Last updated: 2021-04-14
Checks: 6 1
Knit directory: melanoma_publication_old_data/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200728)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 3203891. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rproj.user/
Ignored: ._.DS_Store
Ignored: analysis/._clinical metadata preparation.Rmd
Ignored: code/.DS_Store
Ignored: code/._.DS_Store
Ignored: data/.DS_Store
Ignored: data/._.DS_Store
Ignored: data/data_for_analysis/
Ignored: data/full_data/
Ignored: output/.DS_Store
Ignored: output/._.DS_Store
Ignored: output/._protein_neutrophil.png
Ignored: output/._rna_neutrophil.png
Ignored: output/PSOCKclusterOut/
Ignored: output/bcell_grouping.png
Ignored: output/dysfunction_correlation.pdf
Unstaged changes:
Modified: .gitignore
Modified: analysis/10_Dysfunction_Score.rmd
Modified: analysis/11_Bcell_Score.Rmd
Modified: analysis/Figure_1.rmd
Modified: analysis/Figure_2.rmd
Modified: analysis/Figure_4.rmd
Modified: analysis/Figure_5.rmd
Modified: analysis/Summary_Statistics.rmd
Modified: analysis/Supp-Figure_1.rmd
Modified: analysis/Supp-Figure_2.rmd
Modified: analysis/Supp-Figure_4.rmd
Modified: analysis/Supp-Figure_5.rmd
Modified: analysis/XX_hazard_ratio.rmd
Modified: code/celltype_classifier/Protein_celltype_classifier_cytomapper.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Supp-Figure_4.rmd
) and HTML (docs/Supp-Figure_4.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 3203891 | toobiwankenobi | 2021-02-19 | change celltype names |
html | 3203891 | toobiwankenobi | 2021-02-19 | change celltype names |
Rmd | ee1595d | toobiwankenobi | 2021-02-12 | clean repo and adapt files |
html | ee1595d | toobiwankenobi | 2021-02-12 | clean repo and adapt files |
html | 3f5af3f | toobiwankenobi | 2021-02-09 | add .html files |
Rmd | afa7957 | toobiwankenobi | 2021-02-08 | minor changes on figures and figure order |
Rmd | 20a1458 | toobiwankenobi | 2021-02-04 | adapt figure order |
Rmd | f9bb33a | toobiwankenobi | 2021-02-04 | new Figure 5 and minor changes in figure order |
Rmd | 9442cb9 | toobiwankenobi | 2020-12-22 | add all new files |
Rmd | 1af3353 | toobiwankenobi | 2020-10-16 | add stuff |
Rmd | a6b51cd | toobiwankenobi | 2020-10-14 | clean scripts, add new subfigures |
This script generates plots for Supplementary Figure 4.
First, we will load the libraries needed for this part of the analysis.
sapply(list.files("code/helper_functions", full.names = TRUE), source)
code/helper_functions/calculateSummary.R
value ?
visible FALSE
code/helper_functions/censor_dat.R
value ?
visible FALSE
code/helper_functions/detect_mRNA_expression.R
value ?
visible FALSE
code/helper_functions/DistanceToClusterCenter.R
value ?
visible FALSE
code/helper_functions/findMilieu.R code/helper_functions/findPatch.R
value ? ?
visible FALSE FALSE
code/helper_functions/getInfoFromString.R
value ?
visible FALSE
code/helper_functions/getSpotnumber.R
value ?
visible FALSE
code/helper_functions/plotCellCounts.R
value ?
visible FALSE
code/helper_functions/plotCellFractions.R
value ?
visible FALSE
code/helper_functions/plotDist.R
value ?
visible FALSE
code/helper_functions/scatter_function.R
value ?
visible FALSE
code/helper_functions/sceChecks.R
value ?
visible FALSE
code/helper_functions/validityChecks.R
value ?
