Last updated: 2021-01-21
Checks: 7 0
Knit directory: TARI_2020GS/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20201215)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version bd635a2. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/.DS_Store
Untracked files:
Untracked: data/DatabaseDownload_2020Dec18/
Untracked: data/DatabaseDownload_2021Jan20/
Untracked: data/Report-DCas20-5629/DCas20_5629.vcf.gz
Untracked: data/Report-DCas20-5629/Report_5629_Counts_Ref_Version6.csv
Untracked: data/Report-DCas20-5629/Report_5629_VCF_Ref_Version6.txt
Untracked: data/Report-DCas20-5629chr10_DCas20_5629.vcf.gz
Untracked: data/Report-DCas20-5629chr11_DCas20_5629.vcf.gz
Untracked: data/Report-DCas20-5629chr12_DCas20_5629.vcf.gz
Untracked: data/Report-DCas20-5629chr13_DCas20_5629.vcf.gz
Untracked: data/Report-DCas20-5629chr14_DCas20_5629.vcf.gz
Untracked: data/Report-DCas20-5629chr15_DCas20_5629.vcf.gz
Untracked: data/Report-DCas20-5629chr16_DCas20_5629.vcf.gz
Untracked: data/Report-DCas20-5629chr17_DCas20_5629.vcf.gz
Untracked: data/Report-DCas20-5629chr18_DCas20_5629.vcf.gz
Untracked: data/Report-DCas20-5629chr1_DCas20_5629.vcf.gz
Untracked: data/Report-DCas20-5629chr2_DCas20_5629.vcf.gz
Untracked: data/Report-DCas20-5629chr3_DCas20_5629.vcf.gz
Untracked: data/Report-DCas20-5629chr4_DCas20_5629.vcf.gz
Untracked: data/Report-DCas20-5629chr5_DCas20_5629.vcf.gz
Untracked: data/Report-DCas20-5629chr6_DCas20_5629.vcf.gz
Untracked: data/Report-DCas20-5629chr7_DCas20_5629.vcf.gz
Untracked: data/Report-DCas20-5629chr8_DCas20_5629.vcf.gz
Untracked: data/Report-DCas20-5629chr9_DCas20_5629.vcf.gz
Untracked: data/TARI 2016_TP_CLONES.csv
Untracked: output/AllIdentified_germplasmName_to_FullSampleName_matches_TARI_2021Jan21.csv
Untracked: output/BeagleLogs/
Untracked: output/DosageMatrix_DCas20_5629_EA_REFimputedAndFiltered.rds
Untracked: output/DosageMatrix_ImputationReferencePanel_StageVI_91119.rds
Untracked: output/DosageMatrix_TARI_2020Dec21.rds
Untracked: output/Kinship_AD_TARI_2020Dec21.rds
Untracked: output/Kinship_A_TARI_2020Dec21.rds
Untracked: output/Kinship_D_TARI_2020Dec21.rds
Untracked: output/OnlyChosen_germplasmName_to_FullSampleName_matches_TARI_2021Jan21.csv
Untracked: output/chr10_DCas20_5629_EA_REFimputed.INFO
Untracked: output/chr10_DCas20_5629_EA_REFimputed.hwe
Untracked: output/chr10_DCas20_5629_EA_REFimputed.log
Untracked: output/chr10_DCas20_5629_EA_REFimputed.sitesPassing
Untracked: output/chr10_DCas20_5629_EA_REFimputed.vcf.gz
Untracked: output/chr10_DCas20_5629_EA_REFimputedAndFiltered.alleleToCount
Untracked: output/chr10_DCas20_5629_EA_REFimputedAndFiltered.bed
Untracked: output/chr10_DCas20_5629_EA_REFimputedAndFiltered.bim
Untracked: output/chr10_DCas20_5629_EA_REFimputedAndFiltered.fam
Untracked: output/chr10_DCas20_5629_EA_REFimputedAndFiltered.log
Untracked: output/chr10_DCas20_5629_EA_REFimputedAndFiltered.nosex
Untracked: output/chr10_DCas20_5629_EA_REFimputedAndFiltered.raw
Untracked: output/chr10_DCas20_5629_EA_REFimputedAndFiltered.sitesWithAlleles
Untracked: output/chr10_DCas20_5629_EA_REFimputedAndFiltered.vcf.gz
Untracked: output/chr10_ImputationReferencePanel_StageVI_91119.alleleToCount
Untracked: output/chr10_ImputationReferencePanel_StageVI_91119.bed
Untracked: output/chr10_ImputationReferencePanel_StageVI_91119.bim
Untracked: output/chr10_ImputationReferencePanel_StageVI_91119.fam
Untracked: output/chr10_ImputationReferencePanel_StageVI_91119.log
Untracked: output/chr10_ImputationReferencePanel_StageVI_91119.nosex
Untracked: output/chr10_ImputationReferencePanel_StageVI_91119.raw
Untracked: output/chr10_ImputationReferencePanel_StageVI_91119.sitesWithAlleles
Untracked: output/chr11_DCas20_5629_EA_REFimputed.INFO
Untracked: output/chr11_DCas20_5629_EA_REFimputed.hwe
Untracked: output/chr11_DCas20_5629_EA_REFimputed.log
Untracked: output/chr11_DCas20_5629_EA_REFimputed.sitesPassing
Untracked: output/chr11_DCas20_5629_EA_REFimputed.vcf.gz
Untracked: output/chr11_DCas20_5629_EA_REFimputedAndFiltered.alleleToCount
Untracked: output/chr11_DCas20_5629_EA_REFimputedAndFiltered.bed
Untracked: output/chr11_DCas20_5629_EA_REFimputedAndFiltered.bim
Untracked: output/chr11_DCas20_5629_EA_REFimputedAndFiltered.fam
Untracked: output/chr11_DCas20_5629_EA_REFimputedAndFiltered.log
Untracked: output/chr11_DCas20_5629_EA_REFimputedAndFiltered.nosex
Untracked: output/chr11_DCas20_5629_EA_REFimputedAndFiltered.raw
Untracked: output/chr11_DCas20_5629_EA_REFimputedAndFiltered.sitesWithAlleles
Untracked: output/chr11_DCas20_5629_EA_REFimputedAndFiltered.vcf.gz
Untracked: output/chr11_ImputationReferencePanel_StageVI_91119.alleleToCount
Untracked: output/chr11_ImputationReferencePanel_StageVI_91119.bed
Untracked: output/chr11_ImputationReferencePanel_StageVI_91119.bim
Untracked: output/chr11_ImputationReferencePanel_StageVI_91119.fam
Untracked: output/chr11_ImputationReferencePanel_StageVI_91119.log
Untracked: output/chr11_ImputationReferencePanel_StageVI_91119.nosex
Untracked: output/chr11_ImputationReferencePanel_StageVI_91119.raw
Untracked: output/chr11_ImputationReferencePanel_StageVI_91119.sitesWithAlleles
Untracked: output/chr12_DCas20_5629_EA_REFimputed.INFO
Untracked: output/chr12_DCas20_5629_EA_REFimputed.hwe
Untracked: output/chr12_DCas20_5629_EA_REFimputed.log
Untracked: output/chr12_DCas20_5629_EA_REFimputed.sitesPassing
Untracked: output/chr12_DCas20_5629_EA_REFimputed.vcf.gz
Untracked: output/chr12_DCas20_5629_EA_REFimputedAndFiltered.alleleToCount
Untracked: output/chr12_DCas20_5629_EA_REFimputedAndFiltered.bed
Untracked: output/chr12_DCas20_5629_EA_REFimputedAndFiltered.bim
Untracked: output/chr12_DCas20_5629_EA_REFimputedAndFiltered.fam
Untracked: output/chr12_DCas20_5629_EA_REFimputedAndFiltered.log
Untracked: output/chr12_DCas20_5629_EA_REFimputedAndFiltered.nosex
Untracked: output/chr12_DCas20_5629_EA_REFimputedAndFiltered.raw
Untracked: output/chr12_DCas20_5629_EA_REFimputedAndFiltered.sitesWithAlleles
