Last updated: 2019-04-18

Checks: 6 0

Knit directory: Harvard-RosenbrockLab/

This reproducible R Markdown analysis was created with workflowr (version 1.2.0). The Report tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190304) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  code/Gupta_data_process.R
    Untracked:  code/Hook_cellAnnotation_w-KI_rc.R
    Untracked:  code/Rsem-Gene-counts.R
    Untracked:  code/Rsem-Isoform-counts.R
    Untracked:  code/guptaAnalysis.Rmd
    Untracked:  docs/figure/Flip-Flop-Isoforms.Rmd/
    Untracked:  output/FlipFlop-gene-isoforms.pdf
    Untracked:  output/Heatmap-Percent-isoforms.pdf
    Untracked:  output/Hook.predictions..prediction-crosscheck.pdf
    Untracked:  output/Hook2018gene.plots.pdf
    Untracked:  output/Hook2018gene.rfcv.predictions.w-singleZeisel-rank3.mode.-stats.pdf
    Untracked:  output/Hook2018gene.rfcv.predictions.w-singleZeisel-rank3.prediction-crosscheck.pdf
    Untracked:  output/Hook2018gene.rfcv.predictions.w-singleZeisel-rank3.prediction-probability-projection.pdf
    Untracked:  output/Hook2018gene.rfcv.predictions.w-singleZeisel-rank3.prediction-quality.pdf
    Untracked:  output/Hook2018gene.rfcv.predictions.w-singleZeisel-rank3.prediction-stats.pdf
    Untracked:  output/Hook2018gene.rfcv.predictions.w-singleZeisel-rank4.mode.-stats.pdf
    Untracked:  output/Hook2018gene.rfcv.predictions.w-singleZeisel-rank4.prediction-crosscheck.pdf
    Untracked:  output/Hook2018gene.rfcv.predictions.w-singleZeisel-rank4.prediction-probability-projection.pdf
    Untracked:  output/Hook2018gene.rfcv.predictions.w-singleZeisel-rank4.prediction-quality.pdf
    Untracked:  output/Hook2018gene.rfcv.predictions.w-singleZeisel-rank4.prediction-stats.pdf
    Untracked:  output/Hook2018iso.plots.pdf

Unstaged changes:
    Modified:   analysis/_site.yml
    Modified:   code/WP_codes.R
    Modified:   output/Gpr83.Isoplots.pdf
    Modified:   output/Gria1.Isoplots.pdf
    Modified:   output/Gria4.Isoplots.pdf
    Modified:   output/Grm4.Isoplots.pdf
    Modified:   output/Rplots.pdf

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 2bd3ebb Yasin Kaymaz 2019-04-18 flip-flops commit
html 4277c88 Yasin Kaymaz 2019-03-15 Build site.
Rmd b85db50 Yasin Kaymaz 2019-03-15 isoform results
html de005bf Yasin Kaymaz 2019-03-15 Build site.
html abeab71 Yasin Kaymaz 2019-03-15 Build site.
Rmd ae57569 Yasin Kaymaz 2019-03-15 isoform results
html 1abd5c7 Yasin Kaymaz 2019-03-15 Build site.
Rmd dbac3ec Yasin Kaymaz 2019-03-15 isoform results
html 49c0cce Yasin Kaymaz 2019-03-06 Build site.
html 3d2c5f6 Yasin Kaymaz 2019-03-06 Build site.
html f4d0605 Yasin Kaymaz 2019-03-05 Build site.
Rmd 6ead7d0 Yasin Kaymaz 2019-03-05 violin plots
html ced17ea Yasin Kaymaz 2019-03-05 Build site.
Rmd 066a7e8 Yasin Kaymaz 2019-03-05 violin plots
html c534f45 Yasin Kaymaz 2019-03-04 Build site.
html a1bf7ee Yasin Kaymaz 2019-03-04 Build site.
Rmd 1be7385 Yasin Kaymaz 2019-03-04 initial commit

Clustering analysis of all cells in the Hook 2018 study

In each of these plots, colored dots represent individual cells. Analysis was done using only highly variable genes. Cell annotation are projected from original publication.

Three brain regions cells are taken from:

midbrain, MB; forebrain, FB; olfactory bulb, OB;

In the analysis, I excluded E15.5 cells as requested by CNSDR and done the rest of analysis with only P7 mice cells.

PCA plots

Cells are colored by mouse brain region, and cell subsets, respectively.

Version Author Date
1abd5c7 Yasin Kaymaz 2019-03-15
ced17ea Yasin Kaymaz 2019-03-05
a1bf7ee Yasin Kaymaz 2019-03-04

Version Author Date
1abd5c7 Yasin Kaymaz 2019-03-15

UMAP plots

Cells are colored by mouse brain region, and cell subsets, respectively.

