFormula,-randFormula,-MultiTrialTraitData) %>%
  unnest(fitAS)

Output file

saveRDS(dbdata,file=here::here("output","IITA_blupsForModelTraining_twostage_asreml_2021May10.rds"))

Results

See Results: Home for plots and summary tables.

Next step

  1. Validate the pedigree obtained from cassavabase: Before setting up a cross-validation scheme for predictions that depend on a correct pedigree, add a basic verification step to the pipeline. Not trying to fill unknown or otherwise correct the pedigree. Assess evidence that relationship is correct, remove if incorrect.

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] magrittr_2.0.1  forcats_0.5.1   stringr_1.4.0   dplyr_1.0.7    
 [5] purrr_0.3.4     readr_1.4.0     tidyr_1.1.3     tibble_3.1.2   
 [9] ggplot2_3.3.5   tidyverse_1.3.1 workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] tidyselect_1.1.1  xfun_0.24         bslib_0.2.5.1     haven_2.4.1      
 [5] colorspace_2.0-2  vctrs_0.3.8       generics_0.1.0    htmltools_0.5.1.1
 [9] yaml_2.2.1        utf8_1.2.1        rlang_0.4.11      jquerylib_0.1.4  
[13] later_1.2.0       pillar_1.6.1      withr_2.4.2       glue_1.4.2       
[17] DBI_1.1.1         dbplyr_2.1.1      readxl_1.3.1      modelr_0.1.8     
[21] lifecycle_1.0.0   cellranger_1.1.0  munsell_0.5.0     gtable_0.3.0     
[25] rvest_1.0.0       evaluate_0.14     knitr_1.33        httpuv_1.6.1     
[29] fansi_0.5.0       broom_0.7.8       Rcpp_1.0.7        promises_1.2.0.1 
[33] backports_1.2.1   scales_1.1.1      jsonlite_1.7.2    fs_1.5.0         
[37] hms_1.1.0         digest_0.6.27     stringi_1.6.2     rprojroot_2.0.2  
[41] grid_4.1.0        here_1.0.1        cli_3.0.0         tools_4.1.0      
[45] sass_0.4.0        crayon_1.4.1      whisker_0.4       pkgconfig_2.0.3  
[49] ellipsis_0.3.2    xml2_1.3.2        reprex_2.0.0      lubridate_1.7.10 
[53] rstudioapi_0.13   assertthat_0.2.1  rmarkdown_2.9     httr_1.4.2       
[57] R6_2.5.0          git2r_0.28.0      compiler_4.1.0