Untracked: output/chr12_DCas20_5629_EA_REFimputedAndFiltered.vcf.gz
Untracked: output/chr12_ImputationReferencePanel_StageVI_91119.alleleToCount
Untracked: output/chr12_ImputationReferencePanel_StageVI_91119.bed
Untracked: output/chr12_ImputationReferencePanel_StageVI_91119.bim
Untracked: output/chr12_ImputationReferencePanel_StageVI_91119.fam
Untracked: output/chr12_ImputationReferencePanel_StageVI_91119.log
Untracked: output/chr12_ImputationReferencePanel_StageVI_91119.nosex
Untracked: output/chr12_ImputationReferencePanel_StageVI_91119.raw
Untracked: output/chr12_ImputationReferencePanel_StageVI_91119.sitesWithAlleles
Untracked: output/chr13_DCas20_5629_EA_REFimputed.INFO
Untracked: output/chr13_DCas20_5629_EA_REFimputed.hwe
Untracked: output/chr13_DCas20_5629_EA_REFimputed.log
Untracked: output/chr13_DCas20_5629_EA_REFimputed.sitesPassing
Untracked: output/chr13_DCas20_5629_EA_REFimputed.vcf.gz
Untracked: output/chr13_DCas20_5629_EA_REFimputedAndFiltered.alleleToCount
Untracked: output/chr13_DCas20_5629_EA_REFimputedAndFiltered.bed
Untracked: output/chr13_DCas20_5629_EA_REFimputedAndFiltered.bim
Untracked: output/chr13_DCas20_5629_EA_REFimputedAndFiltered.fam
Untracked: output/chr13_DCas20_5629_EA_REFimputedAndFiltered.log
Untracked: output/chr13_DCas20_5629_EA_REFimputedAndFiltered.nosex
Untracked: output/chr13_DCas20_5629_EA_REFimputedAndFiltered.raw
Untracked: output/chr13_DCas20_5629_EA_REFimputedAndFiltered.sitesWithAlleles
Untracked: output/chr13_DCas20_5629_EA_REFimputedAndFiltered.vcf.gz
Untracked: output/chr13_ImputationReferencePanel_StageVI_91119.alleleToCount
Untracked: output/chr13_ImputationReferencePanel_StageVI_91119.bed
Untracked: output/chr13_ImputationReferencePanel_StageVI_91119.bim
Untracked: output/chr13_ImputationReferencePanel_StageVI_91119.fam
Untracked: output/chr13_ImputationReferencePanel_StageVI_91119.log
Untracked: output/chr13_ImputationReferencePanel_StageVI_91119.nosex
Untracked: output/chr13_ImputationReferencePanel_StageVI_91119.raw
Untracked: output/chr13_ImputationReferencePanel_StageVI_91119.sitesWithAlleles
Untracked: output/chr14_DCas20_5629_EA_REFimputed.INFO
Untracked: output/chr14_DCas20_5629_EA_REFimputed.hwe
Untracked: output/chr14_DCas20_5629_EA_REFimputed.log
Untracked: output/chr14_DCas20_5629_EA_REFimputed.sitesPassing
Untracked: output/chr14_DCas20_5629_EA_REFimputed.vcf.gz
Untracked: output/chr14_DCas20_5629_EA_REFimputedAndFiltered.alleleToCount
Untracked: output/chr14_DCas20_5629_EA_REFimputedAndFiltered.bed
Untracked: output/chr14_DCas20_5629_EA_REFimputedAndFiltered.bim
Untracked: output/chr14_DCas20_5629_EA_REFimputedAndFiltered.fam
Untracked: output/chr14_DCas20_5629_EA_REFimputedAndFiltered.log
Untracked: output/chr14_DCas20_5629_EA_REFimputedAndFiltered.nosex
Untracked: output/chr14_DCas20_5629_EA_REFimputedAndFiltered.raw
Untracked: output/chr14_DCas20_5629_EA_REFimputedAndFiltered.sitesWithAlleles
Untracked: output/chr14_DCas20_5629_EA_REFimputedAndFiltered.vcf.gz
Untracked: output/chr14_ImputationReferencePanel_StageVI_91119.alleleToCount
Untracked: output/chr14_ImputationReferencePanel_StageVI_91119.bed
Untracked: output/chr14_ImputationReferencePanel_StageVI_91119.bim
Untracked: output/chr14_ImputationReferencePanel_StageVI_91119.fam
Untracked: output/chr14_ImputationReferencePanel_StageVI_91119.log
Untracked: output/chr14_ImputationReferencePanel_StageVI_91119.nosex
Untracked: output/chr14_ImputationReferencePanel_StageVI_91119.raw
Untracked: output/chr14_ImputationReferencePanel_StageVI_91119.sitesWithAlleles
Untracked: output/chr15_DCas20_5629_EA_REFimputed.INFO
Untracked: output/chr15_DCas20_5629_EA_REFimputed.hwe
Untracked: output/chr15_DCas20_5629_EA_REFimputed.log
Untracked: output/chr15_DCas20_5629_EA_REFimputed.sitesPassing
Untracked: output/chr15_DCas20_5629_EA_REFimputed.vcf.gz
Untracked: output/chr15_DCas20_5629_EA_REFimputedAndFiltered.alleleToCount
Untracked: output/chr15_DCas20_5629_EA_REFimputedAndFiltered.bed
Untracked: output/chr15_DCas20_5629_EA_REFimputedAndFiltered.bim
Untracked: output/chr15_DCas20_5629_EA_REFimputedAndFiltered.fam
Untracked: output/chr15_DCas20_5629_EA_REFimputedAndFiltered.log
Untracked: output/chr15_DCas20_5629_EA_REFimputedAndFiltered.nosex
Untracked: output/chr15_DCas20_5629_EA_REFimputedAndFiltered.raw
Untracked: output/chr15_DCas20_5629_EA_REFimputedAndFiltered.sitesWithAlleles
Untracked: output/chr15_DCas20_5629_EA_REFimputedAndFiltered.vcf.gz
Untracked: output/chr15_ImputationReferencePanel_StageVI_91119.alleleToCount
Untracked: output/chr15_ImputationReferencePanel_StageVI_91119.bed
Untracked: output/chr15_ImputationReferencePanel_StageVI_91119.bim
Untracked: output/chr15_ImputationReferencePanel_StageVI_91119.fam
Untracked: output/chr15_ImputationReferencePanel_StageVI_91119.log
Untracked: output/chr15_ImputationReferencePanel_StageVI_91119.nosex
Untracked: output/chr15_ImputationReferencePanel_StageVI_91119.raw
Untracked: output/chr15_ImputationReferencePanel_StageVI_91119.sitesWithAlleles
Untracked: output/chr16_DCas20_5629_EA_REFimputed.INFO
Untracked: output/chr16_DCas20_5629_EA_REFimputed.hwe
Untracked: output/chr16_DCas20_5629_EA_REFimputed.log
Untracked: output/chr16_DCas20_5629_EA_REFimputed.sitesPassing
Untracked: output/chr16_DCas20_5629_EA_REFimputed.vcf.gz
Untracked: output/chr16_DCas20_5629_EA_REFimputedAndFiltered.alleleToCount
Untracked: output/chr16_DCas20_5629_EA_REFimputedAndFiltered.bed
Untracked: output/chr16_DCas20_5629_EA_REFimputedAndFiltered.bim
Untracked: output/chr16_DCas20_5629_EA_REFimputedAndFiltered.fam
Untracked: output/chr16_DCas20_5629_EA_REFimputedAndFiltered.log
Untracked: output/chr16_DCas20_5629_EA_REFimputedAndFiltered.nosex
Untracked: output/chr16_DCas20_5629_EA_REFimputedAndFiltered.raw
Untracked: output/chr16_DCas20_5629_EA_REFimputedAndFiltered.sitesWithAlleles
Untracked: output/chr16_DCas20_5629_EA_REFimputedAndFiltered.vcf.gz