visible FALSE
library(SingleCellExperiment)
library(reshape2)
library(tidyverse)
library(dplyr)
library(data.table)
library(ggplot2)
library(ComplexHeatmap)
library(rms)
library(ggrepel)
library(ggbeeswarm)
library(circlize)
library(ggpubr)
library(ggridges)
library(gridExtra)
library(rstatix)
sce_rna = readRDS(file = "data/data_for_analysis/sce_RNA.rds")
sce_prot = readRDS(file = "data/data_for_analysis/sce_protein.rds")
# add marker expression to cells
marker_expression <- data.frame(t(assay(sce_prot[rowData(sce_prot)$good_marker,], "asinh")))
marker_expression$cellID <- rownames(marker_expression)
dat <- data.frame(colData(sce_prot))[,c("cellID", "celltype_clustered")]
dat <- left_join(dat, marker_expression)
Joining, by = "cellID"
dat$cellID <- NULL
# aggregate the groups
dat_aggr <- dat %>%
group_by(celltype_clustered) %>%
summarise_all(funs(mean))
Warning: `funs()` is deprecated as of dplyr 0.8.0.
Please use a list of either functions or lambdas:
# Simple named list:
list(mean = mean, median = median)
# Auto named with `tibble::lst()`:
tibble::lst(mean, median)
# Using lambdas
list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
This warning is displayed once every 8 hours.
Call `lifecycle::last_warnings()` to see where this warning was generated.
# number of cells per group
dat_sum <- dat %>%
group_by(celltype_clustered) %>%
summarise(n=n())
`summarise()` ungrouping output (override with `.groups` argument)
dat_sum <- data.frame(t(dat_sum))
# scale and center expression
dat_aggr[,-c(1)] <- scale(dat_aggr[,-c(1)])
# create matrix
m <- as.matrix(t(dat_aggr[,-c(1)]))
colnames(m) <- dat_aggr$celltype_clustered
# top annotation with number of cells
# ha <- HeatmapAnnotation("Number of Cells" = anno_barplot(ifelse(as.numeric(dat_sum[2,])>25000, 25100, as.numeric(dat_sum[2,])),
# height = unit(2,"cm"),
# ylim = range(0,25000),
# gp = gpar(fill = ifelse(as.numeric(dat_sum[2,]) > 25000, "white", "black"),
# col = "white")),
# "Numbers" = anno_text(round(as.numeric(dat_sum[2,])),
# which = "column",
# rot = 90,
# just = "center",
# location = 0.5,
# gp = gpar(fontsize=8,col = ifelse(as.numeric(dat_sum[2,]) > 25000, "red", "black"))))
ha <- HeatmapAnnotation("Numbers" = anno_text(format(round(as.numeric(dat_sum[2,])), nsmall = 0, big.mark = "'"),
which = "column",
rot = 90,
just = "center",
location = 0.5,
gp = gpar(fontsize=10,col = "black", border = "black")))
# row_split for markers
rowData(sce_prot)$heatmap_relevance <- ""
rowData(sce_prot[rowData(sce_prot)$good_marker,])$heatmap_relevance <- "lineage"
rowData(sce_prot[grepl("PDL1|CD11b|CD206|PARP|CXCR2|CD11c|pS6|GrzB|IDO1|CD45RA|H3K27me3|TCF7|CD45RO|PD1|pERK|ICOS|Ki67", rownames(sce_prot)),])$heatmap_relevance <- "other"
# plot heatmap
h <- Heatmap(m, name = "Scaled Expression",
row_split = rowData(sce_prot[rowData(sce_prot)$good_marker,])$heatmap_relevance,
cluster_columns = FALSE,
show_column_dend = FALSE,
column_names_gp = gpar(fontsize=12),
column_names_rot = 90,
column_names_centered = FALSE,
show_column_names = TRUE,
top_annotation = ha,
col = colorRamp2(c(-3, 0, 3), c("blue", "white", "red")),
