Last updated: 2021-05-03
Checks: 7 0
Knit directory: NRCRI_2021GS/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20210427)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version c887639. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/.DS_Store
Untracked files:
Untracked: analysis/02-GetBLUPs.Rmd
Untracked: analysis/03-CrossValidation.Rmd
Untracked: analysis/04-GetGBLUPs.Rmd
Untracked: analysis/05-Results.Rmd
Untracked: code/convertDart2vcf.R
Untracked: code/gsFunctions.R
Untracked: code/imputationFunctions.R
Untracked: data/DatabaseDownload_2021April29/
Untracked: data/GBSdataMasterList_31818.csv
Untracked: data/IITA_GBStoPhenoMaster_33018.csv
Untracked: data/NRCRI_GBStoPhenoMaster_40318.csv
Untracked: data/Report-DCas21-5841/
Untracked: data/chr1_RefPanelAndGSprogeny_ReadyForGP_72719.fam
Untracked: output/NRCRI_CleanedTrialData_2021May02.rds
Untracked: output/NRCRI_trials_NOT_identifiable.csv
Untracked: output/maxNOHAV_byStudy.csv
Unstaged changes:
Modified: README.md
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/01-cleanTPdata.Rmd
) and HTML (docs/01-cleanTPdata.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | c887639 | wolfemd | 2021-05-03 | Publish site up through cleanTPdata step to generate cleaned TP data before continuing pipeline. |
Follow outlined GenomicPredictionChecklist and previous pipeline to process cassavabase data for ultimate genomic prediction.
Below we will clean and format training data.
Downloaded all NRCRI field trials.
Selected all NRCRI trials currently available. Make a list. Named it ALL_NRCRI_TRIALS_2021April29.
Go to Manage –> Download here. Download phenotypes (plot-basis only) and meta-data as CSV using the corresponding boxes / drop-downs.
Store flatfiles, unaltered in directory data/DatabaseDownload_2021April29/
.
rm(list=ls())
library(tidyverse); library(magrittr);
source(here::here("code","gsFunctions.R"))
Read DB data directly from the Cassavabase FTP server.
<-readDBdata(phenotypeFile = here::here("data/DatabaseDownload_2021April29","2021-04-30T144108phenotype_download.csv")) dbdata
Make TrialType Variable
<-makeTrialTypeVar(dbdata)
dbdata%>%
dbdata count(TrialType) %>% rmarkdown::paged_table()
Comparing to 2020: Slightly more C1b data, twice as much C2a, 3 times as much C2b, 7000 more plots with no identified trial type.
Looking at the studyName’s of trials getting NA for TrialType, which can’t be classified at present.
Here is the list of trials I am not including.
%>% filter(is.na(TrialType)) %$% unique(studyName) %>%
dbdata write.csv(.,file = here::here("output","NRCRI_trials_NOT_identifiable.csv"), row.names = F)
Wrote to disk a CSV in the output/
sub-directory.
Should any of these trials have been included?
%>%
dbdata filter(is.na(TrialType)) %$% unique(studyName)
[1] "06cetEarlyBulkingUM" "06SeedlingsEarlyBulkingUM"
[3] "07EarlyBulkingUM" "07pytEarlyBulkingUM"
