Last updated: 2023-03-04
Checks: 7 0
Knit directory: Hevesi_2023/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20230121)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version bfa7d1f. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: .cache/
Ignored: .config/
Ignored: .nv/
Ignored: .snakemake/
Ignored: cellbender/
Ignored: cellbender_latest.sif
Ignored: cellranger/
Ignored: data/Pr5P7_clusters.h5Seurat
Ignored: data/Pr5P7_clusters.h5ad
Ignored: data/THP7_clusters.h5Seurat
Ignored: data/THP7_clusters.h5ad
Ignored: fastq/
Ignored: mm10_optimized/
Ignored: souporcell/
Ignored: souporcell_latest.sif
Untracked files:
Untracked: CITATION
Untracked: LICENSE
Untracked: analysis/figure_2d-THP7.Rmd
Untracked: analysis/figure_2e-Pr5P7.Rmd
Untracked: analysis/methods.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/eda.Rmd
) and HTML
(docs/eda.html
) files. If you’ve configured a remote Git
repository (see ?wflow_git_remote
), click on the hyperlinks
in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | bfa7d1f | Evgenii O. Tretiakov | 2023-03-04 | workflowr::wflow_publish("analysis/eda.Rmd", all = TRUE, update = TRUE, |
html | 3b19c24 | Evgenii O. Tretiakov | 2023-02-02 | Build site. |
Rmd | ddf7471 | Evgenii O. Tretiakov | 2023-02-02 | workflowr::wflow_publish("analysis/eda.Rmd", all = TRUE, update = TRUE, |
Rmd | b124415 | Evgenii O. Tretiakov | 2023-01-26 | improve qc |
Rmd | 321af0c | Evgenii O. Tretiakov | 2023-01-25 | fix original labels and adjust visualisations |
html | c82f5c0 | Evgenii O. Tretiakov | 2023-01-25 | Build site. |
Rmd | 2d7093f | Evgenii O. Tretiakov | 2023-01-24 | workflowr::wflow_publish("analysis/eda.Rmd", all = TRUE, verbose = TRUE) |
Rmd | 45efe1a | Evgenii O. Tretiakov | 2023-01-24 | workflowr::wflow_publish("analysis/eda.Rmd", all = TRUE, verbose = TRUE) |
Rmd | 52ce403 | Evgenii O. Tretiakov | 2023-01-24 | workflowr::wflow_publish("analysis/eda.Rmd", all = TRUE, verbose = TRUE) |
Since it was derived from the same two pooled mice we might try to merge them together.
souporcell_THP7 <-
read_tsv(here("souporcell/THP7", "clusters.tsv")) %>%
mutate(origin = "THP7",
cell_name = str_c("THP7_", barcode))
souporcell_Pr5P7 <-
read_tsv(here("souporcell/Pr5P7", "clusters.tsv")) %>%
mutate(origin = "Pr5P7",
cell_name = str_c("Pr5P7_", barcode))
souporcell <-
bind_rows(
souporcell_THP7,
souporcell_Pr5P7)
souporcell %>%
janitor::tabyl(status, assignment, origin)
$Pr5P7
status 0 0/1 1 1/0
singlet 294 0 321 0
unassigned 37 9 65 5
$THP7
status 0 0/1 1 1/0
singlet 492 0 318 0
unassigned 70 5 29 9
cell_bender_merged <-
Read_CellBender_h5_Multi_Directory(
base_path = here("cellbender"),
custom_name = "_output_filtered.h5",
sample_names = sort(c("THP7", "Pr5P7")), # must be sorted as the function internally doesn't index output of list.dir so can't reorder or subset
merge = TRUE)
cell_ranger_merged <-
Read10X_h5_Multi_Directory(
base_path = here("cellranger"),
default_10X_path = TRUE,
h5_filename = "filtered_feature_bc_matrix.h5",
merge = TRUE,
sample_names = sort(c("THP7", "Pr5P7")), # must be sorted as the function internally doesn't index output of list.dir so can't reorder or subset
parallel = TRUE,
num_cores = 16)
combined.srt <-
Create_CellBender_Merged_Seurat(
raw_cell_bender_matrix = cell_bender_merged,
raw_counts_matrix = cell_ranger_merged,
raw_assay_name = "RAW")
After running troublet (genotyping-based detection of doublets), it seems that we don’t have much of doublets.