Version Author Date
abeab71 Yasin Kaymaz 2019-03-15
ced17ea Yasin Kaymaz 2019-03-05

Version Author Date
abeab71 Yasin Kaymaz 2019-03-15

.

.

.

.

.

sessionInfo()
R version 3.5.0 (2018-04-23)
Platform: x86_64-apple-darwin17.5.0 (64-bit)
Running under: macOS  10.14.4

Matrix products: default
BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
LAPACK: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libLAPACK.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] forcats_0.4.0   stringr_1.4.0   purrr_0.3.2     readr_1.3.1    
 [5] tidyr_0.8.3     tibble_2.0.1    tidyverse_1.2.1 dplyr_0.8.0.1  
 [9] Seurat_2.3.4    Matrix_1.2-14   cowplot_0.9.4   here_0.1       
[13] DT_0.5          plotly_4.8.0    ggplot2_3.1.0  

loaded via a namespace (and not attached):
  [1] readxl_1.3.1        snow_0.4-3          backports_1.1.4    
  [4] Hmisc_4.2-0         workflowr_1.2.0     plyr_1.8.4         
  [7] igraph_1.2.4        lazyeval_0.2.1      splines_3.5.0      
 [10] digest_0.6.18       foreach_1.4.4       htmltools_0.3.6    
 [13] lars_1.2            gdata_2.18.0        magrittr_1.5       
 [16] checkmate_1.9.1     cluster_2.0.7-1     mixtools_1.1.0     
 [19] ROCR_1.0-7          modelr_0.1.4        R.utils_2.8.0      
 [22] colorspace_1.4-0    rvest_0.3.2         haven_2.1.0        
 [25] crayon_1.3.4        jsonlite_1.6        survival_2.42-6    
 [28] zoo_1.8-4           iterators_1.0.10    ape_5.2            
 [31] glue_1.3.1          gtable_0.2.0        kernlab_0.9-27     
 [34] prabclus_2.2-7      DEoptimR_1.0-8      scales_1.0.0       
 [37] mvtnorm_1.0-10      bibtex_0.4.2        Rcpp_1.0.1         
 [40] metap_1.1           dtw_1.20-1          viridisLite_0.3.0  
 [43] htmlTable_1.13.1    reticulate_1.11.1   foreign_0.8-70     
 [46] bit_1.1-14          proxy_0.4-23        mclust_5.4.3       
 [49] SDMTools_1.1-221    Formula_1.2-3       stats4_3.5.0       
 [52] tsne_0.1-3          htmlwidgets_1.3     httr_1.4.0         
 [55] gplots_3.0.1.1      RColorBrewer_1.1-2  fpc_2.1-11.1       
 [58] acepack_1.4.1       modeltools_0.2-22   ica_1.0-2          
 [61] pkgconfig_2.0.2     R.methodsS3_1.7.1   flexmix_2.3-15     
 [64] nnet_7.3-12         labeling_0.3        tidyselect_0.2.5   
 [67] rlang_0.3.4         reshape2_1.4.3      munsell_0.5.0      
 [70] cellranger_1.1.0    tools_3.5.0         cli_1.1.0          
 [73] generics_0.0.2      broom_0.5.1         ggridges_0.5.1     
 [76] evaluate_0.10.1     yaml_2.2.0          npsurv_0.4-0       
 [79] knitr_1.20          bit64_0.9-7         fs_1.2.7           
 [82] fitdistrplus_1.0-14 robustbase_0.93-3   caTools_1.17.1.2   
 [85] RANN_2.6.1          pbapply_1.4-0       nlme_3.1-137       
 [88] whisker_0.3-2       R.oo_1.22.0         xml2_1.2.0         
 [91] hdf5r_1.0.1         compiler_3.5.0      rstudioapi_0.10    
 [94] png_0.1-7           lsei_1.2-0          stringi_1.2.4      
 [97] lattice_0.20-35     trimcluster_0.1-2.1 pillar_1.3.1       
[100] Rdpack_0.10-1       lmtest_0.9-36       data.table_1.12.0  
[103] bitops_1.0-6        irlba_2.3.3         gbRd_0.4-11        
[106] R6_2.4.0            latticeExtra_0.6-28 KernSmooth_2.23-15 
[109] gridExtra_2.3       codetools_0.2-15    MASS_7.3-50        
[112] gtools_3.8.1        assertthat_0.2.1    rprojroot_1.3-2    
[115] withr_2.1.2         diptest_0.75-7      parallel_3.5.0     
[118] doSNOW_1.0.16       hms_0.4.2           grid_3.5.0         
[121] rpart_4.1-13        class_7.3-14        rmarkdown_1.10     
[124] segmented_0.5-3.0   Rtsne_0.15          git2r_0.25.2       
[127] lubridate_1.7.4     base64enc_0.1-3