Untracked: output/chr16_ImputationReferencePanel_StageVI_91119.alleleToCount
Untracked: output/chr16_ImputationReferencePanel_StageVI_91119.bed
Untracked: output/chr16_ImputationReferencePanel_StageVI_91119.bim
Untracked: output/chr16_ImputationReferencePanel_StageVI_91119.fam
Untracked: output/chr16_ImputationReferencePanel_StageVI_91119.log
Untracked: output/chr16_ImputationReferencePanel_StageVI_91119.nosex
Untracked: output/chr16_ImputationReferencePanel_StageVI_91119.raw
Untracked: output/chr16_ImputationReferencePanel_StageVI_91119.sitesWithAlleles
Untracked: output/chr17_DCas20_5629_EA_REFimputed.INFO
Untracked: output/chr17_DCas20_5629_EA_REFimputed.hwe
Untracked: output/chr17_DCas20_5629_EA_REFimputed.log
Untracked: output/chr17_DCas20_5629_EA_REFimputed.sitesPassing
Untracked: output/chr17_DCas20_5629_EA_REFimputed.vcf.gz
Untracked: output/chr17_DCas20_5629_EA_REFimputedAndFiltered.alleleToCount
Untracked: output/chr17_DCas20_5629_EA_REFimputedAndFiltered.bed
Untracked: output/chr17_DCas20_5629_EA_REFimputedAndFiltered.bim
Untracked: output/chr17_DCas20_5629_EA_REFimputedAndFiltered.fam
Untracked: output/chr17_DCas20_5629_EA_REFimputedAndFiltered.log
Untracked: output/chr17_DCas20_5629_EA_REFimputedAndFiltered.nosex
Untracked: output/chr17_DCas20_5629_EA_REFimputedAndFiltered.raw
Untracked: output/chr17_DCas20_5629_EA_REFimputedAndFiltered.sitesWithAlleles
Untracked: output/chr17_DCas20_5629_EA_REFimputedAndFiltered.vcf.gz
Untracked: output/chr17_ImputationReferencePanel_StageVI_91119.alleleToCount
Untracked: output/chr17_ImputationReferencePanel_StageVI_91119.bed
Untracked: output/chr17_ImputationReferencePanel_StageVI_91119.bim
Untracked: output/chr17_ImputationReferencePanel_StageVI_91119.fam
Untracked: output/chr17_ImputationReferencePanel_StageVI_91119.log
Untracked: output/chr17_ImputationReferencePanel_StageVI_91119.nosex
Untracked: output/chr17_ImputationReferencePanel_StageVI_91119.raw
Untracked: output/chr17_ImputationReferencePanel_StageVI_91119.sitesWithAlleles
Untracked: output/chr18_DCas20_5629_EA_REFimputed.INFO
Untracked: output/chr18_DCas20_5629_EA_REFimputed.hwe
Untracked: output/chr18_DCas20_5629_EA_REFimputed.log
Untracked: output/chr18_DCas20_5629_EA_REFimputed.sitesPassing
Untracked: output/chr18_DCas20_5629_EA_REFimputed.vcf.gz
Untracked: output/chr18_DCas20_5629_EA_REFimputedAndFiltered.alleleToCount
Untracked: output/chr18_DCas20_5629_EA_REFimputedAndFiltered.bed
Untracked: output/chr18_DCas20_5629_EA_REFimputedAndFiltered.bim
Untracked: output/chr18_DCas20_5629_EA_REFimputedAndFiltered.fam
Untracked: output/chr18_DCas20_5629_EA_REFimputedAndFiltered.log
Untracked: output/chr18_DCas20_5629_EA_REFimputedAndFiltered.nosex
Untracked: output/chr18_DCas20_5629_EA_REFimputedAndFiltered.raw
Untracked: output/chr18_DCas20_5629_EA_REFimputedAndFiltered.sitesWithAlleles
Untracked: output/chr18_DCas20_5629_EA_REFimputedAndFiltered.vcf.gz
Untracked: output/chr18_ImputationReferencePanel_StageVI_91119.alleleToCount
Untracked: output/chr18_ImputationReferencePanel_StageVI_91119.bed
Untracked: output/chr18_ImputationReferencePanel_StageVI_91119.bim
Untracked: output/chr18_ImputationReferencePanel_StageVI_91119.fam
Untracked: output/chr18_ImputationReferencePanel_StageVI_91119.log
Untracked: output/chr18_ImputationReferencePanel_StageVI_91119.nosex
Untracked: output/chr18_ImputationReferencePanel_StageVI_91119.raw
Untracked: output/chr18_ImputationReferencePanel_StageVI_91119.sitesWithAlleles
Untracked: output/chr1_DCas20_5629_EA_REFimputed.INFO
Untracked: output/chr1_DCas20_5629_EA_REFimputed.hwe
Untracked: output/chr1_DCas20_5629_EA_REFimputed.log
Untracked: output/chr1_DCas20_5629_EA_REFimputed.sitesPassing
Untracked: output/chr1_DCas20_5629_EA_REFimputed.vcf.gz
Untracked: output/chr1_DCas20_5629_EA_REFimputedAndFiltered.alleleToCount
Untracked: output/chr1_DCas20_5629_EA_REFimputedAndFiltered.bed
Untracked: output/chr1_DCas20_5629_EA_REFimputedAndFiltered.bim
Untracked: output/chr1_DCas20_5629_EA_REFimputedAndFiltered.fam
Untracked: output/chr1_DCas20_5629_EA_REFimputedAndFiltered.log
Untracked: output/chr1_DCas20_5629_EA_REFimputedAndFiltered.nosex
Untracked: output/chr1_DCas20_5629_EA_REFimputedAndFiltered.raw
Untracked: output/chr1_DCas20_5629_EA_REFimputedAndFiltered.sitesWithAlleles
Untracked: output/chr1_DCas20_5629_EA_REFimputedAndFiltered.vcf.gz
Untracked: output/chr1_ImputationReferencePanel_StageVI_91119.alleleToCount
Untracked: output/chr1_ImputationReferencePanel_StageVI_91119.bed
Untracked: output/chr1_ImputationReferencePanel_StageVI_91119.bim
Untracked: output/chr1_ImputationReferencePanel_StageVI_91119.fam
Untracked: output/chr1_ImputationReferencePanel_StageVI_91119.log
Untracked: output/chr1_ImputationReferencePanel_StageVI_91119.nosex
Untracked: output/chr1_ImputationReferencePanel_StageVI_91119.raw
Untracked: output/chr1_ImputationReferencePanel_StageVI_91119.sitesWithAlleles
Untracked: output/chr2_DCas20_5629_EA_REFimputed.INFO
Untracked: output/chr2_DCas20_5629_EA_REFimputed.hwe
Untracked: output/chr2_DCas20_5629_EA_REFimputed.log
Untracked: output/chr2_DCas20_5629_EA_REFimputed.sitesPassing
Untracked: output/chr2_DCas20_5629_EA_REFimputed.vcf.gz
Untracked: output/chr2_DCas20_5629_EA_REFimputedAndFiltered.alleleToCount
Untracked: output/chr2_DCas20_5629_EA_REFimputedAndFiltered.bed
Untracked: output/chr2_DCas20_5629_EA_REFimputedAndFiltered.bim
Untracked: output/chr2_DCas20_5629_EA_REFimputedAndFiltered.fam
Untracked: output/chr2_DCas20_5629_EA_REFimputedAndFiltered.log
Untracked: output/chr2_DCas20_5629_EA_REFimputedAndFiltered.nosex
Untracked: output/chr2_DCas20_5629_EA_REFimputedAndFiltered.raw
Untracked: output/chr2_DCas20_5629_EA_REFimputedAndFiltered.sitesWithAlleles
Untracked: output/chr2_DCas20_5629_EA_REFimputedAndFiltered.vcf.gz
Untracked: output/chr2_ImputationReferencePanel_StageVI_91119.alleleToCount
Untracked: output/chr2_ImputationReferencePanel_StageVI_91119.bed