[5] "08EarlyBulkingIB" "08EarlyBulkingOT"
[7] "08EarlyBulkingUM" "09pytIgariam"
[9] "09pytOtobi" "09pytUmudike"
[11] "10cetNR10BseriesUM" "10cetNR10seriesUM"
[13] "10uytCIATsetAUM" "10uytCIATsetBKA"
[15] "10uytUM" "11aytNR09seriesUM"
[17] "11cetNR11seriesUM" "11clonal63cpUM"
[19] "11cmd48gpUM" "11EarlyBulkingDrtKA"
[21] "11UMUyellowRTuyt" "11uyt10RepeatUM"
[23] "12CETearlyBulkingDrtkano" "12PYT36genpyramOtobi"
[25] "12PYT75genpyramUM" "13AYT12yrtOtobi"
[27] "13AYT259mpopdOtobi" "13AYT25umu"
[29] "13AYT35gpOtobii" "13AYT60gpumu"
[31] "13AYT70mpopfOtobi" "13CET261umu"
[33] "13mlt12yrtIG" "13PYT144mpopumu"
[35] "13PYT17mpopfumu" "13pyt20nr12UM"
[37] "13UYT12yrtumu" "13uyt15umu"
[39] "14cCET150umu" "14CET12Highbetacaroumu"
[41] "14CET178mpopumu" "14clonal35ctasetbUM"
[43] "14clonal35ctaUM" "14highbetacaro12umu"
[45] "14iHighbetacaroIghariam" "14PYT21highbetacaroumu"
[47] "14PYT25wrtumu" "14tHighBetaCaroOtobi"
[49] "14UYT12umu" "15ayt11nr13UM"
[51] "15ayt12wrtUM" "15nextgen351cgm-amUM"
[53] "15uyt10hbcUM" "16uyt10hcbUM"
[55] "17C2aSeedling Nursery" "17cet200yellowrt_umu"
[57] "17ppdyieldexperimentUM" "17pyt30yellowrtumu"
[59] "17uyt10yellowrt_umu" "17uyt12yellowrt_umu"
[61] "17uyt13yellowrt_umu" "18AYT13yrtOtobi"
[63] "18AYT13yrtumu" "18C2bSeedlingNurseryumu"
[65] "18introLatAmeumu" "18pyt_lgbariam"
[67] "18PYTmealiness_umu" "18pyt_otobi"
[69] "18UYT12yrtIgbariam" "18UYT12yrtOtobi"
[71] "18UYT12yrtumu_1" "18UYT12yrtumu_2"
[73] "19C3SeedlingNursery_umu" "19cetcftumu_1"
[75] "19cetcftumu_2" "19cetcftumu_3"
[77] "19crossingblockCETubiaja" "19introLatAmeumu"
[79] "19S1CETumu" "19UYTumudike"
[81] "2020regionaltrial12Otobi" "2020regionaltrial16Otobi"
[83] "2020regionaltrial17Otobi" "2020regionaltrial21Otobi"
[85] "2020regionaltrial23Umudike" "2020regionaltrial24Otobi"
[87] "2020regionaltrial29Otobi" "2020regionaltrial36Otobi"
[89] "2020regionaltrial3Otobi" "2020regionaltrial46Umudike"
[91] "2020regionaltrial50Otobi" "2020regionaltrial9Otobi"
[93] "20AYTintroLatAmeAgo-Owu" "20AYTintroLatAmekano"
[95] "20AYTintroLatAmeOnne" "20AYTintroLatAmeUmudike"
[97] "20C4crossingblockCETubiaja" "20CFT1AYTumu"
[99] "20CFT2AYTumu" "20CFT3AYTmum"
[101] "20event2D8083CFTumu" "20event3D9001CFTumu"
[103] "20eventD5001CFTumu" "20NRS1pytubiaja"
[105] "20NRS1pytumu" "20NRS1pytumudike"
[107] "20pyt_GPR_ikenne_set1" "20pyt_GPR_ikenne_set2"
[109] "20pyt_GPR_ikenne_set3" "20pyt_GPR_ikenne_set4"
[111] "20pyt_GPR_umu_Set1" "20pyt_GPR_umu_Set2"
[113] "20pyt_GPR_umu_Set3" "20pyt_GPR_umu_Set4"
[115] "20pytNUEset1umudike" "20pytNUEset2umudike"
[117] "20pytNUEumu_2" "20pytNUset1igbariam"
[119] "20pytNUset2igbariam" "20seedlingnurseryumu"
[121] "20uytnrcri_iita_reg_oto" "20uytnrcri_iita_reg_umu"
[123] "CETCrossingblock19_ubiaja" "Ikenne2019RootPhenotyping"
[125] "PYT 2010" "Umudike2013set1CGM"
[127] "Umudike2013set2CGM" "Umudike2019RootPhenotyping"
Should any of these trials have been included?
