Last updated: 2021-07-29
Checks: 7 0
Knit directory: implementGMSinCassava/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20210504)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version bc85a7d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: analysis/accuracies.png
Ignored: analysis/fig2.png
Ignored: analysis/fig3.png
Ignored: analysis/fig4.png
Ignored: code/.DS_Store
Ignored: data/.DS_Store
Untracked files:
Untracked: accuracies.png
Untracked: analysis/docs/
Untracked: analysis/speedUpPredCrossVar.Rmd
Untracked: data/AllChrom_RefPanelAndGSprogeny_ReadyForGP_72719.bed
Untracked: data/AllChrom_RefPanelAndGSprogeny_ReadyForGP_72719.bim
Untracked: data/AllChrom_RefPanelAndGSprogeny_ReadyForGP_72719.fam
Untracked: data/AllChrom_RefPanelAndGSprogeny_ReadyForGP_72719.hap.gz
Untracked: data/AllChrom_RefPanelAndGSprogeny_ReadyForGP_72719.log
Untracked: data/AllChrom_RefPanelAndGSprogeny_ReadyForGP_72719.nosex
Untracked: data/AllChrom_RefPanelAndGSprogeny_ReadyForGP_72719.sample
Untracked: data/AllChrom_RefPanelAndGSprogeny_ReadyForGP_72719.vcf.gz
Untracked: data/DatabaseDownload_2021May04/
Untracked: data/blups_forCrossVal.rds
Untracked: data/config.txt
Untracked: data/config_mw.txt
Untracked: data/dosages_IITA_2021May13.rds
Untracked: data/dosages_IITA_filtered_2021May13.rds
Untracked: data/genmap_2021May13.rds
Untracked: data/haps_IITA_2021May13.rds
Untracked: data/haps_IITA_filtered_2021May13.rds
Untracked: data/recombFreqMat_1minus2c_2021May13.rds
Untracked: fig2.png
Untracked: fig3.png
Untracked: figure/
Untracked: output/Cassava_HMII_V3_Marning_imputation_6-18-21.samples
Untracked: output/IITA_CleanedTrialData_2021May10.rds
Untracked: output/IITA_ExptDesignsDetected_2021May10.rds
Untracked: output/IITA_blupsForModelTraining_twostage_asreml_2021May10.rds
Untracked: output/IITA_trials_NOT_identifiable.csv
Untracked: output/alphaAssignOutput_iita_pedigree.txt.dams
Untracked: output/alphaAssignOutput_iita_pedigree.txt.dams.full
Untracked: output/alphaAssignOutput_iita_pedigree.txt.pedigree
Untracked: output/alphaAssignOutput_iita_pedigree.txt.pedigree.top
Untracked: output/alphaAssignOutput_iita_pedigree.txt.sires
Untracked: output/alphaAssignOutput_iita_pedigree.txt.sires.full
Untracked: output/crossValPredsA.rds
Untracked: output/crossValPredsAD.rds
Untracked: output/cvAD_1rep_markerEffects.rds
Untracked: output/cvAD_1rep_meanPredAccuracy.rds
Untracked: output/cvAD_1rep_parentfolds.rds
Untracked: output/cvAD_1rep_predAccuracy.rds
Untracked: output/cvAD_1rep_predMeans.rds
Untracked: output/cvAD_1rep_predVars.rds
Untracked: output/cvAD_1rep_varPredAccuracy.rds
Untracked: output/cvAD_5rep5fold_markerEffects.rds
Untracked: output/cvAD_5rep5fold_meanPredAccuracy.rds
Untracked: output/cvAD_5rep5fold_parentfolds.rds
Untracked: output/cvAD_5rep5fold_predMeans.rds
Untracked: output/cvAD_5rep5fold_predVars.rds
Untracked: output/cvAD_5rep5fold_varPredAccuracy.rds
Untracked: output/cvDirDom_5rep5fold_markerEffects.rds
Untracked: output/cvDirDom_5rep5fold_meanPredAccuracy.rds
Untracked: output/cvDirDom_5rep5fold_parentfolds.rds
Untracked: output/cvDirDom_5rep5fold_predMeans.rds
Untracked: output/cvDirDom_5rep5fold_predVars.rds
Untracked: output/cvDirDom_5rep5fold_varPredAccuracy.rds
Untracked: output/cvMeanPredAccuracyA.rds
Untracked: output/cvMeanPredAccuracyAD.rds
Untracked: output/cvPredMeansA.rds
Untracked: output/cvPredMeansAD.rds
Untracked: output/cvVarPredAccuracyA.rds
Untracked: output/cvVarPredAccuracyAD.rds
