Last updated: 2021-07-27
Checks: 2 0
Knit directory: ebpmf_data_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version a6f3462. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/ebpmf_bg_tutorial_cache/
Ignored: analysis/ebpmf_wbg_model_intro_cache/
Ignored: analysis/ebpmf_wbg_simulate_big_data2_cache/
Ignored: analysis/ebpmf_wbg_simulate_big_data3_cache/
Ignored: analysis/ebpmf_wbg_simulate_big_data_cache/
Ignored: analysis/ebpmf_wbg_simulation_cache/
Ignored: analysis/investigate_np_ebpmf_wbg_cache/
Ignored: analysis/pmf_greedy_experiment_cache/
Ignored: analysis/sla_data_analysis_k10_cache/
Ignored: data/.DS_Store
Ignored: output/.DS_Store
Ignored: output/News/.DS_Store
Ignored: topicView-app/.DS_Store
Untracked files:
Untracked: analysis/covid_dataset.Rmd
Untracked: analysis/draft.Rmd
Untracked: analysis/draft2.Rmd
Untracked: analysis/ebpmf_wbg_simulate_correlated.Rmd
Untracked: analysis/ebpmf_wbg_simulation_big.Rmd
Untracked: analysis/ebpmf_wbg_simulation_big2_more.Rmd
Untracked: analysis/heatmap.Rmd
Untracked: analysis/investigate_largeK.Rmd
Untracked: analysis/investigate_news_topics.Rmd
Untracked: analysis/poissonmix_vs_pmf.Rmd
Untracked: analysis/simulate_data_bg.Rmd
Untracked: analysis/simulate_data_bg2.Rmd
Untracked: analysis/summary_sla_news_nips.Rmd
Untracked: analysis/test.R
Untracked: data/GSE145926_RAW/
Untracked: data/cell_data.csv
Untracked: data/sim/init_random.sim_bg_block_n1100_p2100_K50.Rds
Untracked: data/sim/simulated_data_small.RData
Untracked: data/sim/simulated_data_small2.RData
Untracked: output/poissonmix_vs_pmf.RDS
Untracked: output/poissonmix_vs_pmf.RData
Untracked: output/sim/v0.4.5/exper2/init_random.sim_bg_block_n1100_p2100_K50.Rds
Untracked: output/sim/v0.4.5/exper2/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter100_init_random.Rds
Untracked: output/sim/v0.4.5/exper2/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter10_from_truth.Rds
Untracked: output/sim/v0.4.5/exper2/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter10_init_random.Rds
Untracked: output/sim/v0.4.5/exper2/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter10_init_random2.Rds
Untracked: output/sim/v0.4.5/exper2/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter10_pmf_bg_K50_maxiter10_from_truth_scaled.Rds
Untracked: output/sim/v0.4.5/exper2/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter10_pmf_bg_K50_maxiter10_from_truth_scaled0.Rds
Untracked: output/sim/v0.4.5/exper2/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter10_pmf_bg_K50_maxiter10_from_truth_scaled1.Rds
Untracked: output/sim/v0.4.5/exper2/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter1_from_truth.Rds
Untracked: output/sim/v0.4.5/exper2/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter20_init_random.Rds
Untracked: output/sim/v0.4.5/exper2/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter2_from_truth.Rds
Untracked: output/sim/v0.4.5/exper2/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter30_init_random.Rds
Untracked: output/sim/v0.4.5/exper2/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter3_from_truth.Rds
Untracked: output/sim/v0.4.5/exper2/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter40_init_random.Rds
Untracked: output/sim/v0.4.5/exper2/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter4_from_truth.Rds
Untracked: output/sim/v0.4.5/exper2/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter50_init_random.Rds
Untracked: output/sim/v0.4.5/exper2/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter5_from_truth.Rds
Untracked: output/sim/v0.4.5/exper2/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter5_pmf_bg_K50_maxiter10_from_truth_scaled.Rds
Untracked: output/sim/v0.4.5/exper2/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter5_pmf_bg_K50_maxiter10_from_truth_scaled0.Rds
Untracked: output/sim/v0.4.5/exper2/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter5_pmf_bg_K50_maxiter10_from_truth_scaled1.Rds
Untracked: output/sim/v0.4.5/exper2/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter60_init_random.Rds
Untracked: output/sim/v0.4.5/exper2/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter6_from_truth.Rds