orig.ident | nCount_RNA | nFeature_RNA | nCount_RAW | nFeature_RAW | nFeature_Diff | nCount_Diff | |
---|---|---|---|---|---|---|---|
Pr5P7_AAACCCAAGCTGACAG-1 | Pr5P7 | 5526 | 2614 | 5542 | 2615 | 1 | 16 |
Pr5P7_AAACCCAGTCTTGTCC-1 | Pr5P7 | 6876 | 2954 | 6898 | 2954 | 0 | 22 |
Pr5P7_AAACGAAGTGTTCCTC-1 | Pr5P7 | 12076 | 4603 | 12110 | 4604 | 1 | 34 |
Pr5P7_AAACGCTTCCCTCGAT-1 | Pr5P7 | 10009 | 3885 | 10046 | 3890 | 5 | 37 |
Pr5P7_AAAGGATGTTGCATGT-1 | Pr5P7 | 3277 | 1840 | 3283 | 1840 | 0 | 6 |
orig.ident | Median_nCount_RNA | Median_nFeature_RNA | Median_nCount_Diff | Median_nFeature_Diff |
---|---|---|---|---|
Pr5P7 | 5142 | 2481 | 27 | 3 |
THP7 | 8434 | 3476 | 89 | 14 |
Totals (All Cells) | 6489 | 2902 | 50 | 9 |
Raw_Counts | CellBender_Counts | Count_Diff | Pct_Diff | |
---|---|---|---|---|
1700054A03Rik | 357 | 134 | 223 | 62.46499 |
Mt2 | 148 | 73 | 75 | 50.67568 |
Gm50306 | 28 | 14 | 14 | 50.00000 |
Hist2h2bb | 9 | 5 | 4 | 44.44444 |
Ly6a | 12 | 7 | 5 | 41.66667 |
In addition to returning the data.frame it can be useful to visually examine the changes/trends after running CellBender.
Version | Author | Date |
---|---|---|
c82f5c0 | Evgenii O. Tretiakov | 2023-01-25 |
sex_genes <-
str_to_title(c('EHD2', 'ESPL1', 'JARID1D', 'PNPLA4',
'RPS4Y1', 'XIST','tsix', 'Eif2s3y',
'Ddx3y', 'Uty', 'Kdm5d')) %>% .[. %in% rownames(combined.srt)]
stress_genes <-
str_to_title(c('Rpl26','Gstp1','Rpl35a','Erh',
'Slc25a5','Pgk1','Eno1',
'Tubb2a','Emc4','Scg5')) %>% .[. %in% rownames(combined.srt)]
combined.srt <-
Store_Palette_Seurat(
seurat_object = combined.srt,
palette = rev(brewer.pal(n = 11, name = "RdYlGn")),
palette_name = "mdat_Colour_Pal")
combined.srt <-
Store_Palette_Seurat(
seurat_object = combined.srt,
palette = rev(brewer.pal(n = 11, name = "Spectral")),
palette_name = "expr_Colour_Pal")
low.cutoff.gene <- 500
high.cutoff.gene <- NULL
high.cutoff.gene <- Inf
low.cutoff.umis <- NULL
low.cutoff.umis <- -Inf
high.cutoff.umis <- 45000
high.cutoff.pc.mt <- 1
high.cutoff.pc.ribo <- 1
high.cutoff.pc.hb <- 0.5
high.cutoff.logprob.dupl <- NULL
high.cutoff.complexity <- 0.8
combined.srt <-
Add_Mito_Ribo_Seurat(combined.srt, species = "mouse")
combined.srt[["percent_hb"]] <- PercentageFeatureSet(combined.srt, pattern = "^Hb[^(p)]")
combined.srt <-
Add_Cell_Complexity_Seurat(combined.srt)
# Visualize QC metrics as a violin plot
p1 <-
QC_Plots_Complexity(
combined.srt,
high_cutoff = high.cutoff.complexity,
color_seed = reseed)
p2 <-
QC_Plots_Genes(
combined.srt,
low_cutoff = low.cutoff.gene,
high_cutoff = high.cutoff.gene,
plot_title = "Genes per Nucleus",
color_seed = reseed,
ggplot_default_colors = T
)
p3 <-
QC_Plots_UMIs(
combined.srt,
low_cutoff = low.cutoff.umis,
high_cutoff = high.cutoff.umis,
plot_title = "UMIs per Nucleus",
color_seed = reseed,
ggplot_default_colors = T
)
p4 <-
QC_Plots_Mito(
combined.srt,
high_cutoff = high.cutoff.pc.mt,
plot_title = "Mito genes % per Nucleus",
color_seed = reseed,
ggplot_default_colors = T