Untracked: output/genomicMatePredictions_top121parents_ModelAD.csv
Untracked: output/genomicMatePredictions_top121parents_ModelAD.rds
Untracked: output/genomicMatePredictions_top121parents_ModelDirDom.csv
Untracked: output/genomicMatePredictions_top121parents_ModelDirDom.rds
Untracked: output/genomicPredictions_ModelAD.csv
Untracked: output/genomicPredictions_ModelAD.rds
Untracked: output/genomicPredictions_ModelDirDom.csv
Untracked: output/genomicPredictions_ModelDirDom.rds
Untracked: output/kinship_A_IITA_2021May13.rds
Untracked: output/kinship_D_IITA_2021May13.rds
Untracked: output/kinship_domGenotypic_IITA_2021July5.rds
Untracked: output/markEffsTest.rds
Untracked: output/markerEffects.rds
Untracked: output/markerEffectsA.rds
Untracked: output/markerEffectsAD.rds
Untracked: output/maxNOHAV_byStudy.csv
Untracked: output/obsCrossMeansAndVars.rds
Untracked: output/parentfolds.rds
Untracked: output/ped2check_genome.rds
Untracked: output/ped2genos.txt
Untracked: output/pednames2keep.txt
Untracked: output/pednames_Prune100_25_pt25.log
Untracked: output/pednames_Prune100_25_pt25.nosex
Untracked: output/pednames_Prune100_25_pt25.prune.in
Untracked: output/pednames_Prune100_25_pt25.prune.out
Untracked: output/potential_dams.txt
Untracked: output/potential_sires.txt
Untracked: output/predVarTest.rds
Untracked: output/samples2keep_IITA_2021May13.txt
Untracked: output/samples2keep_IITA_MAFpt01_prune50_25_pt98.log
Untracked: output/samples2keep_IITA_MAFpt01_prune50_25_pt98.nosex
Untracked: output/samples2keep_IITA_MAFpt01_prune50_25_pt98.prune.in
Untracked: output/samples2keep_IITA_MAFpt01_prune50_25_pt98.prune.out
Untracked: output/samples2keep_notInPHGdb.txt
Untracked: output/test_cvAD_markerEffects.rds
Untracked: output/test_cvAD_meanPredAccuracy.rds
Untracked: output/test_cvAD_parentfolds.rds
Untracked: output/test_cvAD_predAccuracy.rds
Untracked: output/test_cvAD_predMeans.rds
Untracked: output/test_cvAD_predVars.rds
Untracked: output/test_cvAD_varPredAccuracy.rds
Untracked: output/top50crosses.csv
Untracked: output/verified_ped.txt
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/06-GenomicPredictions.Rmd
) and HTML (docs/06-GenomicPredictions.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | c843dbd | wolfemd | 2021-07-29 | Tidy, completed version. |
Rmd | 6eb6a62 | wolfemd | 2021-07-29 | Debugging and full benchmark run work shown. |
Rmd | 1d017cb | wolfemd | 2021-07-25 | Debugging completed for predictCrosses(). Work shown and tests passed also shown. Full run underway. |
html | 934141c | wolfemd | 2021-07-14 | Build site. |
html | cc1eb4b | wolfemd | 2021-07-14 | Build site. |
Rmd | 772750a | wolfemd | 2021-07-14 | DirDom model and selection index calc fully integrated functions. |
Rmd | b43ee90 | wolfemd | 2021-07-12 | Completed predictCrosses function, which predicts cross usefullness on SELINDs and component traits. Work is shown. |
Rmd | 0ac841c | wolfemd | 2021-07-11 | Full genomic prediction including (1) genomic prediction of clone GBLUPs and (2) prediction of cross usefulness. (1) is completed. Work shown. (2) is TO DO still. |
Genomic prediction of clone GEBV/GETGV. Fit GBLUP model, using genotypic add-dom partition. NEW: modelType=“DirDom”, include genome-wide inbreeding effect in GEBV/GETGV predictions after backsolving SNP effects. For all models, extract GBLUPs and backsolve SNP effects for use in cross usefulness predictions (mean+variance predictions). ALSO NEW: selection index predictions.