Untracked: output/sim/v0.4.5/exper2/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter70_init_random.Rds
Untracked: output/sim/v0.4.5/exper2/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter7_from_truth.Rds
Untracked: output/sim/v0.4.5/exper2/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter80_init_random.Rds
Untracked: output/sim/v0.4.5/exper2/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter8_from_truth.Rds
Untracked: output/sim/v0.4.5/exper2/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter90_init_random.Rds
Untracked: output/sim/v0.4.5/exper2/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter9_from_truth.Rds
Untracked: output/sim/v0.4.5/exper2/sim_bg_block_n1100_p2100_K50_fastTopics_K50_50em_950_scd.Rds
Untracked: output/smallsim2_1.RData
Untracked: script/Rplots.pdf
Untracked: script/init_ebpmf_wbg_from_pmf_bg.R
Untracked: script/init_ebpmf_wbg_random.R
Untracked: script/save_volcano_plot.R
Untracked: topicView-app/app_utils.R
Untracked: topicView-app/data/
Untracked: topicView-app/output/
Untracked: topicView-app/rsconnect/
Unstaged changes:
Modified: analysis/cone_NMF_l2_2.Rmd
Modified: analysis/ebpmf_wbg_simulate_big_data2.Rmd
Modified: analysis/multinom_sampling.Rmd
Deleted: analysis/sla_data_analysis_k10.Rmd
Deleted: analysis/sla_data_analysis_k5.Rmd
Deleted: analysis/sla_data_analysis_k50.Rmd
Deleted: data/SLA/SCC2016/Code/APL/compCM.m
Deleted: data/SLA/SCC2016/Code/APL/compMuI.m
Deleted: data/SLA/SCC2016/Code/APL/compParamErr2.m
Deleted: data/SLA/SCC2016/Code/APL/cpl4c.m
Deleted: data/SLA/SCC2016/Code/APL/cplEstimParam.m
Deleted: data/SLA/SCC2016/Code/APL/cpl_basic_demo_PJ.m
Deleted: data/SLA/SCC2016/Code/APL/cpl_demo.m
Deleted: data/SLA/SCC2016/Code/APL/cpl_demo2a.m
Deleted: data/SLA/SCC2016/Code/APL/dcBlkMod.m
Deleted: data/SLA/SCC2016/Code/APL/dcBlkMod2.m
Deleted: data/SLA/SCC2016/Code/APL/dcBlkMod3.m
Deleted: data/SLA/SCC2016/Code/APL/dcbm_nmi_beta_D.m
Deleted: data/SLA/SCC2016/Code/APL/dcbm_nmi_lambda_D.m
Deleted: data/SLA/SCC2016/Code/APL/dcbm_time_vs_n_D.m
Deleted: data/SLA/SCC2016/Code/APL/genDCBlkMod.c
Deleted: data/SLA/SCC2016/Code/APL/genDCBlkMod.mexa64
Deleted: data/SLA/SCC2016/Code/APL/genDCBlkMod2.m
Deleted: data/SLA/SCC2016/Code/APL/initLabel5b.m
Deleted: data/SLA/SCC2016/Code/BCPL/ProfileLike.m
Deleted: data/SLA/SCC2016/Code/BCPL/calCri1.m
Deleted: data/SLA/SCC2016/Code/BCPL/calCri2.m
Deleted: data/SLA/SCC2016/Code/BCPL/mutiExp.m
Deleted: data/SLA/SCC2016/Code/MatlabCode.m
Deleted: data/SLA/SCC2016/Code/NewmanSM/NewmanSM.m
Deleted: data/SLA/SCC2016/Code/coauthorThresh2GiantAdj.txt
Deleted: data/SLA/SCC2016/Code/coauthorThresh2GiantCommLabelK2Matlab.txt
Deleted: data/SLA/SCC2016/Code/functions.R
Deleted: data/SLA/SCC2016/Code/main.R
Deleted: data/SLA/SCC2016/Data/authorList.txt
Deleted: data/SLA/SCC2016/Data/authorPaperBiadj.txt
Deleted: data/SLA/SCC2016/Data/paperCitAdj.txt
Deleted: data/SLA/SCC2016/Data/paperList.txt
Deleted: data/SLA/SCC2016/ReadMe.txt
Modified: data/sim/docword.sim_bg_block_n1100_p2100_K50.txt
Deleted: data/sim/init.sim_bg_block_n1100_p2100_K50.Rds
Modified: data/sim/truth.sim_bg_block_n1100_p2100_K50.Rds
Deleted: data/uci_BoW.sh
Deleted: data/uci_BoW/docword.kos.txt
Deleted: data/uci_BoW/readme.txt
Deleted: data/uci_BoW/vocab.kos.txt
Deleted: output/sim/v0.4.5/fit_sim_bg_block_n1100_p2100_K50_ebpmf_wbg_maxiter_5000.Rout
Deleted: output/sim/v0.4.5/fit_sim_bg_block_n1100_p2100_K50_ebpmf_wbg_maxiter_5000_from_truth.Rout
Deleted: output/sim/v0.4.5/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter3.Rds
Deleted: output/sim/v0.4.5/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter5000.Rds
Deleted: output/sim/v0.4.5/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter5000_from_truth.Rds
Deleted: output/sim/v0.4.5/sim_bg_block_n1100_p2100_K50_ebpmf_wbg_K50_maxiter50_from_truth2.Rds
Deleted: output/uci_BoW/v0.3.8/fit_kos_ebpmf_bg_K20_maxiter_1000.Rout
Deleted: output/uci_BoW/v0.3.8/fit_kos_ebpmf_bg_K20_maxiter_500.Rout
Deleted: output/uci_BoW/v0.3.8/fit_kos_ebpmf_bg_K20_maxiter_5000.Rout
Deleted: output/uci_BoW/v0.3.8/kos_ebpmf_bg_K20_maxiter1000.Rds