heatmap_legend_param = list(at = c(-3:3),legend_width = unit(6,"cm"), direction="horizontal",title_position = "topcenter"),
column_names_side = "top",
height = unit(20, "cm"),
width = unit(20,"cm"))
draw(h, heatmap_legend_side = "bottom")
tumor_marker_protein <- c("pS6", "bCatenin", "H3K27me3", "HLADR", "Sox9", "pERK", "p75", "PDL1", "Ki67", "SOX10", "PARP")
tumor_marker_rna <- c("B2M")
# rna data
dat_rna <- data.frame(t(assay(sce_rna[tumor_marker_rna, sce_rna$celltype == "Tumor"], "asinh")))
dat_rna$cellID <- rownames(dat_rna)
dat_rna <- left_join(dat_rna, data.frame(colData(sce_rna))[,c("cellID", "dysfunction_score", "Description", "MM_location")])
Joining, by = "cellID"
# filter
dat_rna <- dat_rna %>%
filter(dysfunction_score %in% c("High Dysfunction", "Low Dysfunction"))
# mean per image
dat_rna <- dat_rna %>%
select(-cellID) %>%
group_by(Description, dysfunction_score) %>%
summarise_if(is.numeric, mean, na.rm = TRUE)
# melt
dat_rna <- dat_rna %>%
reshape2::melt(id.vars = c("Description", "dysfunction_score"), variable.name = "channel", value.name = "asinh")
# protein data
dat_prot <- data.frame(t(assay(sce_prot[tumor_marker_protein,, sce_prot$celltype == "Tumor"], "asinh")))
dat_prot$cellID <- rownames(dat_prot)
dat_prot <- left_join(dat_prot, data.frame(colData(sce_prot))[,c("cellID", "dysfunction_score", "Description", "MM_location")])
Joining, by = "cellID"
# filter
dat_prot <- dat_prot %>%
filter(dysfunction_score %in% c("High Dysfunction", "Low Dysfunction"))
# mean per image
dat_prot <- dat_prot %>%
select(-cellID) %>%
group_by(Description, dysfunction_score) %>%
summarise_if(is.numeric, mean, na.rm = TRUE)
# melt
dat_prot <- dat_prot %>%
reshape2::melt(id.vars = c("Description", "dysfunction_score"), variable.name = "channel", value.name = "asinh")
# join both data sets
comb <- rbind(dat_prot, dat_rna)
stat.test <- comb %>%
group_by(channel) %>%
wilcox_test(data = ., asinh ~ dysfunction_score) %>%
adjust_pvalue(method = "BH") %>%
add_significance("p.adj",cutpoints = c(0, 1e-04, 0.001, 0.01, 0.1, 1)) %>%
add_xy_position(x = "celltype", dodge = 0.8)
# plot
p <- ggplot(comb, aes(x=dysfunction_score, y=asinh)) +
geom_boxplot(alpha=0.2, lwd=1, aes(fill=dysfunction_score)) +
geom_quasirandom(alpha=0.6, size=2, aes(col=dysfunction_score)) +
scale_color_discrete(guide = FALSE) +
theme_bw() +
theme(text = element_text(size=18),
axis.text.x = element_blank(),
axis.ticks = element_blank(),
axis.title.x = element_blank()) +
facet_wrap(~channel, scales = "free", ncol = 3) +
stat_pvalue_manual(stat.test, label = "p.adj.signif", size = 7) +
xlab("") +
ylab("Mean Count per Image (asinh)") +
scale_y_continuous(expand = expansion(mult = c(0.05, 0.2))) +
guides(fill=guide_legend(title="Dysfunction Score", override.aes = c(lwd=0.5, alpha=1)))
leg <- get_legend(p)
grid.arrange(p + theme(legend.position = "none"))
grid.arrange(leg)
y <- c(rep(1:10,16),rep(11,7))
# add the group information to the sce object
sce_rna$groups <- y[colData(sce_rna)$ImageNumber]
# now we use the function written by Nils
plotDist(sce_rna["S100", sce_rna$celltype == "Tumor"], plot_type = "ridges",
colour_by = "groups", split_by = "rows",