)
p5 <-
QC_Plots_Feature(
combined.srt,
feature = "percent_ribo",
high_cutoff = high.cutoff.pc.ribo,
y_axis_label = "% Ribosomal Genes Counts",
plot_title = "Ribo genes % per Nucleus",
color_seed = reseed,
ggplot_default_colors = T
)
p6 <-
QC_Plots_Feature(
combined.srt,
feature = "percent_hb",
high_cutoff = high.cutoff.pc.hb,
y_axis_label = "% Hemoglobin Genes Counts",
plot_title = "Hemoglobin genes % per Nucleus",
color_seed = reseed,
ggplot_default_colors = T
)
wrap_plots(p1, p2, p3, p4, p5, p6, ncol = 3)
plot1 <- QC_Plot_GenevsFeature(seurat_object = combined.srt, feature1 = "percent_mito", low_cutoff_gene = low.cutoff.gene, high_cutoff_gene = high.cutoff.gene, high_cutoff_feature = high.cutoff.pc.mt, color_seed = reseed, ggplot_default_colors = T, pt.size = 4, shuffle_seed = reseed) & scale_y_log10()
plot2 <- QC_Plot_UMIvsGene(seurat_object = combined.srt, low_cutoff_gene = low.cutoff.gene, high_cutoff_gene = high.cutoff.gene, low_cutoff_UMI = low.cutoff.umis, high_cutoff_UMI = high.cutoff.umis, color_seed = reseed, ggplot_default_colors = T, pt.size = 4, shuffle_seed = reseed) & scale_x_log10() & scale_y_log10()
plot3 <- QC_Plot_GenevsFeature(seurat_object = combined.srt, feature1 = "percent_ribo", low_cutoff_gene = low.cutoff.gene, high_cutoff_gene = high.cutoff.gene, high_cutoff_feature = high.cutoff.pc.ribo, color_seed = reseed, ggplot_default_colors = T, pt.size = 4, shuffle_seed = reseed) & scale_y_log10()
plot4 <- FeatureScatter(combined.srt, feature1 = "percent_ribo", feature2 = "percent_mito", shuffle = T, pt.size = 4, seed = reseed)
(plot1 + plot2) / (plot3 + plot4)
QC_Plot_UMIvsGene(seurat_object = combined.srt,
meta_gradient_name = "percent_mito",
low_cutoff_gene = low.cutoff.gene,
high_cutoff_gene = high.cutoff.gene,
high_cutoff_UMI = high.cutoff.umis,
meta_gradient_low_cutoff = high.cutoff.pc.mt,
meta_gradient_color = combined.srt@misc$mdat_Colour_Pal,
combination = TRUE,
color_seed = reseed,
ggplot_default_colors = TRUE,
pt.size = 4,
shuffle_seed = reseed) &
scale_x_log10() & scale_y_log10()
Version | Author | Date |
---|---|---|
3b19c24 | Evgenii O. Tretiakov | 2023-02-02 |
Version | Author | Date |
---|---|---|
3b19c24 | Evgenii O. Tretiakov | 2023-02-02 |
combined.srt$QC <-
ifelse(
combined.srt@meta.data$log10GenesPerUMI < high.cutoff.complexity &
combined.srt@meta.data$QC == 'Pass',
'Low_Complexity',
combined.srt@meta.data$QC
)
combined.srt$QC <-
ifelse(
combined.srt@meta.data$log10GenesPerUMI < high.cutoff.complexity &
combined.srt@meta.data$QC != 'Pass' &
combined.srt@meta.data$QC != 'Low_Complexity',
paste('Low_Complexity', combined.srt@meta.data$QC, sep = ','),
combined.srt@meta.data$QC
)
combined.srt$QC <-
ifelse(
combined.srt@meta.data$nFeature_RNA < low.cutoff.gene &
combined.srt@meta.data$QC == 'Pass',
'Low_nFeature',
combined.srt@meta.data$QC
)
combined.srt$QC <-
ifelse(
combined.srt@meta.data$nFeature_RNA < low.cutoff.gene &
combined.srt@meta.data$QC != 'Pass' &
combined.srt@meta.data$QC != 'Low_nFeature',