Untracked: output/chr2_ImputationReferencePanel_StageVI_91119.bim
Untracked: output/chr2_ImputationReferencePanel_StageVI_91119.fam
Untracked: output/chr2_ImputationReferencePanel_StageVI_91119.log
Untracked: output/chr2_ImputationReferencePanel_StageVI_91119.nosex
Untracked: output/chr2_ImputationReferencePanel_StageVI_91119.raw
Untracked: output/chr2_ImputationReferencePanel_StageVI_91119.sitesWithAlleles
Untracked: output/chr3_DCas20_5629_EA_REFimputed.INFO
Untracked: output/chr3_DCas20_5629_EA_REFimputed.hwe
Untracked: output/chr3_DCas20_5629_EA_REFimputed.log
Untracked: output/chr3_DCas20_5629_EA_REFimputed.sitesPassing
Untracked: output/chr3_DCas20_5629_EA_REFimputed.vcf.gz
Untracked: output/chr3_DCas20_5629_EA_REFimputedAndFiltered.alleleToCount
Untracked: output/chr3_DCas20_5629_EA_REFimputedAndFiltered.bed
Untracked: output/chr3_DCas20_5629_EA_REFimputedAndFiltered.bim
Untracked: output/chr3_DCas20_5629_EA_REFimputedAndFiltered.fam
Untracked: output/chr3_DCas20_5629_EA_REFimputedAndFiltered.log
Untracked: output/chr3_DCas20_5629_EA_REFimputedAndFiltered.nosex
Untracked: output/chr3_DCas20_5629_EA_REFimputedAndFiltered.raw
Untracked: output/chr3_DCas20_5629_EA_REFimputedAndFiltered.sitesWithAlleles
Untracked: output/chr3_DCas20_5629_EA_REFimputedAndFiltered.vcf.gz
Untracked: output/chr3_ImputationReferencePanel_StageVI_91119.alleleToCount
Untracked: output/chr3_ImputationReferencePanel_StageVI_91119.bed
Untracked: output/chr3_ImputationReferencePanel_StageVI_91119.bim
Untracked: output/chr3_ImputationReferencePanel_StageVI_91119.fam
Untracked: output/chr3_ImputationReferencePanel_StageVI_91119.log
Untracked: output/chr3_ImputationReferencePanel_StageVI_91119.nosex
Untracked: output/chr3_ImputationReferencePanel_StageVI_91119.raw
Untracked: output/chr3_ImputationReferencePanel_StageVI_91119.sitesWithAlleles
Untracked: output/chr4_DCas20_5629_EA_REFimputed.INFO
Untracked: output/chr4_DCas20_5629_EA_REFimputed.hwe
Untracked: output/chr4_DCas20_5629_EA_REFimputed.log
Untracked: output/chr4_DCas20_5629_EA_REFimputed.sitesPassing
Untracked: output/chr4_DCas20_5629_EA_REFimputed.vcf.gz
Untracked: output/chr4_DCas20_5629_EA_REFimputedAndFiltered.alleleToCount
Untracked: output/chr4_DCas20_5629_EA_REFimputedAndFiltered.bed
Untracked: output/chr4_DCas20_5629_EA_REFimputedAndFiltered.bim
Untracked: output/chr4_DCas20_5629_EA_REFimputedAndFiltered.fam
Untracked: output/chr4_DCas20_5629_EA_REFimputedAndFiltered.log
Untracked: output/chr4_DCas20_5629_EA_REFimputedAndFiltered.nosex
Untracked: output/chr4_DCas20_5629_EA_REFimputedAndFiltered.raw
Untracked: output/chr4_DCas20_5629_EA_REFimputedAndFiltered.sitesWithAlleles
Untracked: output/chr4_DCas20_5629_EA_REFimputedAndFiltered.vcf.gz
Untracked: output/chr4_ImputationReferencePanel_StageVI_91119.alleleToCount
Untracked: output/chr4_ImputationReferencePanel_StageVI_91119.bed
Untracked: output/chr4_ImputationReferencePanel_StageVI_91119.bim
Untracked: output/chr4_ImputationReferencePanel_StageVI_91119.fam
Untracked: output/chr4_ImputationReferencePanel_StageVI_91119.log
Untracked: output/chr4_ImputationReferencePanel_StageVI_91119.nosex
Untracked: output/chr4_ImputationReferencePanel_StageVI_91119.raw
Untracked: output/chr4_ImputationReferencePanel_StageVI_91119.sitesWithAlleles
Untracked: output/chr5_DCas20_5629_EA_REFimputed.INFO
Untracked: output/chr5_DCas20_5629_EA_REFimputed.hwe
Untracked: output/chr5_DCas20_5629_EA_REFimputed.log
Untracked: output/chr5_DCas20_5629_EA_REFimputed.sitesPassing
Untracked: output/chr5_DCas20_5629_EA_REFimputed.vcf.gz
Untracked: output/chr5_DCas20_5629_EA_REFimputedAndFiltered.alleleToCount
Untracked: output/chr5_DCas20_5629_EA_REFimputedAndFiltered.bed
Untracked: output/chr5_DCas20_5629_EA_REFimputedAndFiltered.bim
Untracked: output/chr5_DCas20_5629_EA_REFimputedAndFiltered.fam
Untracked: output/chr5_DCas20_5629_EA_REFimputedAndFiltered.log
Untracked: output/chr5_DCas20_5629_EA_REFimputedAndFiltered.nosex
Untracked: output/chr5_DCas20_5629_EA_REFimputedAndFiltered.raw
Untracked: output/chr5_DCas20_5629_EA_REFimputedAndFiltered.sitesWithAlleles
Untracked: output/chr5_DCas20_5629_EA_REFimputedAndFiltered.vcf.gz
Untracked: output/chr5_ImputationReferencePanel_StageVI_91119.alleleToCount
Untracked: output/chr5_ImputationReferencePanel_StageVI_91119.bed
Untracked: output/chr5_ImputationReferencePanel_StageVI_91119.bim
Untracked: output/chr5_ImputationReferencePanel_StageVI_91119.fam
Untracked: output/chr5_ImputationReferencePanel_StageVI_91119.log
Untracked: output/chr5_ImputationReferencePanel_StageVI_91119.nosex
Untracked: output/chr5_ImputationReferencePanel_StageVI_91119.raw
Untracked: output/chr5_ImputationReferencePanel_StageVI_91119.sitesWithAlleles
Untracked: output/chr6_DCas20_5629_EA_REFimputed.INFO
Untracked: output/chr6_DCas20_5629_EA_REFimputed.hwe
Untracked: output/chr6_DCas20_5629_EA_REFimputed.log
Untracked: output/chr6_DCas20_5629_EA_REFimputed.sitesPassing
Untracked: output/chr6_DCas20_5629_EA_REFimputed.vcf.gz
Untracked: output/chr6_DCas20_5629_EA_REFimputedAndFiltered.alleleToCount
Untracked: output/chr6_DCas20_5629_EA_REFimputedAndFiltered.bed
Untracked: output/chr6_DCas20_5629_EA_REFimputedAndFiltered.bim
Untracked: output/chr6_DCas20_5629_EA_REFimputedAndFiltered.fam
Untracked: output/chr6_DCas20_5629_EA_REFimputedAndFiltered.log
Untracked: output/chr6_DCas20_5629_EA_REFimputedAndFiltered.nosex
Untracked: output/chr6_DCas20_5629_EA_REFimputedAndFiltered.raw
Untracked: output/chr6_DCas20_5629_EA_REFimputedAndFiltered.sitesWithAlleles
Untracked: output/chr6_DCas20_5629_EA_REFimputedAndFiltered.vcf.gz
Untracked: output/chr6_ImputationReferencePanel_StageVI_91119.alleleToCount
Untracked: output/chr6_ImputationReferencePanel_StageVI_91119.bed
Untracked: output/chr6_ImputationReferencePanel_StageVI_91119.bim
Untracked: output/chr6_ImputationReferencePanel_StageVI_91119.fam
Untracked: output/chr6_ImputationReferencePanel_StageVI_91119.log
