Last updated: 2020-04-28

Checks: 7 0

Knit directory: NRCRI_2020GS/

This reproducible R Markdown analysis was created with workflowr (version 1.6.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200421) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 8c45991. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    data/.DS_Store
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  NRCRI 2020 GS.gslides
    Untracked:  data/DatabaseDownload_42120/
    Untracked:  data/GBSdataMasterList_31818.csv
    Untracked:  data/IITA_GBStoPhenoMaster_33018.csv
    Untracked:  data/NRCRI_CleanedTrialData_2020April21.rds
    Untracked:  data/NRCRI_ExptDesignsDetected_2020April21.rds
    Untracked:  data/NRCRI_GBStoPhenoMaster_40318.csv
    Untracked:  data/iita_blupsForCrossVal_72619.rds
    Untracked:  data/iita_blupsForCrossVal_outliersRemoved_73019.rds
    Untracked:  output/DosageMatrix_NRCRI_SamplesForGP_2020April27.rds
    Untracked:  output/GEBV_NRCRI_IITAaugmented_ModelADE_2020April27.rds
    Untracked:  output/GEBV_NRCRI_IITAaugmented_ModelA_2020April27.rds
    Untracked:  output/GEBV_NRCRI_NRCRIalone_ModelADE_2020April27.rds
    Untracked:  output/GEBV_NRCRI_NRCRIalone_ModelA_2020April27.rds
    Untracked:  output/GETGV_NRCRI_IITAaugmented_ModelADE_2020April27.rds
    Untracked:  output/GETGV_NRCRI_NRCRIalone_ModelADE_2020April27.rds
    Untracked:  output/Kinship_AA_NRCRI_2020April27.rds
    Untracked:  output/Kinship_AD_NRCRI_2020April27.rds
    Untracked:  output/Kinship_A_NRCRI_2020April27.rds
    Untracked:  output/Kinship_DD_NRCRI_2020April27.rds
    Untracked:  output/Kinship_D_NRCRI_2020April27.rds
    Untracked:  output/NRCRI_CuratedTrials_2020April21.rds
    Untracked:  output/NRCRI_CuratedTrials_2020April27.rds
    Untracked:  output/cvresults_AD_nrOnly.rds
    Untracked:  output/cvresults_A_iitaAugmented.rds
    Untracked:  output/cvresults_A_nrOnly.rds
    Untracked:  output/genomicPredictions_ModelADE_NRCRI_2020April27.rds
    Untracked:  output/genomicPredictions_ModelA_NRCRI_2020April27.rds
    Untracked:  output/maxNOHAV_byStudy_NRCRI_2020April27.csv
    Untracked:  output/nrcri_blupsForModelTraining_2020April21.rds
    Untracked:  output/nrcri_blupsForModelTraining_2020April27.rds
    Untracked:  workflowr_log.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/02-curateByTrial.Rmd) and HTML (docs/02-curateByTrial.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 8c45991 wolfemd 2020-04-28 Publish the first set of analyses and files for NRCRI 2020 GS.

Previous step

  1. Prepare a training dataset: Download data from DB, “Clean” and format DB data

Nest by trial

Start with cleaned data from previous step.

rm(list=ls())
library(tidyverse); library(magrittr);
dbdata<-readRDS(here::here("data","NRCRI_CleanedTrialData_2020April21.rds"))

All downstream analyses in this step will by on a per-trial (location-year-studyName combination).