Especially among the following new trials (post 2018):
%>%
dbdata filter(is.na(TrialType),
as.numeric(studyYear)>2018) %$% unique(studyName)
[1] "19C3SeedlingNursery_umu" "19cetcftumu_1"
[3] "19cetcftumu_2" "19cetcftumu_3"
[5] "19crossingblockCETubiaja" "19introLatAmeumu"
[7] "19S1CETumu" "19UYTumudike"
[9] "2020regionaltrial12Otobi" "2020regionaltrial16Otobi"
[11] "2020regionaltrial17Otobi" "2020regionaltrial21Otobi"
[13] "2020regionaltrial23Umudike" "2020regionaltrial24Otobi"
[15] "2020regionaltrial29Otobi" "2020regionaltrial36Otobi"
[17] "2020regionaltrial3Otobi" "2020regionaltrial46Umudike"
[19] "2020regionaltrial50Otobi" "2020regionaltrial9Otobi"
[21] "20AYTintroLatAmeAgo-Owu" "20AYTintroLatAmekano"
[23] "20AYTintroLatAmeOnne" "20AYTintroLatAmeUmudike"
[25] "20C4crossingblockCETubiaja" "20CFT1AYTumu"
[27] "20CFT2AYTumu" "20CFT3AYTmum"
[29] "20event2D8083CFTumu" "20event3D9001CFTumu"
[31] "20eventD5001CFTumu" "20NRS1pytubiaja"
[33] "20NRS1pytumu" "20NRS1pytumudike"
[35] "20pyt_GPR_ikenne_set1" "20pyt_GPR_ikenne_set2"
[37] "20pyt_GPR_ikenne_set3" "20pyt_GPR_ikenne_set4"
[39] "20pyt_GPR_umu_Set1" "20pyt_GPR_umu_Set2"
[41] "20pyt_GPR_umu_Set3" "20pyt_GPR_umu_Set4"
[43] "20pytNUEset1umudike" "20pytNUEset2umudike"
[45] "20pytNUEumu_2" "20pytNUset1igbariam"
[47] "20pytNUset2igbariam" "20seedlingnurseryumu"
[49] "20uytnrcri_iita_reg_oto" "20uytnrcri_iita_reg_umu"
[51] "CETCrossingblock19_ubiaja" "Ikenne2019RootPhenotyping"
[53] "Umudike2019RootPhenotyping"
%<>%
dbdata filter(!is.na(TrialType))
%>%
dbdata group_by(programName) %>%
summarize(N=n()) %>% rmarkdown::paged_table()
# 18591 (now including a ~5K plot seedling nursery) plots
Making a table of abbreviations for renaming
%>% colnames %>% grep("dry.matter",.,value = T) dbdata
[1] "dry.matter.content.by.specific.gravity.method.CO_334.0000160"
[2] "dry.matter.content.percentage.CO_334.0000092"
<-tribble(~TraitAbbrev,~TraitName,
traitabbrevs"CMD1S","cassava.mosaic.disease.severity.1.month.evaluation.CO_334.0000191",
"CMD3S","cassava.mosaic.disease.severity.3.month.evaluation.CO_334.0000192",
"CMD6S","cassava.mosaic.disease.severity.6.month.evaluation.CO_334.0000194",
"CMD9S","cassava.mosaic.disease.severity.9.month.evaluation.CO_334.0000193",
"CGM","Cassava.green.mite.severity.CO_334.0000033",
"CGMS1","cassava.green.mite.severity.first.evaluation.CO_334.0000189",
"CGMS2","cassava.green.mite.severity.second.evaluation.CO_334.0000190",
"DM","dry.matter.content.percentage.CO_334.0000092",
"DMsg","dry.matter.content.by.specific.gravity.method.CO_334.0000160",
"PLTHT","plant.height.measurement.in.cm.CO_334.0000018",
"BRNHT1","first.apical.branch.height.measurement.in.cm.CO_334.0000106",
"SHTWT","fresh.shoot.weight.measurement.in.kg.per.plot.CO_334.0000016",
"RTWT","fresh.storage.root.weight.per.plot.CO_334.0000012",
"RTNO","root.number.counting.CO_334.0000011",
"TCHART","total.carotenoid.by.chart.1.8.CO_334.0000161",
"NOHAV","plant.stands.harvested.counting.CO_334.0000010")
%>% rmarkdown::paged_table() traitabbrevs
Run function renameAndSelectCols()
to rename columns and remove everything unecessary
<-renameAndSelectCols(traitabbrevs,indata=dbdata,customColsToKeep = c("TrialType","observationUnitName")) dbdata
<-dbdata %>%
dbdatamutate(CMD1S=ifelse(CMD1S<1 | CMD1S>5,NA,CMD1S),
CMD3S=ifelse(CMD3S<1 | CMD3S>5,NA,CMD3S),
CMD6S=ifelse(CMD6S<1 | CMD6S>5,NA,CMD6S),
CMD9S=ifelse(CMD9S<1 | CMD9S>5,NA,CMD9S),
# CBSD3S=ifelse(CBSD3S<1 | CBSD3S>5,NA,CBSD3S),
# CBSD6S=ifelse(CBSD6S<1 | CBSD6S>5,NA,CBSD6S),
# CBSD9S=ifelse(CBSD9S<1 | CBSD9S>5,NA,CMD9S),
# CBSDRS=ifelse(CBSDRS<1 | CBSDRS>5,NA,CBSDRS),
CGM=ifelse(CGM<1 | CGM>5,NA,CGM),
CGMS1=ifelse(CGMS1<1 | CGMS1>5,NA,CGMS1),
CGMS2=ifelse(CGMS2<1 | CGMS2>5,NA,CGMS2),
DM=ifelse(DM>100 | DM<=0,NA,DM),
DMsg=ifelse(DMsg>100 | DMsg<=0,NA,DMsg),
RTWT=ifelse(RTWT==0 | NOHAV==0 | is.na(NOHAV),NA,RTWT),
SHTWT=ifelse(SHTWT==0 | NOHAV==0 | is.na(NOHAV),NA,SHTWT),
RTNO=ifelse(RTNO==0 | NOHAV==0 | is.na(NOHAV),NA,RTNO),
NOHAV=ifelse(NOHAV==0,NA,NOHAV),
NOHAV=ifelse(NOHAV>42,NA,NOHAV),
RTNO=ifelse(!RTNO %in% 1:10000,NA,RTNO))
<-dbdata %>%
dbdatamutate(HI=RTWT/(RTWT+SHTWT))
I anticipate this will not be necessary as it will be computed before or during data upload.