Deleted: output/uci_BoW/v0.3.8/kos_ebpmf_bg_K20_maxiter500.Rds
Deleted: output/uci_BoW/v0.3.8/kos_ebpmf_bg_K20_maxiter5000.Rds
Deleted: output/uci_BoW/v0.3.8/kos_ebpmf_bg_K2_maxiter10.Rds
Deleted: output/uci_BoW/v0.3.9/fit_kos_ebpmf_bg_K100_maxiter_5000.Rout
Deleted: output/uci_BoW/v0.3.9/fit_kos_ebpmf_bg_K20_maxiter_5000.Rout
Deleted: output/uci_BoW/v0.3.9/fit_kos_ebpmf_bg_K50_maxiter_5000.Rout
Deleted: output/uci_BoW/v0.3.9/fit_kos_ebpmf_bg_initLF_K100_maxiter_5000.Rout
Deleted: output/uci_BoW/v0.3.9/fit_kos_ebpmf_bg_initLF_K20_maxiter_5000.Rout
Deleted: output/uci_BoW/v0.3.9/fit_kos_ebpmf_bg_initLF_K300_maxiter_1000.Rout
Deleted: output/uci_BoW/v0.3.9/fit_kos_ebpmf_bg_initLF_K500_maxiter_1000.Rout
Deleted: output/uci_BoW/v0.3.9/fit_kos_ebpmf_bg_initLF_K50_maxiter_5000.Rout
Deleted: output/uci_BoW/v0.3.9/fit_kos_pmf_initLF_K100_maxiter_5000.Rout
Deleted: output/uci_BoW/v0.3.9/fit_kos_pmf_initLF_K20_maxiter_5000.Rout
Deleted: output/uci_BoW/v0.3.9/fit_kos_pmf_initLF_K300_maxiter_1000.Rout
Deleted: output/uci_BoW/v0.3.9/fit_kos_pmf_initLF_K500_maxiter_5000.Rout
Deleted: output/uci_BoW/v0.3.9/fit_kos_pmf_initLF_K50_maxiter_5000.Rout
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_K100_maxiter1000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_K100_maxiter1500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_K100_maxiter2000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_K100_maxiter500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_K20_maxiter1000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_K20_maxiter1500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_K20_maxiter2000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_K20_maxiter2500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_K20_maxiter3000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_K20_maxiter3500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_K20_maxiter4000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_K20_maxiter4500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_K20_maxiter500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_K20_maxiter5000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_K50_maxiter1000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_K50_maxiter1500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_K50_maxiter2000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_K50_maxiter2500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_K50_maxiter3000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_K50_maxiter3500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_K50_maxiter4000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_K50_maxiter4500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_K50_maxiter500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K100_maxiter1000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K100_maxiter1500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K100_maxiter2000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K100_maxiter2500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K100_maxiter500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K20_maxiter10.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K20_maxiter1000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K20_maxiter1500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K20_maxiter2000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K20_maxiter2500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K20_maxiter3000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K20_maxiter3500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K20_maxiter4000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K20_maxiter4500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K20_maxiter5.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K20_maxiter500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K20_maxiter5000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K300_maxiter100.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K300_maxiter1000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K300_maxiter200.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K300_maxiter300.