Last updated: 2024-09-16

Checks: 7 0

Knit directory: rss-gsea/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20180626) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version b4d5d4d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/gene_set.Rmd) and HTML (docs/gene_set.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html cee0157 Xiang Zhu 2019-03-28 Build site.
Rmd ac6491f Xiang Zhu 2019-03-28 wflow_publish("analysis/gene_set.Rmd")
html 7223781 Xiang Zhu 2019-02-18 Build site.
html 73a898a Xiang Zhu 2018-10-19 Build site.
Rmd 0515710 Xiang Zhu 2018-10-19 wflow_publish("analysis/gene_set.Rmd")
html 1c85967 Xiang Zhu 2018-10-05 Build site.
html 0324740 Xiang Zhu 2018-09-18 Build site.
Rmd bcd0424 Xiang Zhu 2018-09-18 wflow_publish("analysis/gene_set.Rmd")
html ddd8480 Xiang Zhu 2018-09-17 Build site.
Rmd decce81 Xiang Zhu 2018-09-17 wflow_publish("analysis/gene_set.Rmd")
html 32d3a60 Xiang Zhu 2018-09-16 Build site.
Rmd 8572f1a Xiang Zhu 2018-09-16 wflow_publish("analysis/gene_set.Rmd")

All 4,026 gene sets used in Zhu and Stephens (2018) are freely available at xiangzhu/rss-gsea, where the folder biological_pathway contains 3,913 biological pathways, and the folder tissue_set contains 113 GTEx tissue-based gene sets. These gene sets can be referenced in a journal’s “Data availability” section as DOI.

$ tree -L 2 data/
data/
├── README.md
├── biological_pathway
│   ├── gene_37.3.mat
│   └── pathway.mat
└── tissue_set
    ├── de_genes
    ├── he_genes
    └── se_genes

5 directories, 3 files

Biological pathways

The 3,913 public biological pathway used in Zhu and Stephens (2018) are available in the folder biological_pathway, which are represented by two files gene_37.3.mat and pathway.mat.

The file gene_37.3.mat contains basic information of genes.

>> load gene_37.3.mat
>> gene
gene =
  struct with fields:
        id: [18732x1 double]
    symbol: {18732x1 cell}
       chr: [18732x1 double]
      desc: {18732x1 cell}
     start: [18732x1 double]
      stop: [18732x1 double]

>> [gene.id(10) gene.chr(10) gene.start(10) gene.stop(10)]
ans =
          18          16     8768444     8878432

>> gene.symbol(10)
ans =
  1x1 cell array
    {'ABAT'}

>> gene.desc(10)
ans =
  1x1 cell array
    {'4-aminobutyrate aminotransferase'}

Note that only 18,313 genes mapped to reference sequence were used in our analyses.

>> [min(gene.start) min(gene.stop)]
ans =
    -1    -1

>> inref_genes = ~(gene.start == -1 | gene.stop == -1);
>> sum(inref_genes)
ans =
       18313

The file pathway.mat contains basic information of pathways.

>> load pathway.mat
>> pathway
pathway =
  struct with fields:
       label: {4076x1 cell}
    database: {4076x1 cell}
      source: {4076x1 cell}
       genes: [18732x4076 double]
    synonyms: {4076x1 cell}

>> pathway.label(100)
ans =
  1x1 cell array
    {'Activation of NOXA and translocation to mitochondria'}

>> pathway.database(100)
ans =
  1x1 cell array
    {'PC'}

>> pathway.source(100)
ans =
  1x1 cell array
    {'reactome'}

The gene-pathway information is represented as a sparse zero-one matrix pathway.genes, where genes(i,j)==1 if gene i is a member of pathway j and genes(i,j)==0 otherwise.

