Last updated: 2021-02-18
Checks: 6 1
Knit directory: melanoma_publication_old_data/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200728)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version ee1595d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rproj.user/
Ignored: ._.DS_Store
Ignored: analysis/._clinical metadata preparation.Rmd
Ignored: code/.DS_Store
Ignored: code/._.DS_Store
Ignored: data/.DS_Store
Ignored: data/._.DS_Store
Ignored: data/data_for_analysis/
Ignored: data/full_data/
Ignored: output/.DS_Store
Ignored: output/._.DS_Store
Ignored: output/._protein_neutrophil.png
Ignored: output/._rna_neutrophil.png
Ignored: output/PSOCKclusterOut/
Ignored: output/bcell_grouping.png
Ignored: output/dysfunction_correlation.pdf
Unstaged changes:
Modified: .gitignore
Modified: analysis/04_1_Protein_celltype_classification.rmd
Modified: analysis/04_1_RNA_celltype_classification.rmd
Modified: analysis/04_2_RNA_classification_subclustering.rmd
Modified: analysis/04_2_protein_classification_subclustering.rmd
Modified: analysis/07_TCF7_PD1_gating.rmd
Modified: analysis/08_color_vectors.rmd
Modified: analysis/09_Tcell_Score.Rmd
Modified: analysis/10_Dysfunction_Score.rmd
Modified: analysis/11_Bcell_Score.Rmd
Modified: analysis/Figure_1.rmd
Modified: analysis/Figure_2.rmd
Modified: analysis/Figure_3.rmd
Modified: analysis/Figure_4.rmd
Modified: analysis/Figure_5.rmd
Modified: analysis/Supp-Figure_1.rmd
Modified: analysis/Supp-Figure_2.rmd
Modified: analysis/Supp-Figure_3.rmd
Modified: analysis/Supp-Figure_4.rmd
Modified: analysis/Supp-Figure_5.rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/09_Tcell_Score.Rmd
) and HTML (docs/09_Tcell_Score.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | ee1595d | toobiwankenobi | 2021-02-12 | clean repo and adapt files |
html | ee1595d | toobiwankenobi | 2021-02-12 | clean repo and adapt files |
Rmd | 2e443a5 | toobiwankenobi | 2021-02-09 | remove files that are not needed |
knitr::opts_chunk$set(echo = TRUE, message= FALSE)
knitr::opts_knit$set(root.dir = rprojroot::find_rstudio_root_file())
sapply(list.files("code/helper_functions/", full.names = TRUE), source)
code/helper_functions//calculateSummary.R
value ?
visible FALSE
code/helper_functions//censor_dat.R
value ?
visible FALSE
code/helper_functions//detect_mRNA_expression.R
value ?
visible FALSE
code/helper_functions//DistanceToClusterCenter.R
value ?
visible FALSE
code/helper_functions//findMilieu.R code/helper_functions//findPatch.R
value ? ?
visible FALSE FALSE
code/helper_functions//getInfoFromString.R
value ?
visible FALSE
code/helper_functions//getSpotnumber.R
value ?
visible FALSE
code/helper_functions//plotCellCounts.R
value ?
visible FALSE
code/helper_functions//plotCellFractions.R
value ?
visible FALSE
code/helper_functions//plotDist.R
value ?
visible FALSE
code/helper_functions//scatter_function.R
value ?
visible FALSE
code/helper_functions//sceChecks.R
value ?
visible FALSE
code/helper_functions//validityChecks.R
value ?