Untracked: output/chr6_ImputationReferencePanel_StageVI_91119.nosex
Untracked: output/chr6_ImputationReferencePanel_StageVI_91119.raw
Untracked: output/chr6_ImputationReferencePanel_StageVI_91119.sitesWithAlleles
Untracked: output/chr7_DCas20_5629_EA_REFimputed.INFO
Untracked: output/chr7_DCas20_5629_EA_REFimputed.hwe
Untracked: output/chr7_DCas20_5629_EA_REFimputed.log
Untracked: output/chr7_DCas20_5629_EA_REFimputed.sitesPassing
Untracked: output/chr7_DCas20_5629_EA_REFimputed.vcf.gz
Untracked: output/chr7_DCas20_5629_EA_REFimputedAndFiltered.alleleToCount
Untracked: output/chr7_DCas20_5629_EA_REFimputedAndFiltered.bed
Untracked: output/chr7_DCas20_5629_EA_REFimputedAndFiltered.bim
Untracked: output/chr7_DCas20_5629_EA_REFimputedAndFiltered.fam
Untracked: output/chr7_DCas20_5629_EA_REFimputedAndFiltered.log
Untracked: output/chr7_DCas20_5629_EA_REFimputedAndFiltered.nosex
Untracked: output/chr7_DCas20_5629_EA_REFimputedAndFiltered.raw
Untracked: output/chr7_DCas20_5629_EA_REFimputedAndFiltered.sitesWithAlleles
Untracked: output/chr7_DCas20_5629_EA_REFimputedAndFiltered.vcf.gz
Untracked: output/chr7_ImputationReferencePanel_StageVI_91119.alleleToCount
Untracked: output/chr7_ImputationReferencePanel_StageVI_91119.bed
Untracked: output/chr7_ImputationReferencePanel_StageVI_91119.bim
Untracked: output/chr7_ImputationReferencePanel_StageVI_91119.fam
Untracked: output/chr7_ImputationReferencePanel_StageVI_91119.log
Untracked: output/chr7_ImputationReferencePanel_StageVI_91119.nosex
Untracked: output/chr7_ImputationReferencePanel_StageVI_91119.raw
Untracked: output/chr7_ImputationReferencePanel_StageVI_91119.sitesWithAlleles
Untracked: output/chr8_DCas20_5629_EA_REFimputed.INFO
Untracked: output/chr8_DCas20_5629_EA_REFimputed.hwe
Untracked: output/chr8_DCas20_5629_EA_REFimputed.log
Untracked: output/chr8_DCas20_5629_EA_REFimputed.sitesPassing
Untracked: output/chr8_DCas20_5629_EA_REFimputed.vcf.gz
Untracked: output/chr8_DCas20_5629_EA_REFimputedAndFiltered.alleleToCount
Untracked: output/chr8_DCas20_5629_EA_REFimputedAndFiltered.bed
Untracked: output/chr8_DCas20_5629_EA_REFimputedAndFiltered.bim
Untracked: output/chr8_DCas20_5629_EA_REFimputedAndFiltered.fam
Untracked: output/chr8_DCas20_5629_EA_REFimputedAndFiltered.log
Untracked: output/chr8_DCas20_5629_EA_REFimputedAndFiltered.nosex
Untracked: output/chr8_DCas20_5629_EA_REFimputedAndFiltered.raw
Untracked: output/chr8_DCas20_5629_EA_REFimputedAndFiltered.sitesWithAlleles
Untracked: output/chr8_DCas20_5629_EA_REFimputedAndFiltered.vcf.gz
Untracked: output/chr8_ImputationReferencePanel_StageVI_91119.alleleToCount
Untracked: output/chr8_ImputationReferencePanel_StageVI_91119.bed
Untracked: output/chr8_ImputationReferencePanel_StageVI_91119.bim
Untracked: output/chr8_ImputationReferencePanel_StageVI_91119.fam
Untracked: output/chr8_ImputationReferencePanel_StageVI_91119.log
Untracked: output/chr8_ImputationReferencePanel_StageVI_91119.nosex
Untracked: output/chr8_ImputationReferencePanel_StageVI_91119.raw
Untracked: output/chr8_ImputationReferencePanel_StageVI_91119.sitesWithAlleles
Untracked: output/chr9_DCas20_5629_EA_REFimputed.INFO
Untracked: output/chr9_DCas20_5629_EA_REFimputed.hwe
Untracked: output/chr9_DCas20_5629_EA_REFimputed.log
Untracked: output/chr9_DCas20_5629_EA_REFimputed.sitesPassing
Untracked: output/chr9_DCas20_5629_EA_REFimputed.vcf.gz
Untracked: output/chr9_DCas20_5629_EA_REFimputedAndFiltered.alleleToCount
Untracked: output/chr9_DCas20_5629_EA_REFimputedAndFiltered.bed
Untracked: output/chr9_DCas20_5629_EA_REFimputedAndFiltered.bim
Untracked: output/chr9_DCas20_5629_EA_REFimputedAndFiltered.fam
Untracked: output/chr9_DCas20_5629_EA_REFimputedAndFiltered.log
Untracked: output/chr9_DCas20_5629_EA_REFimputedAndFiltered.nosex
Untracked: output/chr9_DCas20_5629_EA_REFimputedAndFiltered.raw
Untracked: output/chr9_DCas20_5629_EA_REFimputedAndFiltered.sitesWithAlleles
Untracked: output/chr9_DCas20_5629_EA_REFimputedAndFiltered.vcf.gz
Untracked: output/chr9_ImputationReferencePanel_StageVI_91119.alleleToCount
Untracked: output/chr9_ImputationReferencePanel_StageVI_91119.bed
Untracked: output/chr9_ImputationReferencePanel_StageVI_91119.bim
Untracked: output/chr9_ImputationReferencePanel_StageVI_91119.fam
Untracked: output/chr9_ImputationReferencePanel_StageVI_91119.log
Untracked: output/chr9_ImputationReferencePanel_StageVI_91119.nosex
Untracked: output/chr9_ImputationReferencePanel_StageVI_91119.raw
Untracked: output/chr9_ImputationReferencePanel_StageVI_91119.sitesWithAlleles
Untracked: workflowr_log.R
Unstaged changes:
Modified: analysis/05-Results.Rmd
Modified: output/TARI_trials_NOT_identifiable.csv
Modified: output/maxNOHAV_byStudy.csv
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/01-cleanTPdata.Rmd
) and HTML (docs/01-cleanTPdata.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | bd635a2 | wolfemd | 2021-01-21 | Customized and updated matching germplasmName to FullSampleName (GBS / |
html | abaf52a | wolfemd | 2020-12-23 | Build site. |
Rmd | fae176a | wolfemd | 2020-12-23 | Publish the first set of analyses and files for TARI 2020 GS. |
Follow outlined GenomicPredictionChecklist and previous pipeline to process cassavabase data for ultimate genomic prediction.
Below we will clean and format training data.
Downloaded all TARI field trials.
data/DatabaseDownload_2021Jan20/
.rm(list = ls())
library(tidyverse)
library(magrittr)
source(here::here("code", "gsFunctions.R"))
But first…. TARI seems to have a’lot of plant-basis data which I am not usually including.
<- read.csv(here::here("data/DatabaseDownload_2021Jan20", "2021-01-20T203949phenotype_download.csv"),
indata na.strings = c("#VALUE!", NA, ".", "", " ", "-", "\""), stringsAsFactors = F)
%>% count(observationLevel) indata
observationLevel n
1 plant 191079
2 plot 22978
Over 191K “plants” between 2018-2020.
The following printed studyNames have plant-basis data. They WILL NOT be included in subsequent analyses.