For calculating fresh root yield:
<-dbdata %>%
dbdatamutate(PlotSpacing=ifelse(programName!="IITA",1,
ifelse(studyYear<2013,1,
ifelse(TrialType %in% c("CET","GeneticGain","ExpCET"),1,0.8))))
<-dbdata %>%
maxNOHAV_byStudygroup_by(programName,locationName,studyYear,studyName,studyDesign) %>%
summarize(MaxNOHAV=max(NOHAV, na.rm=T)) %>%
ungroup() %>%
mutate(MaxNOHAV=ifelse(MaxNOHAV=="-Inf",NA,MaxNOHAV))
write.csv(maxNOHAV_byStudy %>% arrange(studyYear),file=here::here("output","maxNOHAV_byStudy.csv"), row.names = F)
This next part is copied from my 2020 NRCRI analysis
Previously, I took these values as is. I am unsatisfied with that. The trial number is small enough I’m going to curate manually below. I hope this gives better yield results.
%<>%
maxNOHAV_byStudy mutate(MaxNOHAV=ifelse(studyName=="18C2acrossingblockCETubiaja",8,MaxNOHAV),
MaxNOHAV=ifelse(studyName=="13TP1CET518kano",5,MaxNOHAV),
MaxNOHAV=ifelse(studyName=="17C1aAYTGSkano",10,MaxNOHAV),
MaxNOHAV=ifelse(studyName=="18C1bAYTGSOtobi",10,MaxNOHAV),
MaxNOHAV=ifelse(studyName=="16C1aCETnonGSOtobi",5,MaxNOHAV),
MaxNOHAV=ifelse(studyName=="17C1bCETkano",5,MaxNOHAV),
MaxNOHAV=ifelse(studyName=="16C1aCETnonGSOtobi",5,MaxNOHAV),
MaxNOHAV=ifelse(studyName=="18C1bAYTGSset2umu",10,MaxNOHAV))
Now back the standard workflow.
# I log transform yield traits
# to satisfy homoskedastic residuals assumption
# of linear mixed models
<-left_join(dbdata,maxNOHAV_byStudy) %>%
dbdatamutate(RTWT=ifelse(NOHAV>MaxNOHAV,NA,RTWT),
SHTWT=ifelse(NOHAV>MaxNOHAV,NA,SHTWT),
RTNO=ifelse(NOHAV>MaxNOHAV,NA,RTNO),
HI=ifelse(NOHAV>MaxNOHAV,NA,HI),
FYLD=RTWT/(MaxNOHAV*PlotSpacing)*10,
DYLD=FYLD*(DM/100),
logFYLD=log(FYLD),
logDYLD=log(DYLD),
logTOPYLD=log(SHTWT/(MaxNOHAV*PlotSpacing)*10),
logRTNO=log(RTNO),
PropNOHAV=NOHAV/MaxNOHAV)
# remove non transformed / per-plot (instead of per area) traits
%<>% select(-RTWT,-SHTWT,-RTNO,-FYLD,-DYLD) dbdata
# [NEW AS OF APRIL 2021]
## VERSION with vs. without CBSD
## Impervious to particular timepoints between 1, 3, 6 and 9 scores
# Without CBSD (West Africa)
<-dbdata %>%
dbdatamutate(MCMDS=rowMeans(.[,colnames(.) %in% c("CMD1S","CMD3S","CMD6S","CMD9S")], na.rm = T)) %>%
select(-any_of(c("CMD1S","CMD3S","CMD6S","CMD9S")))
# With CBSD (East Africa)
# dbdata<-dbdata %>%
# mutate(MCMDS=rowMeans(.[,colnames(.) %in% c("CMD1S","CMD3S","CMD6S","CMD9S")], na.rm = T),
# MCBSDS=rowMeans(.[,colnames(.) %in% c("CBSD1S","CBSD3S","CBSD6S","CBSD9S")], na.rm = T)) %>%
# select(-any_of(c("CMD1S","CMD3S","CMD6S","CMD9S","CBSD1S","CBSD3S","CBSD6S","CBSD9S")))
This step is mostly copy-pasted from previous processing of IITA- and NRCRI-specific data.
