Last updated: 2021-07-14

Checks: 2 0

Knit directory: implementGMSinCassava/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 772750a. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/accuracies.png
    Ignored:    analysis/fig2.png
    Ignored:    analysis/fig3.png
    Ignored:    analysis/fig4.png
    Ignored:    code/.DS_Store
    Ignored:    data/.DS_Store

Untracked files:
    Untracked:  accuracies.png
    Untracked:  analysis/docs/
    Untracked:  analysis/inputsForSimulation.Rmd
    Untracked:  analysis/speedUpPredCrossVar.Rmd
    Untracked:  code/AlphaAssign-Python/
    Untracked:  code/calcGameticLD.cpp
    Untracked:  code/col_sums.cpp
    Untracked:  code/convertDart2vcf.R
    Untracked:  code/helloworld.cpp
    Untracked:  code/imputationFunctions.R
    Untracked:  code/matmult.cpp
    Untracked:  code/misc.cpp
    Untracked:  code/test.cpp
    Untracked:  data/CassavaGeneticMap/
    Untracked:  data/DatabaseDownload_2021May04/
    Untracked:  data/GBSdataMasterList_31818.csv
    Untracked:  data/IITA_GBStoPhenoMaster_33018.csv
    Untracked:  data/NRCRI_GBStoPhenoMaster_40318.csv
    Untracked:  data/PedigreeGeneticGainCycleTime_aafolabi_01122020.xls
    Untracked:  data/blups_forCrossVal.rds
    Untracked:  data/chr1_RefPanelAndGSprogeny_ReadyForGP_72719.fam
    Untracked:  data/dosages_IITA_filtered_2021May13.rds
    Untracked:  data/genmap_2021May13.rds
    Untracked:  data/haps_IITA_filtered_2021May13.rds
    Untracked:  data/recombFreqMat_1minus2c_2021May13.rds
    Untracked:  fig2.png
    Untracked:  fig3.png
    Untracked:  figure/
    Untracked:  output/IITA_CleanedTrialData_2021May10.rds
    Untracked:  output/IITA_ExptDesignsDetected_2021May10.rds
    Untracked:  output/IITA_blupsForModelTraining_twostage_asreml_2021May10.rds
    Untracked:  output/IITA_trials_NOT_identifiable.csv
    Untracked:  output/crossValPredsA.rds
    Untracked:  output/crossValPredsAD.rds
    Untracked:  output/cvAD_5rep5fold_markerEffects.rds
    Untracked:  output/cvAD_5rep5fold_meanPredAccuracy.rds
    Untracked:  output/cvAD_5rep5fold_parentfolds.rds
    Untracked:  output/cvAD_5rep5fold_predMeans.rds
    Untracked:  output/cvAD_5rep5fold_predVars.rds
    Untracked:  output/cvAD_5rep5fold_varPredAccuracy.rds
    Untracked:  output/cvDirDom_5rep5fold_markerEffects.rds
    Untracked:  output/cvDirDom_5rep5fold_meanPredAccuracy.rds
    Untracked:  output/cvDirDom_5rep5fold_parentfolds.rds
    Untracked:  output/cvDirDom_5rep5fold_predMeans.rds
    Untracked:  output/cvDirDom_5rep5fold_predVars.rds
    Untracked:  output/cvDirDom_5rep5fold_varPredAccuracy.rds
    Untracked:  output/cvMeanPredAccuracyA.rds
    Untracked:  output/cvMeanPredAccuracyAD.rds
    Untracked:  output/cvPredMeansA.rds
    Untracked:  output/cvPredMeansAD.rds
    Untracked:  output/cvVarPredAccuracyA.rds
    Untracked:  output/cvVarPredAccuracyAD.rds
    Untracked:  output/estimateSelectionError.rds
    Untracked:  output/genomicPredictions_ModelAD.rds
    Untracked:  output/genomicPredictions_ModelDirDom.rds
    Untracked:  output/kinship_A_IITA_2021May13.rds
    Untracked:  output/kinship_D_IITA_2021May13.rds
    Untracked:  output/markEffsTest.rds
    Untracked:  output/markerEffects.rds
    Untracked:  output/markerEffectsA.rds
    Untracked:  output/markerEffectsAD.rds
    Untracked:  output/maxNOHAV_byStudy.csv
    Untracked:  output/obsCrossMeansAndVars.rds
    Untracked:  output/parentfolds.rds
    Untracked:  output/ped2check_genome.rds
    Untracked:  output/ped2genos.txt
    Untracked:  output/pednames2keep.txt
    Untracked:  output/pednames_Prune100_25_pt25.log
    Untracked:  output/pednames_Prune100_25_pt25.nosex
    Untracked:  output/pednames_Prune100_25_pt25.prune.in
    Untracked:  output/pednames_Prune100_25_pt25.prune.out
    Untracked:  output/potential_dams.txt
    Untracked:  output/potential_sires.txt
    Untracked:  output/predVarTest.rds
    Untracked:  output/samples2keep_IITA_2021May13.txt
    Untracked:  output/samples2keep_IITA_MAFpt01_prune50_25_pt98.log
    Untracked:  output/samples2keep_IITA_MAFpt01_prune50_25_pt98.nosex
    Untracked:  output/samples2keep_IITA_MAFpt01_prune50_25_pt98.prune.in
    Untracked:  output/samples2keep_IITA_MAFpt01_prune50_25_pt98.prune.out
    Untracked:  output/verified_ped.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/index.Rmd) and HTML (docs/index.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 772750a wolfemd 2021-07-14 DirDom model and selection index calc fully integrated functions.
html 5e45aac wolfemd 2021-06-18 Build site.
html df7a366 wolfemd 2021-06-10 Build site.
Rmd c28400f wolfemd 2021-06-10 github link added
html e66bdad wolfemd 2021-06-10 Build site.
Rmd a8452ba wolfemd 2021-06-10 Initial build of the entire page upon completion of all
Rmd 8a0c50e wolfemd 2021-05-04 Start workflowr project.