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K300_maxiter400.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K300_maxiter500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K300_maxiter600.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K300_maxiter700.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K300_maxiter800.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K300_maxiter900.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K50_maxiter1000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K50_maxiter1500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K50_maxiter2000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K50_maxiter2500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K50_maxiter3000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K50_maxiter3500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K50_maxiter4000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K50_maxiter4500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K50_maxiter500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_ebpmf_bg_initLF50_K50_maxiter5000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_init_nmf_K100_iter50.Rds
Deleted: output/uci_BoW/v0.3.9/kos_init_nmf_K20_iter50.Rds
Deleted: output/uci_BoW/v0.3.9/kos_init_nmf_K300_iter50.Rds
Deleted: output/uci_BoW/v0.3.9/kos_init_nmf_K500_iter50.Rds
Deleted: output/uci_BoW/v0.3.9/kos_init_nmf_K50_iter50.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K100_maxiter1000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K100_maxiter1500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K100_maxiter2000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K100_maxiter2500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K100_maxiter3000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K100_maxiter3500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K100_maxiter4000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K100_maxiter4500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K100_maxiter500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K100_maxiter5000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K20_maxiter10.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K20_maxiter1000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K20_maxiter1500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K20_maxiter2000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K20_maxiter2500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K20_maxiter3000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K20_maxiter3500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K20_maxiter4000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K20_maxiter4500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K20_maxiter5.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K20_maxiter500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K20_maxiter5000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K300_maxiter100.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K300_maxiter1000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K300_maxiter200.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K300_maxiter300.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K300_maxiter400.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K300_maxiter500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K300_maxiter600.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K300_maxiter700.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K300_maxiter800.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K300_maxiter900.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K50_maxiter1000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K50_maxiter1500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K50_maxiter2000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K50_maxiter2500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K50_maxiter3000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K50_maxiter3500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K50_maxiter4000.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K50_maxiter4500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K50_maxiter500.Rds