>> genes = pathway.genes;
>> whos genes
  Name           Size                Bytes  Class     Attributes
  genes      18732x4076            3257512  double    sparse

>> genes(:,100)

ans =
      (1243,1)              1
      (3410,1)              1
      (4567,1)              1
      (4668,1)              1  

Finally, our analyses only used 3,913 of 4,076 pathways that

  • include 2-499 RefSeq-mapped genes;
  • have clear database and source definitions;
  • exclude one pathway Viral RNP Complexes in the Host Cell Nucleus (PC, reactome) (because no HapMap3 SNP was mapped to this pathway).
>> numgenes = pathway.genes' * inref_genes;
>> size(numgenes)
ans =
        4076           1

>> paths = find(numgenes > 1 & numgenes < 500);
>> size(paths)
ans =
        3916           1

>> database = pathway.database;
>> source = pathway.source;
>> database_na = find(not(cellfun('isempty', strfind(database, 'NA'))));
>> source_na = find(not(cellfun('isempty', strfind(source, 'NA'))));
>> length(union(database_na, source_na))
ans =
     2

>> label = pathway.label;
>> pathway_exclude = 'Viral RNP Complexes in the Host Cell Nucleus';
>> label_include = find(cellfun('isempty', strfind(label, pathway_exclude)));
>> label_exclude = setdiff(1:4076, label_include);
>> label(label_exclude)
ans =
  1x1 cell array
    {'Viral RNP Complexes in the Host Cell Nucleus'}

>> database(label_exclude)
ans =
  1x1 cell array
    {'PC'}

>> source(label_exclude)
ans =
  1x1 cell array
    {'reactome'}

Tissue-based gene sets

The 113 GTEx tissue-based gene sets used in Zhu and Stephens (2018) are available in the folder tissue_set. There are 44 “highly expressed” (HE) gene sets, 49 “selectively expressed” (SE) gene sets and 20 “distinctively expressed” (DE) gene sets. The creation of SE sets uses a method described in Yang et al (2018). The creation of DE sets uses a method described in Dey et al (2017).

ls data/tissue_set/he_genes | wc -l
      44
ls data/tissue_set/se_genes | wc -l
      49
ls data/tissue_set/de_genes | wc -l
      20

Each of the tissue-based gene sets has the following format.

head -n 5 data/tissue_set/he_genes/gene_names_expr_LIVER.txt
ensembl_gene_id chromosome_name start_position  end_position
ENSG00000002933 7   150497491   150502208
ENSG00000072778 17  7120444 7128592
ENSG00000075624 7   5566782 5603415
ENSG00000087086 19  49468558    49470135

Note that the gene information of tissue-based sets was provided by GTEx, which may not be the same as gene_37.3.mat above.


devtools::session_info()
─ Session info ───────────────────────────────────────────────────────────────
 setting  value
 version  R version 4.4.1 (2024-06-14)
 os       macOS Sonoma 14.6.1
 system   aarch64, darwin20
 ui       X11
 language (EN)
 collate  en_US.UTF-8
 ctype    en_US.UTF-8
 tz       America/Los_Angeles
 date     2024-09-16
 pandoc   3.1.11 @ /Applications/RStudio.app/Contents/Resources/app/quarto/bin/tools/aarch64/ (via rmarkdown)