%>% filter(observationLevel == "plant") %$% unique(studyName) indata
[1] "18CROSSING_BLOCK_TRIAL_MRK" "19_ayt_iita_material_bunda"
[3] "19_ayt_iita_material_ukerewe" "19_ayt_iita_material_Ukiriguru"
[5] "2019_CBSD_IMMUNE_BUN" "2019_CBSD_IMMUNE_UKE"
[7] "2019_CBSD_IMMUNE_UKGR" "2019_NPT_UKE_TZ"
[9] "2019_NPT_UKG_5CP" "2019_NPT_UKG_TZ"
[11] "2019_UYT_BUN" "2019_UYT_BWA"
[13] "2019_UYT_UKE" "2019_UYT_UKG"
[15] "2020_AYT2_BUN" "2020AYT2BWANGA"
[17] "2020_AYT2_UKE" "2020_AYT2_UKG"
[19] "2020_AYT3_BUN" "2020AYT3BWANGA"
[21] "2020_AYT3_UKE" "2020_AYT3_UKG"
[23] "2020_AYT_IITA_BUN" "2020_AYT_IITA_CHATO"
[25] "2020_AYT_IITA_UKE" "2020_AYT_IITA_UKG"
[27] "2020_AYT_TP_BUN" "2020_AYT_TP_BW"
[29] "2020_AYT_TP_KAS" "2020_AYT_TP_UKE"
[31] "2020_AYT_TP_UKG" "2020_CBSD_IMMUNE_BUN"
[33] "2020_CBSD_IMMUNE_UKE" "2020_CBSD_IMMUNE_UKG"
[35] "2020_GWAS_BUNDA" "2020_GWAS_CHAMBEZI_TRIAL"
[37] "2020_GWAS_Ukerewe" "2020_GWAS_UKIRIGURU"
[39] "2020_GxE_ILO" "2020_GxE_KBH"
[41] "2020_GxE_UKG" "2020_PYT_NMKS1_BUN"
[43] "2020_PYT_NMKS1_KAS" "2020_PYT_NMKS1_KIS"
[45] "2020_PYT_NMKS1_UKG" "2020_PYT_NMKxAR37-80_BUN"
[47] "2020_PYT_NMKxAR37-80_KAS" "2020_PYT_NMKxAR37-80_UKG"
[49] "2020_uyt1A_GAIRO" "2020_UYT_BUN"
[51] "2020_UYT_BW" "2020_UYT_UKE"
[53] "2020_UYT_UKG" "GXE KIBAHA"
[55] "MULTILOCATIONAL_EZ_TP2" "NGTZ18KBH_AYT1"
[57] "NGTZ18KBH_AYT3" "NGTZ18KBH_AYT4"
[59] "NGTZ18KBH_AYT5" "NGTZ18KBH_AYT6"
[61] "pyt_2018"
Read DB data directly from the Cassavabase FTP server.
rm(indata)
<- readDBdata(phenotypeFile = here::here("data/DatabaseDownload_2021Jan20",
dbdata "2021-01-20T203949phenotype_download.csv"), metadataFile = here::here("data/DatabaseDownload_2021Jan20",
"2021-01-20T174234metadata_download.csv"))
Before proceeding, the 2019 seedling nursery….
%>% filter(studyName == "19_C1_GS_Seedling_Nursery_Chambezi", germplasmName ==
dbdata "TZMRK180069") %>% distinct(germplasmName, observationUnitName, plantNumber,
%>% rmarkdown::paged_table() plotNumber, observationUnitName)
<- readRDS(here::here("output", "DosageMatrix_DCas20_5629_EA_REFimputedAndFiltered.rds"))
snps5629 rownames(snps5629) %>% grep("TZMRK180069", ., value = T, ignore.case = T)
[1] "TARI0050_A04...TZMRK180069" "TARI0050_A05...TZMRK180069"
[3] "TARI0050_B04...TZMRK180069" "TARI0050_B05...TZMRK180069"
[5] "TARI0050_C04...TZMRK180069_15.5217" "TARI0050_C05...TZMRK180069"
[7] "TARI0050_D04...TZMRK180069" "TARI0050_D05...TZMRK180069_5.5207"
[9] "TARI0050_E03...TZMRK180069" "TARI0050_E04...TZMRK180069"
[11] "TARI0050_E05...TZMRK180069" "TARI0050_F03...TZMRK180069"
[13] "TARI0050_F04...TZMRK180069" "TARI0050_F05...TZMRK180069"
[15] "TARI0050_G03...TZMRK180069_20.5222" "TARI0050_G04...TZMRK180069"
[17] "TARI0050_G05...TZMRK180069_1.5203" "TARI0050_H03...TZMRK180069"
[19] "TARI0050_H04...TZMRK180069_10.5212"
Unfortunately, these don’t currently match. As of Jan 21, wrote to TARI team about this. Will proceed with prediction, but CBSD phenos for the GS C1 seedlings won’t be included at this time.
rm(snps5629)
gc()
used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 1151744 61.6 2897305 154.8 NA 2120399 113.3
Vcells 4015631 30.7 61643327 470.4 102400 62675611 478.2
%<>% mutate(locationName = ifelse(locationName == "bwanga", "Bwanga", locationName),
dbdata locationName = ifelse(locationName == "kasulu", "Kasulu", locationName))
Make TrialType Variable
<- makeTrialTypeVar(dbdata)
dbdata %>% count(TrialType) %>% rmarkdown::paged_table() dbdata
Looking at the studyName’s of trials getting NA for TrialType, which can’t be classified at present.
Here is the list of trials I am not including.
%>% filter(is.na(TrialType)) %$% unique(studyName) %>% write.csv(., file = here::here("output",
dbdata "TARI_trials_NOT_identifiable.csv"), row.names = F)
Wrote to disk a CSV in the output/
sub-directory.
Should any of these trials have been included?
%>% filter(is.na(TrialType)) %$% unique(studyName) dbdata
[1] "17uytbwanga" "18_CBSD_IMMUNE"
[3] "18_NAMIKONGA_S1" "18_NMKxAR37-80"
[5] "19_C1_GS_Seedling_Nursery_Chambezi" "2020_AYT_TP_BW"
[7] "2020_CBSD_IMMUNE_BUN" "2020_CBSD_IMMUNE_UKE"
[9] "2020_CBSD_IMMUNE_UKG" "2020_GWAS_BUNDA"
[11] "2020_GWAS_Ukerewe" "2020_GWAS_UKIRIGURU"
[13] "2020_GxE_UKG" "2020_UYT1C_GAIRO"
[15] "95_iita_tz_materials" "ACCESSION FOR GENOTYPING"
[17] "bunda 2018" "CET_1_2016"
[19] "GXE KIBAHA" "IITA GENOTYPING PLATE"
[21] "ilonga_trial" "KIBAHA GERMPLASM"
[23] "local_germplam_Southern" "Local_germplasm_eastern"
[25] "Local_germplasm_islands" "local_germplasm_northern"
[27] "Local_germplasm_Nothern" "Local_germplasm_SMS"
[29] "LOCAL VARIETIES" "MULTILOCATIONAL_EZ_TP2"
[31] "NDL_OP_UK" "NEW_LOCAL_GERMPLASM_UKIRIGURU"
[33] "NGTZ18KBH_AYT5" "NGTZ18KBH_SEEDLING"
[35] "NGTZ_CBSDIMMUNE_16VAR_CHAMBZ" "NGTZKBH-2018-19-UYT2"
[37] "Old_local_germplasm_ukiriguru" "QC_CET_1"
[39] "QC_CET_2" "QC_PYT"
[41] "Seedlings_Kibaha" "TARI KIBAHA GERMPLASM"
Include (by request) the “19_C1_GS_Seedling_Nursery_Chambezi”.