Deleted: output/uci_BoW/v0.3.9/kos_pmf_initLF50_K50_maxiter5000.Rds
Deleted: output/uci_BoW/v0.4.2/fit_kos_ebpmf_wbg_initLF_K100_maxiter_5000.Rout
Deleted: output/uci_BoW/v0.4.2/fit_kos_ebpmf_wbg_initLF_K20_maxiter_5000.Rout
Deleted: output/uci_BoW/v0.4.2/fit_kos_ebpmf_wbg_initLF_K50_maxiter_5000.Rout
Deleted: output/uci_BoW/v0.4.2/fit_kos_ebpmf_wbg_initL_K100_maxiter_5000.Rout
Deleted: output/uci_BoW/v0.4.2/fit_kos_ebpmf_wbg_initL_K20_maxiter_5000.Rout
Deleted: output/uci_BoW/v0.4.2/fit_kos_ebpmf_wbg_initL_K50_maxiter_5000.Rout
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initL50_K20_maxiter10.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initL50_K20_maxiter1000.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initL50_K20_maxiter1500.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initL50_K20_maxiter2000.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initL50_K20_maxiter2500.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initL50_K20_maxiter3000.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initL50_K20_maxiter3500.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initL50_K20_maxiter4000.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initL50_K20_maxiter4500.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initL50_K20_maxiter500.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initL50_K20_maxiter5000.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initL50_K50_maxiter1000.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initL50_K50_maxiter1500.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initL50_K50_maxiter2000.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initL50_K50_maxiter2500.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initL50_K50_maxiter3000.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initL50_K50_maxiter3500.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initL50_K50_maxiter4000.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initL50_K50_maxiter4500.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initL50_K50_maxiter500.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initL50_K50_maxiter5000.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initLF50_K100_maxiter1000.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initLF50_K100_maxiter1500.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initLF50_K100_maxiter2000.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initLF50_K100_maxiter2500.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initLF50_K100_maxiter500.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initLF50_K20_maxiter10.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initLF50_K20_maxiter1000.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initLF50_K20_maxiter1500.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initLF50_K20_maxiter2000.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initLF50_K20_maxiter2500.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initLF50_K20_maxiter3000.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initLF50_K20_maxiter3500.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initLF50_K20_maxiter4000.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initLF50_K20_maxiter4500.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initLF50_K20_maxiter500.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initLF50_K20_maxiter5000.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initLF50_K3_maxiter10.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initLF50_K50_maxiter1000.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initLF50_K50_maxiter1500.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initLF50_K50_maxiter2000.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initLF50_K50_maxiter2500.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initLF50_K50_maxiter3000.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initLF50_K50_maxiter3500.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initLF50_K50_maxiter4000.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initLF50_K50_maxiter4500.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initLF50_K50_maxiter500.Rds