─ Packages ───────────────────────────────────────────────────────────────────
 package     * version    date (UTC) lib source
 bslib         0.8.0      2024-07-29 [1] CRAN (R 4.4.0)
 cachem        1.1.0      2024-05-16 [1] CRAN (R 4.4.0)
 callr         3.7.6      2024-03-25 [1] CRAN (R 4.4.0)
 cli           3.6.3      2024-06-21 [1] CRAN (R 4.4.0)
 devtools      2.4.5      2022-10-11 [1] CRAN (R 4.4.0)
 digest        0.6.37     2024-08-19 [1] CRAN (R 4.4.1)
 ellipsis      0.3.2      2021-04-29 [1] CRAN (R 4.4.0)
 evaluate      0.24.0     2024-06-10 [1] CRAN (R 4.4.0)
 fansi         1.0.6      2023-12-08 [1] CRAN (R 4.4.0)
 fastmap       1.2.0      2024-05-15 [1] CRAN (R 4.4.0)
 fs            1.6.4      2024-04-25 [1] CRAN (R 4.4.0)
 getPass       0.2-4      2023-12-10 [1] CRAN (R 4.4.0)
 git2r         0.33.0     2023-11-26 [1] CRAN (R 4.4.0)
 glue          1.7.0      2024-01-09 [1] CRAN (R 4.4.0)
 htmltools     0.5.8.1    2024-04-04 [1] CRAN (R 4.4.0)
 htmlwidgets   1.6.4      2023-12-06 [1] CRAN (R 4.4.0)
 httpuv        1.6.15     2024-03-26 [1] CRAN (R 4.4.0)
 httr          1.4.7      2023-08-15 [1] CRAN (R 4.4.0)
 jquerylib     0.1.4      2021-04-26 [1] CRAN (R 4.4.0)
 jsonlite      1.8.8      2023-12-04 [1] CRAN (R 4.4.0)
 knitr         1.48       2024-07-07 [1] CRAN (R 4.4.0)
 later         1.3.2      2023-12-06 [1] CRAN (R 4.4.0)
 lifecycle     1.0.4      2023-11-07 [1] CRAN (R 4.4.0)
 magrittr      2.0.3      2022-03-30 [1] CRAN (R 4.4.0)
 memoise       2.0.1      2021-11-26 [1] CRAN (R 4.4.0)
 mime          0.12       2021-09-28 [1] CRAN (R 4.4.0)
 miniUI        0.1.1.1    2018-05-18 [1] CRAN (R 4.4.0)
 pillar        1.9.0      2023-03-22 [1] CRAN (R 4.4.0)
 pkgbuild      1.4.4      2024-03-17 [1] CRAN (R 4.4.0)
 pkgconfig     2.0.3      2019-09-22 [1] CRAN (R 4.4.0)
 pkgload       1.4.0      2024-06-28 [1] CRAN (R 4.4.0)
 processx      3.8.4      2024-03-16 [1] CRAN (R 4.4.0)
 profvis       0.3.8      2023-05-02 [1] CRAN (R 4.4.0)
 promises      1.3.0      2024-04-05 [1] CRAN (R 4.4.0)
 ps            1.8.0      2024-09-12 [1] CRAN (R 4.4.1)
 purrr         1.0.2      2023-08-10 [1] CRAN (R 4.4.0)
 R6            2.5.1      2021-08-19 [1] CRAN (R 4.4.0)
 Rcpp          1.0.13     2024-07-17 [1] CRAN (R 4.4.0)
 remotes       2.5.0      2024-03-17 [1] CRAN (R 4.4.0)
 rlang         1.1.4      2024-06-04 [1] CRAN (R 4.4.0)
 rmarkdown     2.28       2024-08-17 [1] CRAN (R 4.4.0)
 rprojroot     2.0.4      2023-11-05 [1] CRAN (R 4.4.0)
 rstudioapi    0.16.0     2024-03-24 [1] CRAN (R 4.4.0)
 sass          0.4.9.9000 2024-07-11 [1] Github (rstudio/sass@9228fcf)
 sessioninfo   1.2.2      2021-12-06 [1] CRAN (R 4.4.0)
 shiny         1.9.1      2024-08-01 [1] CRAN (R 4.4.0)
 stringi       1.8.4      2024-05-06 [1] CRAN (R 4.4.0)
 stringr       1.5.1      2023-11-14 [1] CRAN (R 4.4.0)
 tibble        3.2.1      2023-03-20 [1] CRAN (R 4.4.0)
 urlchecker    1.0.1      2021-11-30 [1] CRAN (R 4.4.0)
 usethis       3.0.0      2024-07-29 [1] CRAN (R 4.4.0)
 utf8          1.2.4      2023-10-22 [1] CRAN (R 4.4.0)
 vctrs         0.6.5      2023-12-01 [1] CRAN (R 4.4.0)
 whisker       0.4.1      2022-12-05 [1] CRAN (R 4.4.0)
 workflowr   * 1.7.1      2023-08-23 [1] CRAN (R 4.4.0)
 xfun          0.47       2024-08-17 [1] CRAN (R 4.4.0)
 xtable        1.8-4      2019-04-21 [1] CRAN (R 4.4.0)
 yaml          2.3.10     2024-07-26 [1] CRAN (R 4.4.0)

 [1] /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library

──────────────────────────────────────────────────────────────────────────────