This function converts a data.frame where each row is a plot to one where each row is a trial, with a list-type column TrialData containing the corresponding trial’s plot-data.

nestByTrials<-function(indata){ 
  nested_indata<-indata %>% 
    # Create some explicitly nested variables including loc and year to nest with the trial data
        mutate(yearInLoc=paste0(programName,"_",locationName,"_",studyYear),
               trialInLocYr=paste0(yearInLoc,"_",studyName),
               repInTrial=paste0(trialInLocYr,"_",replicate),
               blockInRep=paste0(repInTrial,"_",blockNumber)) %>% 
    nest(TrialData=-c(programName,locationName,studyYear,TrialType,studyName))
  return(nested_indata) 
}
dbdata<-nestByTrials(dbdata)
dbdata %>% head
# A tibble: 6 x 6
  studyYear programName locationName studyName       TrialType TrialData        
      <int> <chr>       <chr>        <chr>           <chr>     <list>           
1      2012 NRCRI       Umudike      12CET500TP1umu  TP1       <tibble [1,500 ×…
2      2013 NRCRI       Umudike      13CET489tp2umu  TP2       <tibble [1,500 ×…
3      2013 NRCRI       Otobi        13CET518TP1Oto… TP1       <tibble [1,554 ×…
4      2013 NRCRI       Umudike      13CET518TP1umu  TP1       <tibble [1,554 ×…
5      2013 NRCRI       Kano         13TP1CET518kano TP1       <tibble [1,554 ×…
6      2015 NRCRI       Kano         14CETtp2set2ka… TP2       <tibble [250 × 3…
dbdata$TrialData[[1]] %>% head
# A tibble: 6 x 36
  studyDesign plotWidth plotLength fieldSize plantingDate harvestDate
  <chr>           <dbl>      <dbl>     <dbl> <chr>        <chr>      
1 Alpha               1          5       1.5 2012-Septem… 2013-Septe…
2 Alpha               1          5       1.5 2012-Septem… 2013-Septe…
3 Alpha               1          5       1.5 2012-Septem… 2013-Septe…
4 Alpha               1          5       1.5 2012-Septem… 2013-Septe…
5 Alpha               1          5       1.5 2012-Septem… 2013-Septe…
6 Alpha               1          5       1.5 2012-Septem… 2013-Septe…
# … with 30 more variables: germplasmName <chr>, replicate <int>,
#   blockNumber <int>, plotNumber <int>, rowNumber <lgl>, colNumber <int>,
#   entryType <chr>, CGM <lgl>, CGMS1 <dbl>, CGMS2 <dbl>, DM <dbl>,
#   PLTHT <dbl>, BRNHT1 <dbl>, NOHAV <dbl>, HI <dbl>, PlotSpacing <dbl>,
#   MaxNOHAV <dbl>, logFYLD <dbl>, logTOPYLD <dbl>, logRTNO <dbl>,
#   PropNOHAV <dbl>, MCMDS <dbl>, OrigKeyFile <chr>, OriginOfSample <chr>,
#   FullSampleName <chr>, GID <chr>, yearInLoc <chr>, trialInLocYr <chr>,
#   repInTrial <chr>, blockInRep <chr>

Detect experimental designs

The next step is to check the experimental design of each trial. If you are absolutely certain of the usage of the design variables in your dataset, you might not need this step.

Examples of reasons to do the step below:

  • Some trials appear to be complete blocked designs and the blockNumber is used instead of replicate, which is what most use.
  • Some complete block designs have nested, incomplete sub-blocks, others simply copy the “replicate” variable into the “blockNumber variable”
  • Some trials have only incomplete blocks but the incomplete block info might be in the replicate and/or the blockNumber column

One reason it might be important to get this right is that the variance among complete blocks might not be the same among incomplete blocks. If we treat a mixture of complete and incomplete blocks as part of the same random-effect (replicated-within-trial), we assume they have the same variance.

Also error variances might be heterogeneous among different trial-types (blocking scheme available) and/or plot sizes (maxNOHAV).

