Main Steps
Hook dataset
Citation: Hook, Paul W., Sarah A. McClymont, Gabrielle H. Cannon, William D. Law, A. Jennifer Morton, Loyal A. Goff, and Andrew S. McCallion. 2018. “Single-Cell RNA-Seq of Mouse Dopaminergic Neurons Informs Candidate Gene Selection for Sporadic Parkinson Disease.” American Journal of Human Genetics 102 (3): 427–46.
1. Obtain the data
473 single cell RNA-Seq samples from sorted mouse Th-eGFP+ dopaminergic neurons collected at two timepoints from three distinct brain regions.
#wget ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE108nnn/GSE108020/suppl/GSE108020_fpkm_table.txt.gz
#unzip GSE108020_fpkm_table.txt.gz
After downloading the data, unzip the file of FPKM matrix for further analysis.
2. Filtration
- Filter out cells expressing less than 500 genes (min.genes = 500, Seurat)
For the processing details, please follow Code
.
.
.
.
.
.
Session information
sessionInfo()
R version 3.5.0 (2018-04-23)
Platform: x86_64-apple-darwin17.5.0 (64-bit)
Running under: macOS 10.14.3
Matrix products: default
BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
LAPACK: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libLAPACK.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] forcats_0.3.0 stringr_1.4.0 purrr_0.2.5 readr_1.1.1
[5] tidyr_0.8.1 tibble_2.0.1 tidyverse_1.2.1 dplyr_0.7.6
[9] Seurat_2.3.3 Matrix_1.2-14 cowplot_0.9.3 here_0.1
[13] DT_0.4 plotly_4.8.0 ggplot2_3.1.0
loaded via a namespace (and not attached):
[1] diffusionMap_1.1-0 Rtsne_0.15 colorspace_1.4-0
[4] class_7.3-14 modeltools_0.2-22 ggridges_0.5.0
[7] mclust_5.4.1 rprojroot_1.3-2 htmlTable_1.12
[10] base64enc_0.1-3 rstudioapi_0.8 proxy_0.4-22
[13] flexmix_2.3-14 bit64_0.9-7 lubridate_1.7.4
[16] mvtnorm_1.0-8 xml2_1.2.0 codetools_0.2-15
[19] splines_3.5.0 R.methodsS3_1.7.1 robustbase_0.93-1
[22] knitr_1.20 Formula_1.2-3 jsonlite_1.6
[25] workflowr_1.1.1 broom_0.5.0 ica_1.0-2
[28] cluster_2.0.7-1 kernlab_0.9-26 png_0.1-7
[31] R.oo_1.22.0 compiler_3.5.0 httr_1.3.1
[34] backports_1.1.2 assertthat_0.2.0 lazyeval_0.2.1
[37] cli_1.0.1 lars_1.2 acepack_1.4.1
[40] htmltools_0.3.6 tools_3.5.0 bindrcpp_0.2.2
[43] igraph_1.2.1 gtable_0.2.0 glue_1.3.0
[46] reshape2_1.4.3 RANN_2.6 Rcpp_1.0.0
[49] cellranger_1.1.0 trimcluster_0.1-2 gdata_2.18.0
[52] ape_5.1 nlme_3.1-137 iterators_1.0.10
[55] fpc_2.1-11 lmtest_0.9-36 rvest_0.3.2
[58] irlba_2.3.2 gtools_3.8.1 DEoptimR_1.0-8
[61] zoo_1.8-3 MASS_7.3-50 scales_1.0.0
[64] hms_0.4.2 doSNOW_1.0.16 parallel_3.5.0
[67] RColorBrewer_1.1-2 yaml_2.2.0 reticulate_1.9
[70] pbapply_1.4-0 gridExtra_2.3 segmented_0.5-3.0
[73] rpart_4.1-13 latticeExtra_0.6-28 stringi_1.2.4
[76] foreach_1.4.4 checkmate_1.8.5 caTools_1.17.1
[79] SDMTools_1.1-221 rlang_0.3.1 pkgconfig_2.0.2
[82] dtw_1.20-1 prabclus_2.2-6 bitops_1.0-6
[85] evaluate_0.10.1 lattice_0.20-35 ROCR_1.0-7
[88] bindr_0.1.1 htmlwidgets_1.2 bit_1.1-14
[91] tidyselect_0.2.4 plyr_1.8.4 magrittr_1.5
[94] R6_2.3.0 snow_0.4-3 gplots_3.0.1
[97] Hmisc_4.1-1 haven_1.1.2 pillar_1.3.1
[100] whisker_0.3-2 foreign_0.8-70 withr_2.1.2
[103] mixtools_1.1.0 fitdistrplus_1.0-9 survival_2.42-6
[106] scatterplot3d_0.3-41 nnet_7.3-12 tsne_0.1-3
[109] modelr_0.1.2 crayon_1.3.4 hdf5r_1.0.1
[112] KernSmooth_2.23-15 rmarkdown_1.10 readxl_1.1.0
[115] grid_3.5.0 data.table_1.11.4 git2r_0.23.0
[118] metap_0.9 digest_0.6.18 diptest_0.75-7
[121] R.utils_2.6.0 stats4_3.5.0 munsell_0.5.0
[124] viridisLite_0.3.0