Uses 4 flat files, which are available e.g. here. Specifically, IITA_GBStoPhenoMaster_33018.csv
, GBSdataMasterList_31818.csv
and NRCRI_GBStoPhenoMaster_40318.csv
and chr1_RefPanelAndGSprogeny_ReadyForGP_72719.fam
. I copy them to the data/
sub-directory for the current analysis.
In addition, DArT-only samples are now expected to also have phenotypes. Therefore, checking for matches in new flatfiles, deposited in the data/
(see code below).
library(tidyverse); library(magrittr)
<-dbdata %>%
gbs2phenoMasterselect(germplasmName) %>%
%>%
distinct left_join(read.csv(here::here("data","NRCRI_GBStoPhenoMaster_40318.csv"),
stringsAsFactors = F)) %>%
mutate(FullSampleName=ifelse(grepl("C2a",germplasmName,ignore.case = T) &
is.na(FullSampleName),germplasmName,FullSampleName)) %>%
filter(!is.na(FullSampleName)) %>%
select(germplasmName,FullSampleName) %>%
bind_rows(dbdata %>%
select(germplasmName) %>%
%>%
distinct left_join(read.csv(here::here("data","IITA_GBStoPhenoMaster_33018.csv"),
stringsAsFactors = F)) %>%
filter(!is.na(FullSampleName)) %>%
select(germplasmName,FullSampleName)) %>%
bind_rows(dbdata %>%
select(germplasmName) %>%
%>%
distinct left_join(read.csv(here::here("data","GBSdataMasterList_31818.csv"),
stringsAsFactors = F) %>%
select(DNASample,FullSampleName) %>%
rename(germplasmName=DNASample)) %>%
filter(!is.na(FullSampleName)) %>%
select(germplasmName,FullSampleName)) %>%
bind_rows(dbdata %>%
select(germplasmName) %>%
%>%
distinct mutate(germplasmSynonyms=ifelse(grepl("^UG",germplasmName,ignore.case = T),
gsub("UG","Ug",germplasmName),germplasmName)) %>%
left_join(read.csv(here::here("data","GBSdataMasterList_31818.csv"),
stringsAsFactors = F) %>%
select(DNASample,FullSampleName) %>%
rename(germplasmSynonyms=DNASample)) %>%
filter(!is.na(FullSampleName)) %>%
select(germplasmName,FullSampleName)) %>%
bind_rows(dbdata %>%
select(germplasmName) %>%
%>%
distinct mutate(germplasmSynonyms=ifelse(grepl("^TZ",germplasmName,
ignore.case = T),
gsub("TZ","",germplasmName),germplasmName)) %>%
left_join(read.csv(here::here("data","GBSdataMasterList_31818.csv"),
stringsAsFactors = F) %>%
select(DNASample,FullSampleName) %>%
rename(germplasmSynonyms=DNASample)) %>%
filter(!is.na(FullSampleName)) %>%
select(germplasmName,FullSampleName)) %>%
%>%
distinct left_join(read.csv(here::here("data","GBSdataMasterList_31818.csv"),
stringsAsFactors = F) %>%
select(FullSampleName,OrigKeyFile,Institute) %>%
rename(OriginOfSample=Institute)) %>%
mutate(OrigKeyFile=ifelse(grepl("C2a",germplasmName,ignore.case = T),
ifelse(is.na(OrigKeyFile),"LavalGBS",OrigKeyFile),
OrigKeyFile),OriginOfSample=ifelse(grepl("C2a",germplasmName,ignore.case = T),
ifelse(is.na(OriginOfSample),"NRCRI",OriginOfSample),
OriginOfSample))
## NEW: check for germName-DArT name matches
<-dbdata %>%
germNamesWithoutGBSgenosselect(programName,germplasmName) %>%
%>%
distinct left_join(gbs2phenoMaster) %>%
filter(is.na(FullSampleName)) %>%
select(-FullSampleName)
## NEW: check for germName-DArT name matches
<-dbdata %>%
germNamesWithoutGBSgenosselect(programName,germplasmName) %>%
%>%
distinct left_join(gbs2phenoMaster) %>%
filter(is.na(FullSampleName)) %>%
select(-FullSampleName)
<-germNamesWithoutGBSgenos %>%
germNamesWithDArTinner_join(read.table(here::here("data","chr1_RefPanelAndGSprogeny_ReadyForGP_72719.fam"),
header = F, stringsAsFactors = F)$V2 %>%
grep("TMS16|TMS17|TMS18|TMS19|TMS20",.,value = T, ignore.case = T) %>%
tibble(dartName=.) %>%