Deleted: output/uci_BoW/v0.4.2/kos_ebpmf_wbg_initLF50_K50_maxiter5000.Rds
Deleted: output/uci_BoW/v0.4.2/kos_init_nmf_K100_iter50.Rds
Deleted: output/uci_BoW/v0.4.2/kos_init_nmf_K20_iter50.Rds
Deleted: output/uci_BoW/v0.4.2/kos_init_nmf_K300_iter50.Rds
Deleted: output/uci_BoW/v0.4.2/kos_init_nmf_K3_iter50.Rds
Deleted: output/uci_BoW/v0.4.2/kos_init_nmf_K500_iter50.Rds
Deleted: output/uci_BoW/v0.4.2/kos_init_nmf_K50_iter50.Rds
Deleted: output/uci_BoW/v0.4.4/fit_kos_np_ebpmf_wbg_initLF_K100_maxiter_5000.Rout
Deleted: output/uci_BoW/v0.4.4/fit_kos_np_ebpmf_wbg_initLF_K20_maxiter_5000.Rout
Deleted: output/uci_BoW/v0.4.4/fit_kos_np_ebpmf_wbg_initLF_K50_maxiter_5000.Rout
Deleted: output/uci_BoW/v0.4.4/kos_np_ebpmf_wbg_initLF50_K100_maxiter500.Rds
Deleted: output/uci_BoW/v0.4.4/kos_np_ebpmf_wbg_initLF50_K20_maxiter500.Rds
Deleted: output/uci_BoW/v0.4.4/kos_np_ebpmf_wbg_initLF50_K50_maxiter500.Rds
Modified: script/fit_kos_NMF_F.R
Modified: topicView-app/app.R
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/index.Rmd
) and HTML (docs/index.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | a6f3462 | zihao12 | 2021-07-27 | index |
html | f7ae95c | zihao12 | 2021-07-27 | Build site. |
Rmd | fe13972 | zihao12 | 2021-07-27 | index |
html | 7340479 | zihao12 | 2021-07-24 | Build site. |
Rmd | 645fd47 | zihao12 | 2021-07-24 | index |
html | 9fbd025 | zihao12 | 2021-07-23 | Build site. |
Rmd | 8bf34ac | zihao12 | 2021-07-23 | index |
html | 22c0824 | zihao12 | 2021-07-23 | Build site. |
Rmd | eafbd3f | zihao12 | 2021-07-23 | index |
html | 510c956 | Zihao | 2021-07-05 | Build site. |
Rmd | 328705b | Zihao | 2021-07-05 | index |
html | e24ebf5 | zihao12 | 2021-07-01 | Build site. |
Rmd | b92829c | zihao12 | 2021-07-01 | index |
html | 6c9d8b1 | zihao12 | 2021-07-01 | Build site. |
Rmd | f6104be | zihao12 | 2021-07-01 | index |
html | eafad60 | Zihao | 2021-06-30 | Build site. |
Rmd | 5400458 | Zihao | 2021-06-30 | index |
html | 6a75f05 | zihao12 | 2021-06-24 | Build site. |
Rmd | 00174e1 | zihao12 | 2021-06-24 | index |
html | 4bff483 | zihao12 | 2021-06-22 | Build site. |
Rmd | ed8e509 | zihao12 | 2021-06-22 | index |
html | 451291a | zihao12 | 2021-06-22 | Build site. |
Rmd | 69b784c | zihao12 | 2021-06-22 | index |
html | 93cc221 | zihao12 | 2021-06-16 | Build site. |
Rmd | 7d57e70 | zihao12 | 2021-06-16 | index |
html | 1db3c5c | zihao12 | 2021-06-16 | Build site. |
Rmd | 86f370b | zihao12 | 2021-06-16 | index |
html | b8991e5 | zihao12 | 2021-06-15 | Build site. |
Rmd | 4d7a1ea | zihao12 | 2021-06-15 | index |
html | 5c3c833 | zihao12 | 2021-06-14 | Build site. |
Rmd | 0e0732d | zihao12 | 2021-06-14 | index.Rmd update |
html | b7da766 | zihao12 | 2020-11-05 | Build site. |
Rmd | 1aae3e9 | zihao12 | 2020-11-05 | update index |
html | b4a4d19 | zihao12 | 2020-10-05 | Build site. |
Rmd | d8ba5a1 | zihao12 | 2020-10-05 | update index |
html | bbfcc6c | zihao12 | 2020-10-05 | Build site. |
Rmd | 7714094 | zihao12 | 2020-10-05 | update index |
html | acf2eec | zihao12 | 2020-09-28 | Build site. |
Rmd | a6f5d72 | zihao12 | 2020-09-28 | add link to sla_data_analysis_k10 |
html | ad46861 | zihao12 | 2020-09-26 | Build site. |
Rmd | d01dda7 | zihao12 | 2020-09-26 | demo for processing SLA data |
html | d481b1d | zihao12 | 2020-06-05 | Build site. |
Rmd | 448f658 | zihao12 | 2020-06-05 | updatye index |
html | a719d74 | zihao12 | 2020-06-05 | Build site. |
Rmd | e075657 | zihao12 | 2020-06-05 | index |
html | 041d240 | zihao12 | 2020-05-19 | Build site. |
Rmd | dc62cf9 | zihao12 | 2020-05-19 | update index |
html | 8aeda46 | zihao12 | 2020-05-19 | Build site. |
Rmd | 2aec1ad | zihao12 | 2020-05-19 | update index |
html | 7505013 | zihao12 | 2020-05-16 | Build site. |
Rmd | 1bc4a3b | zihao12 | 2020-05-16 | add links to some data analysis |
html | 9037b15 | zihao12 | 2020-05-16 | Build site. |
Rmd | 68802ce | zihao12 | 2020-05-16 | add links to some data analysis |
html | a4c37a9 | zihao12 | 2020-05-11 | Build site. |
Rmd | f4ae184 | zihao12 | 2020-05-11 | Start workflowr project. |
Welcome to my research website.