Genomic prediction of cross \(UC_{parent}\) and \(UC_{variety}\). Rank potential parents on SI. Predict all possible crosses of some portion of best parents.
Operate R within a singularity Linux shell within a screen shell.
# 1) start a screen shell
screen; # or screen -r if re-attaching...
# 2) start the singularity Linux shell inside that
singularity shell /workdir/$USER/rocker.sif;
# Project directory, so R will use as working dir.
cd /home/mw489/implementGMSinCassava/;
# 3) Start R
R
Load input data
require(tidyverse); require(magrittr);
# 5 threads per Rsession for matrix math (openblas)
::blas_set_num_threads(5)
RhpcBLASctl# GENOMIC MATE SELECTION FUNCTIONS
source(here::here("code","gmsFunctions.R"))
source(here::here("code","predCrossVar.R"))
# GENOMIC RELATIONSHIP MATRICES (GRMS)
<-list(A=readRDS(file=here::here("output","kinship_A_IITA_2021May13.rds")),
grmsD=readRDS(file=here::here("output","kinship_domGenotypic_IITA_2021July5.rds")))
# DOSAGE MATRIX
<-readRDS(file=here::here("data",
dosages"dosages_IITA_filtered_2021May13.rds"))
# BLUPs
<-readRDS(file=here::here("data","blups_forCrossVal.rds")) %>%
blups::select(-varcomp) %>%
dplyrrename(TrainingData=blups) # for compatibility with downstream functions
# SELECTION INDEX WEIGHTS
## from IYR+IK
## note that not ALL predicted traits are on index
<-c(logFYLD=20,
SIwtsHI=10,
DM=15,
MCMDS=-10,
logRTNO=12,
logDYLD=20,
logTOPYLD=15,
PLTHT=10)
Run the “AD” and “DirDom” modelTypes built into runGenomicPredictions()
.
Output contains both GBLUPs for selection of indivuals and SNP effects to use as input for prediction of cross usefulness and subsequent mate selection.
<-proc.time()[3]
start<-runGenomicPredictions(modelType="AD",selInd=TRUE, SIwts=SIwts,
gpreds_adgetMarkEffs=TRUE,
returnPEV=FALSE,
blups=blups,grms=grms,dosages=dosages,
ncores=20,nBLASthreads=5)
<-proc.time()[3]-start; runtime/60
runtimesaveRDS(gpreds_ad,file = here::here("output","genomicPredictions_ModelAD.rds"))
<-runGenomicPredictions(modelType="DirDom",selInd=TRUE, SIwts=SIwts,
gpreds_dirdomgetMarkEffs=TRUE,
returnPEV=FALSE,
blups=blups,grms=grms,dosages=dosages,
ncores=20,nBLASthreads=5)
<-proc.time()[3]-start; runtime/60
runtimesaveRDS(gpreds_dirdom,file = here::here("output","genomicPredictions_ModelDirDom.rds"))
# 1) start a screen shell
screen; # or screen -r if re-attaching...