separate(dartName,c("germplasmName","dartID"),"_",extra = 'merge',remove = F)) %>%
group_by(germplasmName) %>%
slice(1) %>%
ungroup() %>%
rename(FullSampleName=dartName) %>%
mutate(OrigKeyFile="DArTseqLD", OriginOfSample="IITA") %>%
select(-dartID)
print(paste0(nrow(germNamesWithDArT)," germNames with DArT-only genos"))
[1] "0 germNames with DArT-only genos"
# first, filter to just program-DNAorigin matches
<-dbdata %>%
germNamesWithGenosselect(programName,germplasmName) %>%
%>%
distinct left_join(gbs2phenoMaster) %>%
filter(!is.na(FullSampleName))
print(paste0(nrow(germNamesWithGenos)," germNames with GBS genos"))
[1] "3235 germNames with GBS genos"
# program-germNames with locally sourced GBS samples
<-germNamesWithGenos %>%
germNamesWithGenos_HasLocalSourcedGBSfilter(programName==OriginOfSample) %>%
select(programName,germplasmName) %>%
semi_join(germNamesWithGenos,.) %>%
group_by(programName,germplasmName) %>% # select one DNA per germplasmName per program
slice(1) %>% ungroup()
print(paste0(nrow(germNamesWithGenos_HasLocalSourcedGBS)," germNames with local GBS genos"))
[1] "2712 germNames with local GBS genos"
# the rest (program-germNames) with GBS but coming from a different breeding program
<-germNamesWithGenos %>%
germNamesWithGenos_NoLocalSourcedGBSfilter(programName==OriginOfSample) %>%
select(programName,germplasmName) %>%
anti_join(germNamesWithGenos,.) %>%
# select one DNA per germplasmName per program
group_by(programName,germplasmName) %>%
slice(1) %>% ungroup()
print(paste0(nrow(germNamesWithGenos_NoLocalSourcedGBS)," germNames without local GBS genos"))
[1] "212 germNames without local GBS genos"
<-bind_rows(germNamesWithGenos_HasLocalSourcedGBS,
genosForPhenos%>%
germNamesWithGenos_NoLocalSourcedGBS) bind_rows(germNamesWithDArT)
print(paste0(nrow(genosForPhenos)," total germNames with genos either GBS or DArT"))
[1] "2924 total germNames with genos either GBS or DArT"
%<>%
dbdata left_join(genosForPhenos)
# Create a new identifier, GID
## Equals the value SNP data name (FullSampleName)
## else germplasmName if no SNP data
%<>%
dbdata mutate(GID=ifelse(is.na(FullSampleName),germplasmName,FullSampleName))
# going to check against SNP data
<-readRDS(file=url(paste0("ftp://ftp.cassavabase.org/marnin_datasets/NGC_BigData/",
snps"DosageMatrix_RefPanelAndGSprogeny_ReadyForGP_73019.rds")))
<-rownames(snps); rm(snps); gc() rownames_snps
used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 1259796 67.3 2284058 122.0 NA 2284058 122.0
Vcells 3887386 29.7 727210631 5548.2 65536 756124638 5768.8
# current matches to SNP data
%>%
dbdata distinct(GID,germplasmName,FullSampleName) %>%
semi_join(tibble(GID=rownames_snps)) %>% nrow() #
[1] 1340
%>%
dbdata distinct(GID,germplasmName,FullSampleName) %>%
semi_join(tibble(GID=rownames_snps)) %>%
filter(grepl("c1",GID,ignore.case = F)) # no C1 clones currently match
# A tibble: 0 x 3
# … with 3 variables: germplasmName <chr>, FullSampleName <chr>, GID <chr>
%>%
dbdata distinct(GID,germplasmName,FullSampleName) %>%
semi_join(tibble(GID=rownames_snps)) %>%
filter(grepl("c2",GID,ignore.case = F)) # no C2 clones either
# A tibble: 0 x 3
# … with 3 variables: germplasmName <chr>, FullSampleName <chr>, GID <chr>
%>%
dbdata distinct(GID,germplasmName,FullSampleName) %>%
anti_join(tibble(GID=rownames_snps)) %>%
filter(grepl("c1|c2",GID,ignore.case = T)) # definitely there are both C1 and C2 phenotypes
# A tibble: 2,440 x 3
germplasmName FullSampleName GID