Available data and software make it hypothetically possible to predict cross variances (mendelian sampling variance) and use it to select mates, e.g. using the usefuleness criterion (UC).

New information also adds new sources of uncertainty:

We used cross-validation to estimate the accuracy of predicting means, variances and the usefulness of crosses on selection indices. That analysis leveraged a high-quality validated pedigree-based phasing pipeline. That pipeline is considerably more involved and may not be implementable on the entire breeding germplasm.

Here I test cross-variance prediction in our current breeding pipeline’s available data. We will assess the whether and how to start using cross variance predictions in practice.

See the Results here!

Analysis steps

  1. Prepare training dataset: Download data from DB, “Clean” and format DB data. Use the standard pipeline to obtain complete breeding trial data for IITA, generate de-regressed BLUPs for downstream analysis.

  2. Get BLUPs combining all trial data: Combine data from all trait-trials to get BLUPs for downstream genomic prediction. Fit mixed-model to multi-trial dataset and extract BLUPs, de-regressed BLUPs and weights. Include two rounds of outlier removal.

  3. Validate the pedigree obtained from cassavabase: Before setting up a cross-validation scheme for predictions that depend on a correct pedigree, add a basic verification step to the pipeline. Not trying to fill unknown relationships or otherwise correct the pedigree. Assess evidence that relationship is correct, remove if incorrect.

  4. Preprocess data files: Prepare haplotype and dosage matrices, pedigree and BLUPs, genetic map and recombination frequency matrix, for use in predictions.

  5. Parent-wise and standard cross-validation:

    • Compute parent-wise cross-validation folds using the validated pedigree. Fit models to get marker effects and make subsequent predictions of cross means and (co)variances.
    • Models “AD” (classic BV+DD partition of additive+dominance) and “DirDom” (genotypic add+dom partition with genome-wide homozygosity effect).
    • Include use of selection index weights to compute index accuracy.
    • Include new models and index predictions in standard fold cross-validation in addition to the parent-wise scheme / function.
  6. Genomic predictions:

      1. Standard genomic prediction of individual GEBV and GETGV for all selection candidates using all available data. (B) Predict cross means and variances for genomic mate selection.
    • Include models “AD” and “DirDom”

    • Include prediction of selection index GEBV/GETGV and \(UC^{SI}_{parent}\)/\(UC^{SI}_{variety}\).

    • New functions at gmsFunctions.R in code/

  7. Results: Home for plots and summary tables.

Data and code repository access

FULL REPOSITORY DOWNLOAD FROM CASSAVABASE FTP SERVER

or

DOWNLOAD FROM GitHub*

*GitHub only hosts files max 50 Mb.

Guide to key directories and file names

  1. data/: raw data (e.g. unimputed SNP data)
  2. output/: outputs (e.g. imputed SNP data)
  3. analysis/: most code and workflow documented in .Rmd files
  4. docs/: compiled .html, “knitted” from .Rmd
  5. code/: supporting functions sourced in analysis/*.Rmd’s.

FILES OF INTEREST: everything is in the output/ sub-directory.

Analyses To Do

Additional future analyses to do:

  1. PHG imputed and phased marker data
  2. AWC’s genetic map
  3. Multi-trait and/or Bayesian models
  4. Other efforts to improve variance prediction accuracy?
  5. Simulation to explore factors impacting estimate of accuracy