# 2) start the singularity Linux shell inside that
#singularity shell /workdir/$USER/rocker.sif;
singularity shell ~/rocker2.sif;
# Project directory, so R will use as working dir.
cd /home/mw489/implementGMSinCassava/;
# 3) Start R
R
require(tidyverse); require(magrittr);
# 5 threads per Rsession for matrix math (openblas)
#RhpcBLASctl::blas_set_num_threads(5)
# GENOMIC MATE SELECTION FUNCTIONS
source(here::here("code","gmsFunctions.R"))
source(here::here("code","predCrossVar.R"))
# DOSAGE MATRIX
<-readRDS(file=here::here("data",
dosages"dosages_IITA_filtered_2021May13.rds"))
# RECOMBINATION FREQUENCY MATRIX
<-readRDS(file=here::here("data",
recombFreqMat"recombFreqMat_1minus2c_2021May13.rds"))
# HAPLOTYPE MATRIX
## keep only haplos for parents-in-the-pedigree
## those which will be used in prediction, saves memory
<-readRDS(file=here::here("data","haps_IITA_filtered_2021May13.rds"))
haploMat<-union(ped$sireID,ped$damID)
parents<-sort(c(paste0(parents,"_HapA"),
parenthapspaste0(parents,"_HapB")))
<-haploMat[parenthaps,colnames(recombFreqMat)]
haploMat
# SELECTION INDEX WEIGHTS
## from IYR+IK
## note that not ALL predicted traits are on index
<-c(logFYLD=20,
SIwtsHI=10,
DM=15,
MCMDS=-10,
logRTNO=12,
logDYLD=20,
logTOPYLD=15,
PLTHT=10)
# SNP EFFECTS - FROM PREVIOUS STEP
### Two models AD and DirDom
<-readRDS(file = here::here("output","genomicPredictions_ModelAD.rds"))
gpreds_ad<-readRDS(file = here::here("output","genomicPredictions_ModelDirDom.rds"))
gpreds_dirdom### Cor between SELIND GEBV and GETGV between models?
# left_join(gpreds_ad$gblups[[1]] %>% select(GID,predOf,SELIND) %>% rename(SELINDad=SELIND),
# gpreds_dirdom$gblups[[1]] %>% select(GID,predOf,SELIND) %>% rename(SELINDdirdom=SELIND)) %>%
# group_by(predOf) %>% summarize(SELIND_corModels=cor(SELINDad,SELINDdirdom))
# predOf SELIND_corModels
# GEBV 0.9890091
# GETGV 0.9373170
# SELECTION OF CROSSES-TO-BE-PREDICTED
<-100
nParentsToSelect<-union(gpreds_dirdom$gblups[[1]] %>%
union_bestGEBVandGETGVdirdomfilter(predOf=="GEBV") %>%
arrange(desc(SELIND)) %>%
slice(1:nParentsToSelect) %$% GID,
$gblups[[1]] %>%
gpreds_dirdomfilter(predOf=="GETGV") %>%
arrange(desc(SELIND)) %>%
slice(1:nParentsToSelect) %$% GID)
<-union(gpreds_ad$gblups[[1]] %>%
union_bestGEBVandGETGVadfilter(predOf=="GEBV") %>%
arrange(desc(SELIND)) %>%
slice(1:nParentsToSelect) %$% GID,
$gblups[[1]] %>%
gpreds_adfilter(predOf=="GETGV") %>%
arrange(desc(SELIND)) %>%
slice(1:nParentsToSelect) %$% GID)
<-union(union_bestGEBVandGETGVdirdom,
union_bestGEBVandGETGV
union_bestGEBVandGETGVad)length(union_bestGEBVandGETGV)
# [1] 121 parents in top nParentsToSelect on SELIND for GEBV/GETGV - DirDom/AD model.
<-crosses2predict(union_bestGEBVandGETGV)
CrossesToPredictnrow(CrossesToPredict)
# [1] 7381
Run the “AD” and “DirDom” modelTypes.