<chr> <chr> <chr>
1 NR16F100C1bP001 <NA> NR16F100C1bP001
2 NR16F100C1bP002 <NA> NR16F100C1bP002
3 NR16F104C1bP001 <NA> NR16F104C1bP001
4 NR16F105C1bP001 <NA> NR16F105C1bP001
5 NR16F105C1bP002 <NA> NR16F105C1bP002
6 NR16F106C1bP001 <NA> NR16F106C1bP001
7 NR16F107C1bP002 <NA> NR16F107C1bP002
8 NR16F107C1bP004 <NA> NR16F107C1bP004
9 NR16F108C1bP001 <NA> NR16F108C1bP001
10 NR16F109C1bP001 <NA> NR16F109C1bP001
# … with 2,430 more rows
# and there are C1 and C2 genotypes
%>% grep("c1",.,value = T,ignore.case = T) %>% length # [1] rownames_snps
[1] 1762
%>% grep("c2",.,value = T,ignore.case = T) %>% length # [1] rownames_snps
[1] 4291
<-dbdata %>%
germ2snpsdistinct(germplasmName,FullSampleName) %>%
semi_join(tibble(FullSampleName=rownames_snps)) %>%
bind_rows(dbdata %>%
distinct(germplasmName,FullSampleName) %>%
anti_join(tibble(FullSampleName=rownames_snps)) %>%
filter(grepl("c1a",germplasmName,ignore.case = T)) %>%
select(-FullSampleName) %>%
left_join(tibble(FullSampleName=rownames_snps) %>%
filter(grepl("c1a",FullSampleName,ignore.case = T)) %>%
separate(FullSampleName,c("dartID","germplasmName"),"\\.\\.\\.",extra = 'merge',remove = F) %>%
select(-dartID))) %>%
bind_rows(dbdata %>%
distinct(germplasmName,FullSampleName) %>%
anti_join(tibble(FullSampleName=rownames_snps)) %>%
filter(grepl("C1b",germplasmName,ignore.case = T)) %>%
filter(grepl("NR16C1b",germplasmName,ignore.case = T)) %>%
select(-FullSampleName) %>%
left_join(tibble(FullSampleName=rownames_snps) %>%
filter(grepl("c1b",FullSampleName,ignore.case = T)) %>%
separate(FullSampleName,c("germplasmName","GBS_ID"),":",extra = 'merge',remove = F) %>%
select(-GBS_ID) %>%
mutate(germplasmName=gsub("C1b","",germplasmName),
germplasmName=paste0("NR16C1b",germplasmName)))) %>%
bind_rows(dbdata %>%
distinct(germplasmName,FullSampleName) %>%
anti_join(tibble(FullSampleName=rownames_snps)) %>%
filter(grepl("C1b",germplasmName,ignore.case = T)) %>%
filter(!grepl("NR16C1b",germplasmName,ignore.case = T)) %>%
select(-FullSampleName) %>%
left_join(tibble(FullSampleName=rownames_snps) %>%
filter(grepl("c1b",FullSampleName,ignore.case = T)) %>%
separate(FullSampleName,c("germplasmName","GBS_ID"),":",extra = 'merge',remove = F) %>%
select(-GBS_ID) %>%
mutate(germplasmName=paste0("NR16",germplasmName)))) %>%
bind_rows(dbdata %>%
distinct(germplasmName,FullSampleName) %>%
anti_join(tibble(FullSampleName=rownames_snps)) %>%
filter(grepl("c2",germplasmName,ignore.case = T)) %>%
select(-FullSampleName) %>%
left_join(tibble(FullSampleName=rownames_snps) %>%
filter(grepl("c2",FullSampleName,ignore.case = T),
grepl("\\.\\.\\.",FullSampleName)) %>%
separate(FullSampleName,c("dartID","germplasmName"),"\\.\\.\\.",extra = 'merge',remove = F) %>%
select(-dartID))) %>%
distinct%>%
germ2snps count(germplasmName) %>% arrange(desc(n))
# A tibble: 3,780 x 2
germplasmName n
<chr> <int>
1 NR16C1bF185P001 4
2 NR16F185C1bP001 4
3 NR16C1bF170P019 3
4 NR16C1bF170P020 3
5 NR16C1bF180P002 3
6 NR16F180C1bP002 3
7 NR16F182C1bP001 3
8 NR16C1bF171P002 2
9 NR16C1bF179P001 2
10 NR16C1bF179P002 2
# … with 3,770 more rows
%>%
germ2snps count(FullSampleName) %>% arrange(desc(n))
# A tibble: 3,304 x 2
FullSampleName n
<chr> <int>
1 <NA> 357
2 F116C1bP006:CA7RRANXX:3:499841 3
3 F123C1bP002:CA7RRANXX:4:499895 3
4 F123C1bP006:CA7RRANXX:4:499899 3
5 F12C1bP018:CABV7ANXX:5:503932 3
6 F135C1bP001:CABJYANXX:5:505238 3
7 F136C1bP002:CABJYANXX:5:505240 3