detectExptDesigns<-function(nestedDBdata){
    # Define complete blocks
  nestedDBdata %>% 
    mutate(Nobs=map_dbl(TrialData,~nrow(.)),
           MaxNOHAV=map_dbl(TrialData,~unique(.$MaxNOHAV)),
           Nrep=map_dbl(TrialData,~length(unique(.$replicate))),
           Nblock=map_dbl(TrialData,~length(unique(.$blockInRep))),
           Nclone=map_dbl(TrialData,~length(unique(.$germplasmName))),
           # median number of obs per clone
           medObsPerClone=map_dbl(TrialData,~count(.,germplasmName) %$% round(median(n),1)), 
           # median number of obs per replicate
           medObsPerRep=map_dbl(TrialData,~count(.,replicate) %$% round(median(n),1)), 
           # Define complete block effects based on the "replicate" variable
           CompleteBlocks=ifelse(Nrep>1 & medObsPerClone==Nrep & Nobs!=Nrep,TRUE,FALSE), 
           # Additional trials with imperfect complete blocks
           CompleteBlocks=ifelse(Nrep>1 & medObsPerClone!=Nrep & medObsPerClone>1 & Nobs!=Nrep,TRUE,CompleteBlocks)) -> x 
  x %>% 
    # Some complete blocks may only be represented by the "blockNumber" column
    mutate(medBlocksPerClone=map_dbl(TrialData,~select(.,blockInRep,germplasmName) %>% 
                                       # median number of blockInRep per clone
                                       distinct %>% 
                                       count(germplasmName) %$% 
                                       round(median(n))),
           # If CompleteBlocks==FALSE (complete blocks not detected based on replicate)
           # and if more than half the clones are represented in more than one block based on the blockInRep variable
           # Copy the blockInRep values into the repInTrial column
           # Recompute Nrep
           # and declare CompleteBlocks==TRUE
           TrialData=ifelse(medBlocksPerClone>1 & CompleteBlocks==FALSE,map(TrialData,~mutate(.,repInTrial=blockInRep)),TrialData),  
           Nrep=map_dbl(TrialData,~length(unique(.$repInTrial))),
           CompleteBlocks=ifelse(medBlocksPerClone>1 & CompleteBlocks==FALSE,TRUE,CompleteBlocks)) -> y
  # Define incomplete blocks
  y %>% 
    mutate(repsEqualBlocks=map_lgl(TrialData,~all(.$replicate==.$blockNumber)),  
           NrepEqualNblock=ifelse(Nrep==Nblock,TRUE,FALSE),
           medObsPerBlockInRep=map_dbl(TrialData,~count(.,blockInRep) %$% round(median(n),1))) -> z
  # Define complete blocked trials with nested sub-blocks
  z %<>%
    mutate(IncompleteBlocks=ifelse(CompleteBlocks==TRUE & Nobs!=Nblock & Nblock>1 & medObsPerBlockInRep>1 & NrepEqualNblock==FALSE,TRUE,FALSE))
  # Define clearly unreplicated (CompleteBlocks==FALSE & Nrep==1) trials with nested sub-blocks
  z %<>% 
    mutate(IncompleteBlocks=ifelse(CompleteBlocks==FALSE & Nobs!=Nblock & Nblock>1 & medObsPerBlockInRep>1 & Nrep==1,TRUE,IncompleteBlocks))
  # Define additional trials with incomplete blocks (blockInRep) where CompleteBlocks==FALSE but Nrep>1 and Nrep==Block
  z %<>% 
    mutate(IncompleteBlocks=ifelse(CompleteBlocks==FALSE & IncompleteBlocks==FALSE & 
                                     Nobs!=Nblock & Nblock>1 &  Nobs!=Nrep & 
                                     medObsPerBlockInRep>1 & Nrep>1 & NrepEqualNblock==TRUE,TRUE,IncompleteBlocks))
  # Last few cases (2 trials actually) where Nrep>1 and Nblock>1 and Nrep!=Nblock but CompleteBlocks==FALSE
  z %<>% 
    mutate(IncompleteBlocks=ifelse(CompleteBlocks==FALSE & IncompleteBlocks==FALSE &
                                     Nobs!=Nblock & Nobs!=Nrep & 
                                     medObsPerBlockInRep>1 & Nrep>1,TRUE,IncompleteBlocks))
  return(z)
}