The goal is to find situations where our EB approach can imporve upon MLE (or Bayesian approaches like LDA). Some datsets used are: sla …
On simulated data1 (and more) & simulated data2 We can see our EB approach has the potential to beat MLE in terms of “False Discoveries” of important words & documents. However the requires initialization from close to the truth. So I hope that we can find applications where PMF fit is basically right but can be refined much better with EB approach, like in simulated data1
I first did fastTopics_on_sla. I find estimating \(F\) seems easier than estimating \(L\). Then on simulated data from sla: I compared MLE vs ebpmf-wbg and find EB gives much better estimate of \(\hat{L}\).
About asymmetry of \(L, F\): fastTopics_on_sla2, fastTopics_on_droplet
On real data (in development);
There are several interesting variants of LDA: Correlated Topic Model, sparse additive generative models of text (SAGE), Structural Topic Model. Here are my notes. The “sparsity” assumption of SAGE is basically the same as in ours, but imposed using different priors.
Our current optimization approach is VBEM (EB), which is slow to converge and can get stuck at bad local optimal. Some attempted alternatives. One key problem is compute gradient for \(E_q log(X | L, F)\) and Monte Carlo Gradient Estimation in Machine Learning suggests some methods applicable here.
(the Frobenius norm case is the same as convex-NMF):
First, I found that our regular PMF solution is basically inside \(\text{cone}(X)\) where each column of \(X\) is a sample: cone_pmf1
Then I derived and implemented the cone NMF for Frobeneus norm: cone_nmf_l2 . I note that fitted \(B, W^T\) are almost identical. I fitted on real data to see if it’s still the case: cone on kos data
I find an example where cone NMF can improve the PMF fit: cone_NMF_l2_2
I also investigated direct estimates of word-word covariance matrix: multinom_sampling
mmultinom
I consider the subproblem in the estimation of \(F\): mmultinom1
I find paper & paper gives a clear probabilistic framework for anchor-word based topic models, and they have the rather recent implementations. I wrote a study note & study note based on the two papers and the seminal paper & seminal paper
I find the algorithm can recover \(F\) really well (\(A\) is not as good though), even though the identified “anchor words” do not satisfy the anchor-word assumptions in the small experiment. The reason is that the rows of the identified “anchor words” are very similar to the rows of the true “anchor words” in here
In this small experiment we can see reducing dictionary size can improve the estimate a lot. The main issue with high dimension is identifying correct anchor rows.
The weakness of anchor-word based methods is that they are not very robust:it requires estimatation of the word co-occurence probability matrix \(C_{ij} = P(X_1 = w_i, X_2 = w_j)\), which is high dimensional and built from very sparse dataset; results crucially depend on only \(K\) rows of \(C\). In practice the we often find the wrong anchor rows with poor estimates for \(C_{s_k, k}\). Why? We have different confidence levels for estimates of rows of \(C\), but after normalizing rows of \(C\) we don’t use the different confidence levels when doing vertex hunting.
Possible improvements: we have \(p\) points \(\hat{C}_i\) in the \(p\)-simplex, each is an observation of a point in the \(p\)-simplex, \(C_i\). The anchor word assumption says there are \(K\) rows of \(C_i\) whose convex space is the same as convex space of \(C\). Can we jointly estimate \(C, S, F, A\)?