cbsulm15 - July 25 - 7:30pm
<-proc.time()[3]
start<-predictCrosses(modelType="DirDom",stdSelInt = 2.67,
crossPreds_dirdomselInd=TRUE, SIwts=SIwts,
CrossesToPredict=CrossesToPredict,
snpeffs=gpreds_dirdom$genomicPredOut[[1]],
dosages=dosages,
haploMat=haploMat,recombFreqMat=recombFreqMat,
ncores=20,nBLASthreads=5)
<-proc.time()[3]-start; runtime/60
runtimesaveRDS(crossPreds_dirdom,file = here::here("output","genomicMatePredictions_top121parents_ModelDirDom.rds"))
# elapsed
# 2195.6
# # A tibble: 1 x 2
# tidyPreds rawPreds
# <list> <list>
# 1 <tibble [177,144 × 9]> <named list [2]>
# 36.6 hrs for 7381 crosses. Or about 5 hours per 1000 crosses
cbsulm17 - July 25 at 7:30pm
<-proc.time()[3]
start<-predictCrosses(modelType="AD",stdSelInt = 2.67,
crossPreds_adselInd=TRUE, SIwts=SIwts,
CrossesToPredict=CrossesToPredict,
snpeffs=gpreds_ad$genomicPredOut[[1]],
dosages=dosages,
haploMat=haploMat,recombFreqMat=recombFreqMat,
ncores=20,nBLASthreads=5)
<-proc.time()[3]-start; runtime/60
runtimesaveRDS(crossPreds_ad,file = here::here("output","genomicMatePredictions_top121parents_ModelAD.rds"))
# elapsed
# 1511.56
# # A tibble: 1 x 2
# tidyPreds rawPreds
# <list> <list>
# 1 <tibble [177,144 × 9]> <named list [2]>
# 1511.56 or 25.33 hrs for 7381 crosses
# About 3.4 hrs per 1000 crosses?
Add genetic groups and tidy format
library(tidyverse);
<-readRDS(file = here::here("output","genomicPredictions_ModelAD.rds"))
gpreds_ad$gblups[[1]] %>%
gpreds_admutate(GeneticGroup=case_when(grepl("2013_|TMS13",GID)~"C1",
grepl("TMS14",GID)~"C2",
grepl("TMS15",GID)~"C3",
grepl("TMS18",GID)~"C4",
!grepl("2013_|TMS13|TMS14|TMS15|TMS18",GID)~"PreGS"),
GeneticGroup=factor(GeneticGroup,levels = c("PreGS","C1","C2","C3","C4"))) %>%
relocate(GeneticGroup,.after = "predOf") %>%
arrange(predOf,desc(SELIND)) %>%
write.csv(.,file = here::here("output","genomicPredictions_ModelAD.csv"),
row.names = F)
<-readRDS(file = here::here("output","genomicPredictions_ModelDirDom.rds"))
gpreds_dirdom$gblups[[1]] %>%
gpreds_dirdommutate(GeneticGroup=case_when(grepl("2013_|TMS13",GID)~"C1",
grepl("TMS14",GID)~"C2",
grepl("TMS15",GID)~"C3",
grepl("TMS18",GID)~"C4",
!grepl("2013_|TMS13|TMS14|TMS15|TMS18",GID)~"PreGS"),
GeneticGroup=factor(GeneticGroup,levels = c("PreGS","C1","C2","C3","C4"))) %>%
relocate(GeneticGroup,.after = "predOf") %>%
arrange(predOf,desc(SELIND)) %>%
write.csv(.,file = here::here("output","genomicPredictions_ModelDirDom.csv"),
row.names = F)
<-readRDS(file = here::here("output","genomicMatePredictions_top121parents_ModelDirDom.rds"))
crossPreds_dirdom<-readRDS(file = here::here("output","genomicMatePredictions_top121parents_ModelAD.rds"))
crossPreds_ad
$tidyPreds[[1]] %>%
crossPreds_admutate(sireGroup=case_when(grepl("2013_|TMS13",sireID)~"C1",
grepl("TMS14",sireID)~"C2",
grepl("TMS15",sireID)~"C3",
grepl("TMS18",sireID)~"C4",
!grepl("2013_|TMS13|TMS14|TMS15|TMS18",sireID)~"PreGS"),