Detect designs

dbdata<-detectExptDesigns(dbdata)
dbdata %>% 
    count(programName,CompleteBlocks,IncompleteBlocks) # %>% spread(IncompleteBlocks,n)
# A tibble: 4 x 4
  programName CompleteBlocks IncompleteBlocks     n
  <chr>       <lgl>          <lgl>            <int>
1 NRCRI       FALSE          FALSE                3
2 NRCRI       FALSE          TRUE                15
3 NRCRI       TRUE           FALSE               78
4 NRCRI       TRUE           TRUE                26

Output file

saveRDS(dbdata,file=here::here("data","NRCRI_ExptDesignsDetected_2020April21.rds"))

Model by trait-trial

This next step fits models to each trial (for each trait)

rm(list=ls())
library(tidyverse); library(magrittr);
dbdata<-readRDS(here::here("data","NRCRI_ExptDesignsDetected_2020April21.rds"))
traits<-c("CGM","CGMS1","CGMS2","MCMDS","DM","PLTHT","BRNHT1","HI","logFYLD","logTOPYLD","logRTNO")

Functions

Nest by trait-trial. This next function will structure input trial data by trait. This will facilitate looping downstream analyses over each trait for each trial.

nestTrialsByTrait<-function(indata,traits){ 
  nested_trialdata<-dbdata %>%
    select(-MaxNOHAV) %>% 
    unnest(TrialData) %>% 
    pivot_longer(cols = any_of(traits),
                 names_to = "Trait",
                 values_to = "TraitValue") %>% 
    nest(TraitByTrialData=-c(Trait,studyYear,programName,locationName,studyName,TrialType))
  return(nested_trialdata) 
}
dbdata<-nestTrialsByTrait(dbdata,traits)
#dbdata %>% head

Minor support function: calc. proportion missing given a numeric vector.

calcPropMissing<-function(TraitValues){ length(which(is.na(TraitValues))) / length(TraitValues) }

Function to curate a single trait-trial data chunk.

# Trait<-"logFYLD"
# TraitByTrialData<-dbdata %>% filter(studyName=="18C2acrossingblockCETubiaja",Trait=="logFYLD") %$% TraitByTrialData[[1]]
# GID="GID"
#rm(Trait,TraitData,GID)
curateTrialOneTrait<-function(Trait,TraitByTrialData,GID="GID"){
  require(lme4)
  
  modelFormula<-paste0("TraitValue ~ (1|",GID,")")
  modelFormula<-ifelse(all(TraitByTrialData$CompleteBlocks),
                       paste0(modelFormula,"+(1|repInTrial)"),modelFormula)
  modelFormula<-ifelse(all(TraitByTrialData$IncompleteBlocks),
                       paste0(modelFormula,"+(1|blockInRep)"),modelFormula)
  modelFormula<-ifelse(grepl("logRTNO",Trait) | grepl("logFYLD",Trait) | grepl("logTOPYLD",Trait),
                       paste0(modelFormula,"+PropNOHAV"),modelFormula)
  