exprs_values = "asinh") +
geom_vline(xintercept = 3)
# manual gating
sce_rna$S100 <- ifelse(assay(sce_rna["S100",], "asinh") > 3, "positive", "negative")
# fraction of S100 tumor cells per image
s100 <- data.frame(colData(sce_rna)) %>%
filter(celltype == "Tumor") %>%
group_by(ImageNumber, dysfunction_score, S100) %>%
summarise(n=n()) %>%
mutate(fraction = n/sum(n)) %>%
filter(is.na(dysfunction_score) == F & S100 == "positive")
`summarise()` regrouping output by 'ImageNumber', 'dysfunction_score' (override with `.groups` argument)
s100$dysfunction_score <- factor(s100$dysfunction_score)
stat.test <- s100 %>%
group_by(S100) %>%
wilcox_test(data = ., fraction ~ dysfunction_score) %>%
adjust_pvalue(method = "BH") %>%
add_significance("p.adj",cutpoints = c(0, 1e-04, 0.001, 0.01, 0.1, 1)) %>%
add_x_position(dodge = 0.8)
ggplot(s100, aes(x=dysfunction_score, y=fraction)) +
geom_boxplot(alpha=0.2, lwd=1.5, aes(fill = dysfunction_score)) +
geom_quasirandom(aes(col=dysfunction_score), size=3) +
stat_pvalue_manual(stat.test, label = "p.adj.signif", size = 7, y.position = 1) +
xlab("") +
ylab("Fraction of S100+ Tumor Cells") +
theme_bw() +
theme(text = element_text(size=16),
legend.position = "none") +
ylim(0,1.05)
cur_dt <- data.frame(colData(sce_rna))
clust <- data.frame()
## wide table for communities
for(i in names(cur_dt[,grepl(glob2rx("*pure"),names(cur_dt))])) {
cur_dt_sub <- cur_dt[cur_dt[,i] > 0,]
cur_dt_sub <- cbind(cur_dt_sub[,c(i, "Description")],
cur_dt_sub[,grepl(glob2rx("C*L*"),names(cur_dt_sub))])
# count numbers of chemokine-expressing cells per patch
cur_dt_sub <- cur_dt_sub %>%
group_by(Description) %>%
group_by_at(i, .add = TRUE) %>%
summarise_each(funs(sum))
cur_dt_sub$cluster_type <- i
cur_dt_sub <- cur_dt_sub[,-2]
clust <- rbind(clust, cur_dt_sub)
}
Warning: `summarise_each_()` is deprecated as of dplyr 0.7.0.
Please use `across()` instead.
This warning is displayed once every 8 hours.
Call `lifecycle::last_warnings()` to see where this warning was generated.
# remove pure clusters with low abundance (CCL22, CCL4, CCL8)
clust <- clust[!(clust$cluster_type %in% c("ccl22_pure", "ccl4_pure", "ccl8_pure")),]
# number of patches by image
clust <- clust %>%
group_by(Description, cluster_type) %>%
summarise(n=n()) %>%
reshape2::dcast(Description ~ cluster_type, value.var = "n", fill = 0)
`summarise()` regrouping output by 'Description' (override with `.groups` argument)
# add images with 0 clusters and add more information
to_add <- data.frame(colData(sce_rna)) %>%
distinct(Description, .keep_all = TRUE)
clust <- left_join(to_add[,c("Description", "dysfunction_score", "Tcell_density_score_image")], clust)
Joining, by = "Description"
# repalce NA with 0
cur_dt_wide <- clust %>%
mutate_if(is.numeric,coalesce,0)
# order according to image infiltration score
cur_dt_wide <- cur_dt_wide[order(cur_dt_wide$dysfunction_score),]
# chemokines per image
total_chemokines <- cur_dt %>%
group_by(Description, chemokine) %>%
summarise(n=n()) %>%
group_by(Description) %>%
mutate(fraction = n/sum(n)) %>%
filter(chemokine == TRUE)
`summarise()` regrouping output by 'Description' (override with `.groups` argument)