visible FALSE
library(LSD)
library(SingleCellExperiment)
library(ggplot2)
library(scater)
library(viridis)
library(igraph)
library(CATALYST)
library(reshape2)
library(cowplot)
library(ggridges)
library(pheatmap)
library(tidyverse)
We want to calculate the T cell density. we calculate this per mm2. We use the count for cytotxic T cells as defined under “03_cell_type_definition” script
cur_df <- data.frame(celltype = sce_prot$celltype,
ImageNumber = sce_prot$ImageNumber)
# count cell types per images
cellcount <- (t(table(cur_df)))
# here we get the imagesize from the image metadata
im_size <- (image_mat$Height_cellmask * image_mat$Width_cellmask)/1000000
# data frame
cellcount <- data.frame(cellcount)
# we calculate the density for each celltype for 1 mm2
cellcount$density <- cellcount$Freq/im_size[cellcount$ImageNumber]
cellcount <- cellcount[cellcount$celltype == "CD8+ T cell",]
# there are roughly 60 images with 50 or less cytotoxic T cells
hist(cellcount$density,breaks = 300)
# add cyotoxic T cell density to sce
cellcount$ImageNumber <- as.integer(cellcount$ImageNumber)
cur_sce <- data.frame(colData(sce_prot))
cur_sce <- left_join(cur_sce, cellcount[,c("ImageNumber", "density")])
sce_prot$cyotoxic_density_image <- cur_sce$density
# define a vector with all ImgeNumbers
T_density_scores <- c(1:length(unique(cellcount$ImageNumber)))
T_density_scores <- rep("unassigned",length(unique(cellcount$ImageNumber)))
T_absent <- which(cellcount$density <= 40)
T_low <- which(cellcount$density > 40 & cellcount[cellcount$celltype == "CD8+ T cell",]$density <= 100)
T_med <- which(cellcount$density > 100 & cellcount$density <= 400)
T_high <- which(cellcount$density > 400)
T_density_scores[T_absent] <- "absent"
T_density_scores[T_low] <- "low"
T_density_scores[T_med] <- "med"
T_density_scores[T_high] <- "high"
# now we add the information to the single cell experiment
sce_prot$Tcell_density_score_image <- T_density_scores[sce_prot$ImageNumber]
sce_prot$Tcell_density_score_image <- factor(sce_prot$Tcell_density_score_image, levels = c("absent", "low", "med", "high"))
# number of samples per group
data.frame(colData(sce_prot)) %>%
distinct(Description, .keep_all = T) %>%
group_by(Tcell_density_score_image) %>%
summarise(n=n())
# A tibble: 4 x 2
Tcell_density_score_image n
<fct> <int>
1 absent 50
2 low 26
3 med 44
4 high 46
cur_df <- data.frame(T_density = sce_prot$Tcell_density_score_image,
E_I_D = sce_prot$E_I_D)
table(cur_df)
E_I_D
T_density D E E/D I I/E
absent 36924 115107 18583 50857 30611
low 8541 54805 4971 25955 34393
med 0 77110 0 94479 61454
high 0 59707 0 142200 145653
sce_rna$infiltration <- NULL
sce_rna$T_frac_score_per_BlockID <- NULL
sce_rna$T_frac_score_per_ImageNumber <- NULL
sce_rna$T_frac_score_per_PatientID <- NULL
sce_rna$cyotoxic_density_image <- NULL
description_data <- data.frame(colData(sce_prot)) %>%
distinct(Description, .keep_all = TRUE)
col_rna <- data.frame(colData(sce_rna))
# left_join
col_rna <- left_join(col_rna, description_data[,c("Description", "Tcell_density_score_image", "cyotoxic_density_image")])