  propMiss<-calcPropMissing(TraitByTrialData$TraitValue)
  fit_model<-possibly(function(modelFormula,TraitByTrialData){
    model_out<-lmer(as.formula(modelFormula),data=TraitByTrialData)
    if(!is.na(model_out)){
      outliers<-which(abs(rstudent(model_out))>=3.3)
      if(length(outliers)>0){
        model_out<-lmer(as.formula(modelFormula),data=TraitByTrialData,
                        subset=abs(rstudent(model_out))<3.3)
      } 
    }
    return(list(model_out=model_out,outliers=outliers)) },
    otherwise = NA)
  model_out<-fit_model(modelFormula,TraitByTrialData)
  if(is.na(model_out)){
    out <-tibble(H2=NA,VarComps=list(NULL),BLUPs=list(NULL),Model=modelFormula,Noutliers=NA,Outliers=NA,propMiss=propMiss) 
  } else {
    varcomps<-as.data.frame(VarCorr(model_out[["model_out"]]))[,c("grp","vcov")] %>%
      spread(grp,vcov)
    Vg<-varcomps$GID
    H2<-Vg/(Vg+varcomps$Residual)
    BLUP<-ranef(model_out[["model_out"]], condVar=TRUE)[[GID]]
    PEV <- c(attr(BLUP, "postVar"))
    blups<-tibble(GID=rownames(BLUP),BLUP=BLUP$`(Intercept)`,PEV=PEV) %>% 
      mutate(REL=1-(PEV/Vg),
             drgBLUP=BLUP/REL,
             WT=(1-H2)/((0.1 + (1-REL)/REL)*H2))
    out <- tibble(H2=H2, 
                  VarComps=list(varcomps), 
                  BLUPs=list(blups),
                  Model=modelFormula,
                  Noutliers=length(model_out[["outliers"]]),
                  Outliers=list(model_out[["outliers"]]),
                  propMiss=propMiss) }
  return(out) 
}
curateTrialsByTrait<-function(nestedTrialData,traits){
  outdata<-nestedTrialData %>% 
    mutate(modelOutput=map2(Trait,TraitByTrialData,~curateTrialOneTrait(Trait = .x,TraitByTrialData = .y))) %>% 
    dplyr::select(-TraitByTrialData) %>% 
    unnest(modelOutput)
  return(outdata)
}

Fit models

dbdata<-curateTrialsByTrait(dbdata,traits)
dbdata %>% slice(2) %>% str
tibble [1 × 13] (S3: tbl_df/tbl/data.frame)
 $ studyYear   : int 2012
 $ programName : chr "NRCRI"
 $ locationName: chr "Umudike"
 $ studyName   : chr "12CET500TP1umu"
 $ TrialType   : chr "TP1"
 $ Trait       : chr "CGMS1"
 $ H2          : num 7.36e-07
 $ VarComps    :List of 1
  ..$ :'data.frame':    1 obs. of  4 variables:
  .. ..$ blockInRep: num 0.00029
  .. ..$ GID       : num 4.3e-08
  .. ..$ repInTrial: num 0.000914
  .. ..$ Residual  : num 0.0584
 $ BLUPs       :List of 1
  ..$ : tibble [500 × 6] (S3: tbl_df/tbl/data.frame)
  .. ..$ GID    : chr [1:500] "AR124:250107818" "AR1410:250399710" "AR144:250107805" "AR155:250134515" ...
  .. ..$ BLUP   : num [1:500] -4.87e-08 -3.60e-08 -6.19e-08 -3.69e-08 -3.24e-09 ...
  .. ..$ PEV    : num [1:500] 4.3e-08 4.3e-08 4.3e-08 4.3e-08 4.3e-08 ...
  .. ..$ REL    : num [1:500] 2.20e-06 2.20e-06 2.20e-06 2.19e-06 1.46e-06 ...
  .. ..$ drgBLUP: num [1:500] -0.02218 -0.01642 -0.0282 -0.01683 -0.00222 ...
  .. ..$ WT     : num [1:500] 2.98 2.98 2.98 2.98 1.99 ...
 $ Model       : chr "TraitValue ~ (1|GID)+(1|repInTrial)+(1|blockInRep)"
 $ Noutliers   : int 11
 $ Outliers    :List of 1
  ..$ : Named int [1:11] 1 224 245 603 606 644 675 841 917 1071 ...
  .. ..- attr(*, "names")= chr [1:11] "1" "225" "247" "613" ...
 $ propMiss    : num 0.0187

Output file

saveRDS(dbdata,file=here::here("output","NRCRI_CuratedTrials_2020April27.rds"))