damGroup=case_when(grepl("2013_|TMS13",damID)~"C1",
grepl("TMS14",damID)~"C2",
grepl("TMS15",damID)~"C3",
grepl("TMS18",damID)~"C4",
!grepl("2013_|TMS13|TMS14|TMS15|TMS18",damID)~"PreGS"),
CrossGroup=paste0(sireGroup,"x",damGroup)) %>%
relocate(contains("Group"),.before = "Nsegsnps") %>%
write.csv(.,file = here::here("output","genomicMatePredictions_top121parents_ModelAD.csv"),
row.names = F)
$tidyPreds[[1]] %>%
crossPreds_dirdommutate(sireGroup=case_when(grepl("2013_|TMS13",sireID)~"C1",
grepl("TMS14",sireID)~"C2",
grepl("TMS15",sireID)~"C3",
grepl("TMS18",sireID)~"C4",
!grepl("2013_|TMS13|TMS14|TMS15|TMS18",sireID)~"PreGS"),
damGroup=case_when(grepl("2013_|TMS13",damID)~"C1",
grepl("TMS14",damID)~"C2",
grepl("TMS15",damID)~"C3",
grepl("TMS18",damID)~"C4",
!grepl("2013_|TMS13|TMS14|TMS15|TMS18",damID)~"PreGS"),
CrossGroup=paste0(sireGroup,"x",damGroup)) %>%
relocate(contains("Group"),.before = "Nsegsnps") %>%
write.csv(.,file = here::here("output","genomicMatePredictions_top121parents_ModelDirDom.csv"),
row.names = F)
Write CSV’s
# ## Format and write GEBV
# predModelA %>%
# select(Trait,genomicPredOut) %>%
# unnest(genomicPredOut) %>%
# select(-varcomps) %>%
# unnest(gblups) %>%
# select(-GETGV,-contains("PEV")) %>%
# spread(Trait,GEBV) %>%
# mutate(Group=case_when(GID %in% nrTP ~ "nrTP",
# GID %in% c1a ~ "C1a",
# GID %in% c1b ~ "C1b",
# GID %in% c2a ~ "C2a",
# GID %in% c2b ~ "C2b",
# GID %in% c3a ~ "C3a",
# GID %in% c3b ~ "C3b")) %>%
# select(Group,GID,any_of(traits)) %>%
# arrange(desc(Group)) %>%
# write.csv(., file = here::here("output","GEBV_NRCRI_ModelA_2021May03.csv"), row.names = F)
#
# ## Format and write GETGV
# predModelADE %>%
# select(Trait,genomicPredOut) %>%
# unnest(genomicPredOut) %>%
# select(-varcomps) %>%
# unnest(gblups) %>%
# select(GID,Trait,GETGV) %>%
# spread(Trait,GETGV) %>%
# mutate(Group=case_when(GID %in% nrTP ~ "nrTP",
# GID %in% c1a ~ "C1a",
# GID %in% c1b ~ "C1b",
# GID %in% c2a ~ "C2a",
# GID %in% c2b ~ "C2b",
# GID %in% c3a ~ "C3a",
# GID %in% c3b ~ "C3b")) %>%
# select(Group,GID,any_of(traits)) %>%
# arrange(desc(Group)) %>%
# write.csv(., file = here::here("output","GETGV_NRCRI_ModelADE_2021May03.csv"), row.names = F)
#
# ### Make a unified "tidy" long-form:
# predModelA %>%
# select(Trait,genomicPredOut) %>%
# unnest(genomicPredOut) %>%
# select(-varcomps) %>%
# unnest(gblups) %>%
# select(-GETGV) %>%
# full_join(predModelADE %>%
# select(Trait,genomicPredOut) %>%
# unnest(genomicPredOut) %>%
# select(-varcomps) %>%
# unnest(gblups) %>%
# rename(GEBV_modelADE=GEBV,
# PEV_modelADE=PEVa) %>%
# select(-genomicPredOut)) %>%
# mutate(Group=case_when(GID %in% nrTP ~ "nrTP",
# GID %in% c1a ~ "C1a",
# GID %in% c1b ~ "C1b",
# GID %in% c2a ~ "C2a",
# GID %in% c2b ~ "C2b",
# GID %in% c3a ~ "C3a",
# GID %in% c3b ~ "C3b")) %>%
# relocate(Group,.before = GID) %>%
# write.csv(., file = here::here("output","genomicPredictions_NRCRI_2021May03.csv"), row.names = F)