%<>% mutate(TrialType = ifelse(studyName == "19_C1_GS_Seedling_Nursery_Chambezi",
dbdata "SeedlingNursery", TrialType))
%<>% filter(!is.na(TrialType))
dbdata %>% group_by(programName) %>% summarize(N = n()) %>% rmarkdown::paged_table() dbdata
# 18591 (now including a ~5K plot seedling nursery) plots
Making a table of abbreviations for renaming
<-tribble(~TraitAbbrev,~TraitName,
traitabbrevs"CMD1S","cassava.mosaic.disease.severity.1.month.evaluation.CO_334.0000191",
"CMD3S","cassava.mosaic.disease.severity.3.month.evaluation.CO_334.0000192",
"CMD6S","cassava.mosaic.disease.severity.6.month.evaluation.CO_334.0000194",
"CMD9S","cassava.mosaic.disease.severity.9.month.evaluation.CO_334.0000193",
"CBSD3S","cassava.brown.streak.disease.leaf.severity.3.month.evaluation.CO_334.0000204",
"CBSD6S","cassava.brown.streak.disease.leaf.severity.6.month.evaluation.CO_334.0000205",
"CBSD9S","cassava.brown.streak.disease.leaf.severity.9.month.evaluation.CO_334.0000206",
"CBSDRS","cassava.brown.streak.disease.root.severity.12.month.evaluation.CO_334.0000201",
#"CGM","Cassava.green.mite.severity.CO_334.0000033",
"CGMS1","cassava.green.mite.severity.first.evaluation.CO_334.0000189",
"CGMS2","cassava.green.mite.severity.second.evaluation.CO_334.0000190",
"DM","dry.matter.content.by.specific.gravity.method.CO_334.0000160",
# "DM","dry.matter.content.percentage.CO_334.0000092",
"PLTHT","plant.height.measurement.in.cm.CO_334.0000018",
"BRNHT1","first.apical.branch.height.measurement.in.cm.CO_334.0000106",
"SHTWT","fresh.shoot.weight.measurement.in.kg.per.plot.CO_334.0000016",
"RTWT","fresh.storage.root.weight.per.plot.CO_334.0000012",
"RTNO","root.number.counting.CO_334.0000011",
"TCHART","total.carotenoid.by.chart.1.8.CO_334.0000161",
"NOHAV","plant.stands.harvested.counting.CO_334.0000010")
%>% rmarkdown::paged_table() traitabbrevs
# dbdata %>% colnames(.) %>% grep("fresh.root",.,value=T)
# dbdata$cassava.green.mite.severity.first.evaluation.CO_334.0000189 %>% summary
Run function renameAndSelectCols()
to rename columns and remove everything unecessary
<- renameAndSelectCols(traitabbrevs, indata = dbdata, customColsToKeep = c("TrialType",
dbdata "observationUnitName"))
<-dbdata %>%
dbdatamutate(#CMD1S=ifelse(CMD1S<1 | CMD1S>5,NA,CMD1S),
CMD3S=ifelse(CMD3S<1 | CMD3S>5,NA,CMD3S),
CMD6S=ifelse(CMD6S<1 | CMD6S>5,NA,CMD6S),
CMD9S=ifelse(CMD9S<1 | CMD9S>5,NA,CMD9S),
CBSD3S=ifelse(CBSD3S<1 | CBSD3S>5,NA,CBSD3S),
CBSD6S=ifelse(CBSD6S<1 | CBSD6S>5,NA,CBSD6S),
CBSD9S=ifelse(CBSD9S<1 | CBSD9S>5,NA,CMD9S),
CBSDRS=ifelse(CBSDRS<1 | CBSDRS>5,NA,CBSDRS),
#CGM=ifelse(CGM<1 | CGM>5,NA,CGM),
CGMS1=ifelse(CGMS1<1 | CGMS1>5,NA,CGMS1),
CGMS2=ifelse(CGMS2<1 | CGMS2>5,NA,CGMS2),
DM=ifelse(DM>100 | DM<=0,NA,DM),
RTWT=ifelse(RTWT==0 | NOHAV==0 | is.na(NOHAV),NA,RTWT),
SHTWT=ifelse(SHTWT==0 | NOHAV==0 | is.na(NOHAV),NA,SHTWT),
RTNO=ifelse(RTNO==0 | NOHAV==0 | is.na(NOHAV),NA,RTNO),
NOHAV=ifelse(NOHAV==0,NA,NOHAV),
NOHAV=ifelse(NOHAV>42,NA,NOHAV),
RTNO=ifelse(!RTNO %in% 1:10000,NA,RTNO))
<- dbdata %>% mutate(HI = RTWT/(RTWT + SHTWT)) dbdata
I anticipate this will not be necessary as it will be computed before or during data upload.
For calculating fresh root yield:
<- dbdata %>% mutate(PlotSpacing = ifelse(programName != "IITA", 1, ifelse(studyYear <
dbdata 2013, 1, ifelse(TrialType %in% c("CET", "GeneticGain", "ExpCET"), 1, 0.8))))
<- dbdata %>% group_by(programName, locationName, studyYear, studyName,
maxNOHAV_byStudy %>% summarize(MaxNOHAV = max(NOHAV, na.rm = T)) %>% ungroup() %>%
studyDesign) mutate(MaxNOHAV = ifelse(MaxNOHAV == "-Inf", NA, MaxNOHAV))
write.csv(maxNOHAV_byStudy %>% arrange(studyYear), file = here::here("output", "maxNOHAV_byStudy.csv"),
row.names = F)
# I log transform yield traits to satisfy homoskedastic residuals assumption of
# linear mixed models
<- left_join(dbdata, maxNOHAV_byStudy) %>% mutate(RTWT = ifelse(NOHAV > MaxNOHAV,
dbdata NA, RTWT), SHTWT = ifelse(NOHAV > MaxNOHAV, NA, SHTWT), RTNO = ifelse(NOHAV >
NA, RTNO), HI = ifelse(NOHAV > MaxNOHAV, NA, HI), FYLD = RTWT/(MaxNOHAV *
MaxNOHAV, * 10, DYLD = FYLD * (DM/100), logFYLD = log(FYLD), logDYLD = log(DYLD),
PlotSpacing) logTOPYLD = log(SHTWT/(MaxNOHAV * PlotSpacing) * 10), logRTNO = log(RTNO), PropNOHAV = NOHAV/MaxNOHAV)
# remove non transformed / per-plot (instead of per area) traits
%<>% select(-RTWT, -SHTWT, -RTNO, -FYLD, -DYLD) dbdata
<- dbdata %>% mutate(MCMDS = rowMeans(.[, c("CMD3S", "CMD6S", "CMD9S")], na.rm = T),
dbdata MCBSDS = rowMeans(.[, c("CBSD3S", "CBSD6S", "CBSD9S")], na.rm = T)) %>% select(-CMD3S,
-CMD6S, -CMD9S, -CBSD3S, -CBSD6S, -CBSD9S)
I customized this step for TARI.
Match “germplasmName” from TARI phenotyping trials to “FullSampleName” from TARI GBS and DArT genotyping data.
Uses 2 flat files, which are available e.g. here. Specifically, IITA_GBStoPhenoMaster_33018.csv
, GBSdataMasterList_31818.csv
. I copy them to the data/
sub-directory for the current analysis. In addition, DArT-only samples are now expected to also have phenotypes. Therefore, checking for matches in new flatfiles, deposited in the data/
(see code below).
library(tidyverse)
library(magrittr)
# Distinct 'germplasmName' identifying clones in TARI phenotyping plots
<- dbdata %>% distinct(germplasmName)
tzgermnames
# 1) Match TARI samples where germplasmName is prefixed with TZ, but
# FullSampleName
<- tzgermnames %>% mutate(germplasmSynonyms = ifelse(grepl("^TZ", germplasmName,
phenos2genos ignore.case = T), gsub("TZ", "", germplasmName), germplasmName)) %>% left_join(read.csv(here::here("data",
"GBSdataMasterList_31818.csv"), stringsAsFactors = F) %>% select(DNASample, FullSampleName) %>%
rename(germplasmSynonyms = DNASample)) %>% # 2) Match additional samples based on genotyping done by IITA and NaCRRI: IITA
bind_rows(tzgermnames %>% left_join(read.csv(here::here("data", "IITA_GBStoPhenoMaster_33018.csv"),
stringsAsFactors = F))) %>% ## NaCRRI
bind_rows(tzgermnames %>% mutate(germplasmSynonyms = ifelse(grepl("^UG", germplasmName,
ignore.case = T), gsub("UG", "Ug", germplasmName), germplasmName)) %>% left_join(read.csv(here::here("data",
"GBSdataMasterList_31818.csv"), stringsAsFactors = F) %>% select(DNASample, FullSampleName) %>%
rename(germplasmSynonyms = DNASample)))
%>% filter(!is.na(FullSampleName)) %>% distinct(germplasmName) %>% nrow(.) # [1] 435 phenos2genos
[1] 435
# Only about half the germplasmName we expect
Only about half the ~834 germplasmName we expect to correspond to the clones from Ukiriguru and Kibaha.
At this point, I realized the Kibaha samples are missing.
The solution is in the code below. It required some staring at names. Heneriko supplied a list from the 2016 predictions (see: data/TARI 2016_TP_CLONES.csv
), which was helpful.