Plot Results

dbdata<-readRDS(file=here::here("output","NRCRI_CuratedTrials_2020April27.rds"))
dbdata %>% 
  ggplot(.,aes(x=Trait,y=H2,fill=Trait)) + 
  geom_boxplot(color='darkgray') + 
  theme_bw() + 
  scale_fill_viridis_d(option = 'magma') + 
  theme(axis.text.x = element_text(face='bold',angle=90))

dbdata %>%
  select(studyYear:VarComps) %>% 
  unnest(VarComps) %>% 
  ggplot(.,aes(x=TrialType,y=Residual,fill=TrialType)) + 
  geom_boxplot(color='darkgray') + 
  theme_bw() + facet_wrap(~Trait,scales = 'free',nrow=2) +
  scale_fill_viridis_d(option = 'inferno') + theme(axis.text.x = element_text(angle=90,face='bold'))

dbdata %>%
  select(studyYear:VarComps) %>% 
  unnest(VarComps) %>% 
  ggplot(.,aes(x=TrialType,y=H2,fill=TrialType)) + 
  geom_boxplot(color='darkgray') + 
  theme_bw() + facet_wrap(~Trait,scales = 'free',nrow=2) +
  scale_fill_viridis_d(option = 'inferno') + theme(axis.text.x = element_text(angle=90,face='bold'))

dbdata %>%
  ggplot(.,aes(x=TrialType,y=Noutliers,fill=TrialType)) + 
  geom_boxplot(color='darkgray') + 
  theme_bw() + facet_wrap(~Trait,scales = 'free',nrow=2) +
  scale_fill_viridis_d(option = 'inferno') + theme(axis.text.x = element_text(angle=90,face='bold'))

dbdata %>% 
  ggplot(.,aes(x=TrialType,y=propMiss,fill=TrialType)) + 
  geom_boxplot(color='darkgray') + 
  theme_bw() + facet_wrap(~Trait,scales = 'free',nrow=2) +
  scale_fill_viridis_d(option = 'inferno') + theme(axis.text.x = element_text(angle=90,face='bold'))

Next step

  1. Get BLUPs combining all trial data: Combine data from all trait-trials to get BLUPs for downstream genomic

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Mojave 10.14.6

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] lme4_1.1-23     Matrix_1.2-18   magrittr_1.5    forcats_0.5.0  
 [5] stringr_1.4.0   dplyr_0.8.5     purrr_0.3.4     readr_1.3.1    
 [9] tidyr_1.0.2     tibble_3.0.1    ggplot2_3.3.0   tidyverse_1.3.0
[13] workflowr_1.6.1

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.4.6      lubridate_1.7.8   here_0.1          lattice_0.20-41  
 [5] assertthat_0.2.1  rprojroot_1.3-2   digest_0.6.25     utf8_1.1.4       
 [9] R6_2.4.1          cellranger_1.1.0  backports_1.1.6   reprex_0.3.0     
[13] evaluate_0.14     httr_1.4.1        pillar_1.4.3      rlang_0.4.5      
[17] readxl_1.3.1      minqa_1.2.4       rstudioapi_0.11   nloptr_1.2.2.1   
[21] whisker_0.4       rmarkdown_2.1     labeling_0.3      splines_3.6.1    
[25] statmod_1.4.34    munsell_0.5.0     broom_0.5.6       compiler_3.6.1   
[29] httpuv_1.5.2      modelr_0.1.6      xfun_0.13         pkgconfig_2.0.3  
[33] htmltools_0.4.0   tidyselect_1.0.0  viridisLite_0.3.0 fansi_0.4.1      
[37] crayon_1.3.4      dbplyr_1.4.3      withr_2.2.0       later_1.0.0      
[41] MASS_7.3-51.6     grid_3.6.1        nlme_3.1-147      jsonlite_1.6.1   
[45] gtable_0.3.0      lifecycle_0.2.0   DBI_1.1.0         git2r_0.26.1     
[49] scales_1.1.0      cli_2.0.2         stringi_1.4.6     farver_2.0.3     
[53] fs_1.4.1          promises_1.1.0    xml2_1.3.2        ellipsis_0.3.0   
[57] generics_0.0.2    vctrs_0.2.4       boot_1.3-25       tools_3.6.1      
[61] glue_1.4.0        hms_0.5.3         yaml_2.2.1        colorspace_1.4-1 
[65] rvest_0.3.5       knitr_1.28        haven_2.2.0