# is a expressing cell part of a milieu?
cur_dt$in_community <- ifelse(rowSums(cur_dt[,grepl(glob2rx("*pure"),names(cur_dt))]) > 0 & cur_dt$chemokine == TRUE, TRUE, FALSE)
# fraction in_community 1vs.0 per image
fractions <- cur_dt %>%
filter(chemokine == TRUE) %>%
group_by(Description, in_community) %>%
summarise(n=n()) %>%
group_by(Description) %>%
mutate(fraction = n / sum(n)) %>%
reshape2::dcast(Description ~ in_community, value.var = "fraction", fill = 0)
`summarise()` regrouping output by 'Description' (override with `.groups` argument)
names(fractions)[2:3] <- c("single", "community")
fractions[, 2:3][is.na(fractions[, 2:3])] <- 0
# chemokines per image (regardless of combination, multi-producing cells count more than once)
chemokines <- cbind(cur_dt[,c("Description", "in_community")], cur_dt[,grepl(glob2rx("C*L*"),names(cur_dt))])
# long table - chemokine / in_community info and count (n) per image
chemokines <- reshape2::melt(chemokines, id.vars = c("Description", "in_community"), variable.name = "chemokine", value.name = "n") %>%
group_by(Description, in_community, chemokine) %>%
summarise(total = sum(n)) %>%
reshape2::dcast(Description + chemokine ~ in_community, value.var = "total") %>%
replace(is.na(.), 0) %>%
reshape2::melt(id.vars = c("Description", "chemokine"), variable.name = "in_community", value.name = "n")
`summarise()` regrouping output by 'Description', 'in_community' (override with `.groups` argument)
# combine all information
cur_dt_wide <- left_join(cur_dt_wide, fractions)
Joining, by = "Description"
cur_dt_wide <- left_join(cur_dt_wide, total_chemokines)
Joining, by = "Description"
# remove controls and only keep images with dysfunction score
cur_dt_wide_sub <- cur_dt_wide[cur_dt_wide$Description %in% unique(sce_rna[,sce_rna$Location != "CTRL"]$Description),]
cur_dt_wide_sub <- cur_dt_wide[cur_dt_wide$dysfunction_score %in% c("High Dysfunction", "Low Dysfunction"),]
# define subgroups to split heatmap
subgroup = cur_dt_wide_sub[,"dysfunction_score"]
# heatmap annotation
row_ha2 = rowAnnotation("Production Mode of\nChemokine-Expressing Cells" =
anno_barplot(cur_dt_wide_sub[,c("single", "community")],
gp = gpar(fill = c("#F8766D", "#00BFC4")), width = unit(1.5, "cm")),
"Fraction of Chemokine- \n Expressing Cells" =
anno_barplot(cur_dt_wide_sub[,"fraction"],
width = unit(1.5, "cm")),
annotation_name_rot = 90, gap = unit(3, "mm"),
col = list(Relapse = c("no relapse" = "orange", "relapse" = "black", "untreated/lost" = "grey")))
# function for the zoom-in plot
panel_fun_chemokines = function(index, nm) {
image_number = cur_dt_wide_sub[index,"Description"]
if(length(unique(image_number)) > 9){
df = chemokines[chemokines$Description %in% image_number, ]
g = ggplot(df, aes(x = factor(chemokine), y = log10(n+1), fill=in_community)) +
geom_boxplot() +
xlab("Chemokine") +
ylab("# Cells [log10(n+1)]") +
theme_bw() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1),
legend.position = "none") +
ylim(0,3)
g = grid.grabExpr(print(g))
pushViewport(viewport())
grid.rect()
grid.draw(g)
popViewport()
}
}
# create zoom-in
zoom = anno_zoom(align_to = subgroup,
which = "row", panel_fun = panel_fun_chemokines,
size = unit(6, "cm"),
gap = unit(1, "cm"),
width = unit(10, "cm"))
# heatmap
m <- as.matrix(cur_dt_wide_sub[,grepl(glob2rx("*pure"),names(cur_dt_wide_sub))])
col_names <- c()
for(i in (1:length(colnames(m)))){col_names <- c(col_names,(toupper(str_split(colnames(m), "_")[[i]][1])))}
colnames(m) <- col_names
col_fun = viridis::inferno(max(m)+1)
ht1 = Heatmap(m,
col = col_fun,
left_annotation = row_ha2,
right_annotation = rowAnnotation(foo = zoom, gap = unit(3,"cm")),
row_split = subgroup,
row_title_side = "left",
border = T,
row_gap = unit(3, "mm"),
cluster_rows = T,
cluster_columns = F,
cluster_row_slices = F,
show_heatmap_legend = F,
show_row_dend = F,
name = "Detected Patches",
column_title = "Chemokine Milieu",
column_title_side = "bottom",
column_title_gp = gpar(fontsize=20),
show_row_names = F,
width = unit(15,"cm"))
draw(ht1)
Warning: Removed 1 rows containing non-finite values (stat_boxplot).