%<>% bind_rows(tzgermnames %>% mutate(germplasmSynonyms = gsub("^TZ",
phenos2genos "", germplasmName), germplasmSynonyms = gsub("HS", "_", germplasmSynonyms), germplasmSynonyms = gsub("FS",
"_", germplasmSynonyms)) %>% left_join(read.csv(here::here("data", "GBSdataMasterList_31818.csv"),
stringsAsFactors = F) %>% select(DNASample, FullSampleName) %>% rename(germplasmSynonyms = DNASample) %>%
filter(grepl("^KBH", germplasmSynonyms)) %>% mutate(germplasmSynonyms = gsub("KBH2012",
"KBH12", germplasmSynonyms), germplasmSynonyms = gsub("KBH2013", "KBH13", germplasmSynonyms),
germplasmSynonyms = gsub("KBH2014", "KBH14", germplasmSynonyms), germplasmSynonyms = gsub("KBH2015",
"KBH15", germplasmSynonyms), germplasmSynonyms = gsub("KBH2016", "KBH16",
germplasmSynonyms = gsub("KBH2017", "KBH17", germplasmSynonyms),
germplasmSynonyms), germplasmSynonyms = gsub("KBH2018", "KBH18", germplasmSynonyms), germplasmSynonyms = gsub("KBH2019",
"KBH19", germplasmSynonyms))))
%<>% filter(!is.na(FullSampleName)) %>% distinct(germplasmName, FullSampleName)
phenos2genos
%>% distinct(germplasmName) %>% nrow(.) # [1] 914 phenos2genos
[1] 914
Now there are 914 germplasmName-FullSampleName matches.
For both the “germplasmName” and the “FullSampleName” lists, try matching by making everything upper case on both sides. There are many capitolization related issues I see. Examples:
But also, e.g.:
%<>% bind_rows(tzgermnames %>% anti_join(phenos2genos) %>% mutate(germplasmSynonyms = toupper(germplasmName),
phenos2genos germplasmSynonyms = gsub("-", "_", germplasmSynonyms)) %>% left_join(read.csv(here::here("data",
"GBSdataMasterList_31818.csv"), stringsAsFactors = F) %>% select(DNASample, FullSampleName) %>%
rename(germplasmSynonyms = DNASample) %>% mutate(germplasmSynonyms = toupper(germplasmSynonyms),
germplasmSynonyms = gsub("-", "_", germplasmSynonyms)))) %>% filter(!is.na(FullSampleName)) %>%
distinct(germplasmName, FullSampleName)
%>% distinct(germplasmName) %>% nrow(.) # [1] 921 .... not an awesome improvement phenos2genos
[1] 921
Next, and last but not least, need to check for matches with the new germplasm genotyped only by DArTseqLD (DCas20_5629). Based on the check I did above, this is not currently possible, so skip.
<- tzgermnames %>% anti_join(phenos2genos)
germNamesWithoutGBSgenos %>% nrow() # [1] 2938 germNamesWithoutGBSgenos
[1] 2938
Select one genotype record (FullSampleName) per unique clone (germplasmName)
<- phenos2genos %>% group_by(germplasmName) %>% slice(1) %>%
genosChosenForPhenos ungroup()
print(paste0(nrow(genosChosenForPhenos), " germNames with GBS geno. records"))
[1] "921 germNames with GBS geno. records"
%<>% left_join(genosChosenForPhenos)
dbdata
# Create a new identifier, GID Equals the value SNP data name (FullSampleName)
# else germplasmName if no SNP data [FOR TARI] if
# studyName=='19_C1_GS_Seedling_Nursery_Chambezi', GID should be the
# 'observationUnitName'
%<>% mutate(GID = ifelse(is.na(FullSampleName), ifelse(studyName == "19_C1_GS_Seedling_Nursery_Chambezi",
dbdata observationUnitName, germplasmName), FullSampleName))
# snps_refpanel<-readRDS(here::here('output','DosageMatrix_ImputationReferencePanel_StageVI_91119.rds'))
# snps5629<-readRDS(here::here('output','DosageMatrix_DCas20_5629_EA_REFimputedAndFiltered.rds'))
# rownames(snps_refpanel) %>% write.csv(.,file =
# here::here('output','rownames_DosageMatrix_ImputationReferencePanel_StageVI_91119.csv'),
# row.names = F) rownames(snps5629) %>% write.csv(.,file =
# here::here('output','rownames_DosageMatrix_DCas20_5629_EA_REFimputedAndFiltered.csv'),
# row.names = F) rm(snps_refpanel,snps5629); gc()
write.csv(genosChosenForPhenos, file = here::here("output", "OnlyChosen_germplasmName_to_FullSampleName_matches_TARI_2021Jan21.csv"),
row.names = F)
write.csv(phenos2genos, file = here::here("output", "AllIdentified_germplasmName_to_FullSampleName_matches_TARI_2021Jan21.csv"),
row.names = F)
saveRDS(dbdata, file = here::here("output", "TARI_CleanedTrialData_2021Jan21.rds"))
The next step is to check the experimental design of each trial. If you are absolutely certain of the usage of the design variables in your dataset, you might not need this step.
Examples of reasons to do the step below:
One reason it might be important to get this right is that the variance among complete blocks might not be the same among incomplete blocks. If we treat a mixture of complete and incomplete blocks as part of the same random-effect (replicated-within-trial), we assume they have the same variance.
Also error variances might be heterogeneous among different trial-types (blocking scheme available) and/or plot sizes (maxNOHAV).
Start with cleaned data from previous step.
rm(list = ls())
gc()
used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 1145893 61.2 2897305 154.8 NA 2897305 154.8
Vcells 2250844 17.2 49314662 376.3 102400 62675611 478.2
library(tidyverse)
library(magrittr)
source(here::here("code", "gsFunctions.R"))
<- readRDS(here::here("output", "TARI_CleanedTrialData_2021Jan21.rds")) dbdata
%>% head %>% rmarkdown::paged_table() dbdata
Detect designs
<- detectExptDesigns(dbdata) dbdata
%>% count(programName, CompleteBlocks, IncompleteBlocks) %>% rmarkdown::paged_table() dbdata
saveRDS(dbdata, file = here::here("output", "TARI_ExptDesignsDetected_2021Jan21.rds"))
sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.7
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] magrittr_2.0.1 forcats_0.5.0 stringr_1.4.0 dplyr_1.0.3
[5] purrr_0.3.4 readr_1.4.0 tidyr_1.1.2 tibble_3.0.5
[9] ggplot2_3.3.3 tidyverse_1.3.0 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] tidyselect_1.1.0 xfun_0.20 haven_2.3.1 colorspace_2.0-0
[5] vctrs_0.3.6 generics_0.1.0 htmltools_0.5.1 yaml_2.2.1
[9] rlang_0.4.10 later_1.1.0.1 pillar_1.4.7 withr_2.4.0
[13] glue_1.4.2 DBI_1.1.1 dbplyr_2.0.0 modelr_0.1.8
[17] readxl_1.3.1 lifecycle_0.2.0 cellranger_1.1.0 munsell_0.5.0
[21] gtable_0.3.0 rvest_0.3.6 evaluate_0.14 knitr_1.30
[25] httpuv_1.5.5 fansi_0.4.2 broom_0.7.3 Rcpp_1.0.6
[29] promises_1.1.1 backports_1.2.1 scales_1.1.1 formatR_1.7
[33] jsonlite_1.7.2 fs_1.5.0 hms_1.0.0 digest_0.6.27
[37] stringi_1.5.3 rprojroot_2.0.2 grid_4.0.2 here_1.0.1
[41] cli_2.2.0 tools_4.0.2 crayon_1.3.4 whisker_0.4
[45] pkgconfig_2.0.3 ellipsis_0.3.1 xml2_1.3.2 reprex_0.3.0
[49] lubridate_1.7.9.2 assertthat_0.2.1 rmarkdown_2.6 httr_1.4.2
[53] rstudioapi_0.13 R6_2.5.0 git2r_0.28.0 compiler_4.0.2