8 F140C1bP001:CABJYANXX:5:505270 3
9 F152C1bP010:CA7RRANXX:5:499961 3
10 F152C1bP014:CA7RRANXX:5:499965 3
# … with 3,294 more rows
length(unique(dbdata$FullSampleName)) # [1]
[1] 2911
table(unique(dbdata$FullSampleName) %in% rownames_snps)
FALSE TRUE
1584 1327
# FALSE TRUE
#
%>%
dbdata select(-GID,-FullSampleName) %>%
left_join(germ2snps) %$%
length(unique(FullSampleName)) # [1]
[1] 3304
%>%
dbdata select(-GID,-FullSampleName) %>%
left_join(germ2snps) %$%
table(unique(FullSampleName) %in% rownames_snps)
FALSE TRUE
1 3303
# FALSE TRUE
#
# Merge updated pheno-to-SNP matches to raw pheno DF
%<>%
dbdata select(-GID,-FullSampleName) %>%
left_join(germ2snps) %>%
# Re-create the GID identifier
## Equals the value SNP data name (FullSampleName)
## else germplasmName if no SNP data
mutate(GID=ifelse(is.na(FullSampleName),germplasmName,FullSampleName))
saveRDS(dbdata,file=here::here("output","NRCRI_CleanedTrialData_2021May03.rds"))
The next step is to check the experimental design of each trial. If you are absolutely certain of the usage of the design variables in your dataset, you might not need this step.
Examples of reasons to do the step below:
One reason it might be important to get this right is that the variance among complete blocks might not be the same among incomplete blocks. If we treat a mixture of complete and incomplete blocks as part of the same random-effect (replicated-within-trial), we assume they have the same variance.
Also error variances might be heterogeneous among different trial-types (blocking scheme available) and/or plot sizes (maxNOHAV).
Start with cleaned data from previous step.
rm(list=ls()); gc()
used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 1219615 65.2 2284058 122.0 NA 2284058 122.0
Vcells 2294470 17.6 581768505 4438.6 65536 756124638 5768.8
library(tidyverse); library(magrittr);
source(here::here("code","gsFunctions.R"))
<-readRDS(here::here("output","NRCRI_CleanedTrialData_2021May03.rds")) dbdata
%>% head %>% rmarkdown::paged_table() dbdata
Detect designs
<-detectExptDesigns(dbdata) dbdata
%>%
dbdata count(programName,CompleteBlocks,IncompleteBlocks) %>% rmarkdown::paged_table()
saveRDS(dbdata,file=here::here("output","NRCRI_ExptDesignsDetected_2021May03.rds"))
Get BLUPs combining all trial data: Combine data from all trait-trials to get BLUPs for downstream genomic prediction.
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] magrittr_2.0.1 forcats_0.5.1 stringr_1.4.0 dplyr_1.0.5
[5] purrr_0.3.4 readr_1.4.0 tidyr_1.1.3 tibble_3.1.1
[9] ggplot2_3.3.3 tidyverse_1.3.1 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] tidyselect_1.1.0 xfun_0.22 bslib_0.2.4 haven_2.4.0
[5] colorspace_2.0-0 vctrs_0.3.7 generics_0.1.0 htmltools_0.5.1.1
[9] yaml_2.2.1 utf8_1.2.1 rlang_0.4.10 jquerylib_0.1.3
[13] later_1.1.0.1 pillar_1.6.0 withr_2.4.2 glue_1.4.2
[17] DBI_1.1.1 dbplyr_2.1.1 readxl_1.3.1 modelr_0.1.8
[21] lifecycle_1.0.0 cellranger_1.1.0 munsell_0.5.0 gtable_0.3.0
[25] rvest_1.0.0 evaluate_0.14 knitr_1.32 httpuv_1.5.5
[29] fansi_0.4.2 broom_0.7.6 Rcpp_1.0.6 promises_1.2.0.1
[33] backports_1.2.1 scales_1.1.1 jsonlite_1.7.2 fs_1.5.0
[37] hms_1.0.0 digest_0.6.27 stringi_1.5.3 rprojroot_2.0.2
[41] grid_4.0.3 here_1.0.1 cli_2.4.0 tools_4.0.3
[45] sass_0.3.1 crayon_1.4.1 whisker_0.4 pkgconfig_2.0.3
[49] ellipsis_0.3.1 xml2_1.3.2 reprex_2.0.0 lubridate_1.7.10
[53] rstudioapi_0.13 assertthat_0.2.1 rmarkdown_2.7 httr_1.4.2
[57] R6_2.5.0 git2r_0.28.0 compiler_4.0.3