# add to sce (attention: cytotoxic density is calculated on protein data set!)
sce_rna$Tcell_density_score_image <- col_rna$Tcell_density_score_image
sce_rna$cyotoxic_density_image <- col_rna$density
saveRDS(sce_prot,file = "data/data_for_analysis/sce_protein.rds")
saveRDS(sce_rna,file = "data/data_for_analysis/sce_RNA.rds")
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04 LTS
Matrix products: default
BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.8.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=C
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] forcats_0.5.0 stringr_1.4.0
[3] dplyr_1.0.2 purrr_0.3.4
[5] readr_1.4.0 tidyr_1.1.2
[7] tibble_3.0.4 tidyverse_1.3.0
[9] pheatmap_1.0.12 ggridges_0.5.3
[11] cowplot_1.1.1 reshape2_1.4.4
[13] CATALYST_1.12.2 igraph_1.2.6
[15] viridis_0.5.1 viridisLite_0.3.0
[17] scater_1.16.2 ggplot2_3.3.3
[19] SingleCellExperiment_1.12.0 SummarizedExperiment_1.20.0
[21] Biobase_2.50.0 GenomicRanges_1.42.0
[23] GenomeInfoDb_1.26.2 IRanges_2.24.1
[25] S4Vectors_0.28.1 BiocGenerics_0.36.0
[27] MatrixGenerics_1.2.0 matrixStats_0.57.0
[29] LSD_4.1-0 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] backports_1.2.1 readxl_1.3.1
[3] circlize_0.4.12 drc_3.0-1
[5] plyr_1.8.6 ConsensusClusterPlus_1.52.0
[7] splines_4.0.3 flowCore_2.0.1
[9] BiocParallel_1.22.0 TH.data_1.0-10
[11] digest_0.6.27 htmltools_0.5.0
[13] fansi_0.4.1 magrittr_2.0.1
[15] CytoML_2.0.5 cluster_2.1.0
[17] openxlsx_4.2.3 ComplexHeatmap_2.4.3
[19] modelr_0.1.8 RcppParallel_5.0.2
[21] sandwich_3.0-0 flowWorkspace_4.0.6
[23] cytolib_2.0.3 jpeg_0.1-8.1
[25] colorspace_2.0-0 rvest_0.3.6
[27] ggrepel_0.9.0 haven_2.3.1
[29] xfun_0.20 crayon_1.3.4
[31] RCurl_1.98-1.2 jsonlite_1.7.2
[33] hexbin_1.28.2 graph_1.66.0
[35] survival_3.2-7 zoo_1.8-8
[37] glue_1.4.2 gtable_0.3.0
[39] nnls_1.4 zlibbioc_1.36.0
[41] XVector_0.30.0 GetoptLong_1.0.5
[43] DelayedArray_0.16.0 ggcyto_1.16.0
[45] car_3.0-10 BiocSingular_1.4.0
[47] Rgraphviz_2.32.0 shape_1.4.5
[49] abind_1.4-5 scales_1.1.1
[51] mvtnorm_1.1-1 DBI_1.1.0
[53] Rcpp_1.0.5 plotrix_3.7-8
[55] clue_0.3-58 foreign_0.8-81
[57] rsvd_1.0.3 FlowSOM_1.20.0
[59] tsne_0.1-3 httr_1.4.2
[61] RColorBrewer_1.1-2 ellipsis_0.3.1
[63] pkgconfig_2.0.3 XML_3.99-0.5
[65] dbplyr_2.0.0 utf8_1.1.4
[67] tidyselect_1.1.0 rlang_0.4.10
[69] later_1.1.0.1 munsell_0.5.0
[71] cellranger_1.1.0 tools_4.0.3
[73] cli_2.2.0 generics_0.1.0
[75] broom_0.7.3 evaluate_0.14
[77] yaml_2.2.1 knitr_1.30
[79] fs_1.5.0 zip_2.1.1
[81] RBGL_1.64.0 whisker_0.4
[83] xml2_1.3.2 compiler_4.0.3
[85] rstudioapi_0.13 beeswarm_0.2.3
[87] curl_4.3 png_0.1-7
[89] reprex_0.3.0 stringi_1.5.3
[91] lattice_0.20-41 Matrix_1.3-2
[93] vctrs_0.3.6 pillar_1.4.7
[95] lifecycle_0.2.0 GlobalOptions_0.1.2
[97] BiocNeighbors_1.6.0 data.table_1.13.6
[99] bitops_1.0-6 irlba_2.3.3
[101] httpuv_1.5.4 R6_2.5.0
[103] latticeExtra_0.6-29 promises_1.1.1
[105] gridExtra_2.3 RProtoBufLib_2.0.0
[107] rio_0.5.16 vipor_0.4.5
[109] codetools_0.2-18 assertthat_0.2.1
[111] MASS_7.3-53 gtools_3.8.2
[113] rprojroot_2.0.2 rjson_0.2.20
[115] withr_2.3.0 multcomp_1.4-15
[117] GenomeInfoDbData_1.2.4 hms_0.5.3
[119] ncdfFlow_2.34.0 grid_4.0.3
[121] rmarkdown_2.6 DelayedMatrixStats_1.10.1
[123] carData_3.0-4 Rtsne_0.15
[125] git2r_0.28.0 lubridate_1.7.9.2
[127] base64enc_0.1-3 ggbeeswarm_0.6.0