# manual legends
lgd1 = Legend(labels = c("Stand-alone", "Milieu"), title = "Production Mode", legend_gp = gpar(fill = c("#F8766D", "#00BFC4")))
lgd2 = Legend(col_fun = colorRamp2(c(0:max(m)), colors = col_fun),
at = seq(0, max(m)+2, by=5), title = "Detected Milieus", direction = "horizontal", grid_width = unit(2, "cm"))
# Draw Legend
draw(packLegend(lgd2, lgd1, direction = "horizontal"))
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04 LTS
Matrix products: default
BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.8.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=C
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] grid parallel stats4 stats graphics grDevices utils
[8] datasets methods base
other attached packages:
[1] rstatix_0.6.0 gridExtra_2.3
[3] ggridges_0.5.3 ggpubr_0.4.0
[5] circlize_0.4.12 ggbeeswarm_0.6.0
[7] ggrepel_0.9.0 rms_6.1-0
[9] SparseM_1.78 Hmisc_4.4-2
[11] Formula_1.2-4 survival_3.2-7
[13] lattice_0.20-41 ComplexHeatmap_2.4.3
[15] data.table_1.13.6 forcats_0.5.0
[17] stringr_1.4.0 dplyr_1.0.2
[19] purrr_0.3.4 readr_1.4.0
[21] tidyr_1.1.2 tibble_3.0.4
[23] ggplot2_3.3.3 tidyverse_1.3.0
[25] reshape2_1.4.4 SingleCellExperiment_1.12.0
[27] SummarizedExperiment_1.20.0 Biobase_2.50.0
[29] GenomicRanges_1.42.0 GenomeInfoDb_1.26.2
[31] IRanges_2.24.1 S4Vectors_0.28.1
[33] BiocGenerics_0.36.0 MatrixGenerics_1.2.0
[35] matrixStats_0.57.0 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] readxl_1.3.1 backports_1.2.1 plyr_1.8.6
[4] splines_4.0.3 TH.data_1.0-10 digest_0.6.27
[7] htmltools_0.5.1.1 viridis_0.5.1 fansi_0.4.1
[10] magrittr_2.0.1 checkmate_2.0.0 cluster_2.1.0
[13] openxlsx_4.2.3 modelr_0.1.8 sandwich_3.0-0
[16] jpeg_0.1-8.1 colorspace_2.0-0 rvest_0.3.6
[19] haven_2.3.1 xfun_0.20 crayon_1.3.4
[22] RCurl_1.98-1.2 jsonlite_1.7.2 zoo_1.8-8
[25] glue_1.4.2 gtable_0.3.0 zlibbioc_1.36.0
[28] XVector_0.30.0 MatrixModels_0.4-1 GetoptLong_1.0.5
[31] DelayedArray_0.16.0 car_3.0-10 shape_1.4.5
[34] abind_1.4-5 scales_1.1.1 mvtnorm_1.1-1
[37] DBI_1.1.0 Rcpp_1.0.5 viridisLite_0.3.0
[40] htmlTable_2.1.0 clue_0.3-58 foreign_0.8-81
[43] htmlwidgets_1.5.3 httr_1.4.2 RColorBrewer_1.1-2
[46] ellipsis_0.3.1 farver_2.0.3 pkgconfig_2.0.3
[49] nnet_7.3-14 dbplyr_2.0.0 labeling_0.4.2
[52] tidyselect_1.1.0 rlang_0.4.10 later_1.1.0.1
[55] munsell_0.5.0 cellranger_1.1.0 tools_4.0.3
[58] cli_2.2.0 generics_0.1.0 broom_0.7.3
[61] evaluate_0.14 yaml_2.2.1 knitr_1.30
[64] fs_1.5.0 zip_2.1.1 nlme_3.1-151
[67] whisker_0.4 quantreg_5.82 xml2_1.3.2
[70] compiler_4.0.3 rstudioapi_0.13 beeswarm_0.2.3
[73] curl_4.3 png_0.1-7 ggsignif_0.6.0
[76] reprex_0.3.0 stringi_1.5.3 Matrix_1.3-2
[79] vctrs_0.3.6 pillar_1.4.7 lifecycle_0.2.0
[82] GlobalOptions_0.1.2 bitops_1.0-6 conquer_1.0.2
[85] httpuv_1.5.4 R6_2.5.0 latticeExtra_0.6-29
[88] promises_1.1.1 rio_0.5.16 vipor_0.4.5
[91] codetools_0.2-18 polspline_1.1.19 MASS_7.3-53
[94] assertthat_0.2.1 rprojroot_2.0.2 rjson_0.2.20
[97] withr_2.3.0 multcomp_1.4-15 GenomeInfoDbData_1.2.4
[100] hms_0.5.3 rpart_4.1-15 rmarkdown_2.6
[103] carData_3.0-4 git2r_0.28.0 lubridate_1.7.9.2
[106] base64enc_0.1-3