paste('Low_nFeature', combined.srt@meta.data$QC, sep = ','),
combined.srt@meta.data$QC
)
combined.srt$QC <-
ifelse(
combined.srt@meta.data$percent_mito > high.cutoff.pc.mt &
combined.srt@meta.data$QC == 'Pass',
'High_MT',
combined.srt@meta.data$QC
)
combined.srt$QC <-
ifelse(
combined.srt@meta.data$percent_mito > high.cutoff.pc.mt &
combined.srt@meta.data$QC != 'Pass' &
combined.srt@meta.data$QC != 'High_MT',
paste('High_MT', combined.srt@meta.data$QC, sep = ','),
combined.srt@meta.data$QC
)
combined.srt$QC <-
ifelse(
combined.srt@meta.data$nCount_RNA > high.cutoff.umis &
combined.srt@meta.data$QC == 'Pass',
'High_UMIs',
combined.srt@meta.data$QC
)
combined.srt$QC <-
ifelse(
combined.srt@meta.data$nCount_RNA > high.cutoff.umis &
combined.srt@meta.data$QC != 'Pass' &
combined.srt@meta.data$QC != 'High_UMIs',
paste('High_UMIs', combined.srt@meta.data$QC, sep = ','),
combined.srt@meta.data$QC
)
combined.srt$QC <-
ifelse(
combined.srt@meta.data$percent_ribo > high.cutoff.pc.ribo &
combined.srt@meta.data$QC == 'Pass',
'High_Ribo',
combined.srt@meta.data$QC
)
combined.srt$QC <-
ifelse(
combined.srt@meta.data$percent_ribo > high.cutoff.pc.ribo &
combined.srt@meta.data$QC != 'Pass' &
combined.srt@meta.data$QC != 'High_Ribo',
paste('High_Ribo', combined.srt@meta.data$QC, sep = ','),
combined.srt@meta.data$QC
)
combined.srt$QC <-
ifelse(
combined.srt@meta.data$percent_hb > high.cutoff.pc.hb &
combined.srt@meta.data$QC == 'Pass',
'High_Hgb',
combined.srt@meta.data$QC
)
combined.srt$QC <-
ifelse(
combined.srt@meta.data$percent_hb > high.cutoff.pc.hb &
combined.srt@meta.data$QC != 'Pass' &
combined.srt@meta.data$QC != 'High_Hgb',
paste('High_Hgb', combined.srt@meta.data$QC, sep = ','),
combined.srt@meta.data$QC
)
table(combined.srt$QC)
High_Hgb
4
High_Hgb,High_Ribo
1
High_MT
15
High_MT,Low_nFeature
4
High_MT,Low_nFeature,Low_Complexity
1
High_Ribo
61
High_Ribo,High_MT
33
High_Ribo,High_MT,Low_nFeature
13
High_Ribo,High_MT,Low_nFeature,Low_Complexity
1
High_UMIs
35
Low_nFeature
3
Pass
1316
# Visualize QC metrics as a violin plot again after subset
combined.subset.srt <- combined.srt
combined.subset.srt <- subset(combined.subset.srt, subset = QC == "Pass")
p1 <-
QC_Plots_Complexity(
seurat_object = combined.subset.srt,
color_seed = reseed,
ggplot_default_colors = T)
p2 <-
QC_Plots_Genes(
seurat_object = combined.subset.srt,
low_cutoff = low.cutoff.gene,
high_cutoff = high.cutoff.gene,
plot_title = "Genes per Nucleus",
color_seed = reseed,
ggplot_default_colors = T
)
p3 <-
QC_Plots_UMIs(
seurat_object = combined.subset.srt,
low_cutoff = low.cutoff.umis,
high_cutoff = high.cutoff.umis,
plot_title = "UMIs per Nucleus",
color_seed = reseed,
ggplot_default_colors = T
)
p4 <-
QC_Plots_Mito(
seurat_object = combined.subset.srt,
high_cutoff = high.cutoff.pc.mt,
plot_title = "Mito genes % per Nucleus",
color_seed = reseed,
ggplot_default_colors = T
)
p5 <-
QC_Plots_Feature(
seurat_object = combined.subset.srt,
feature = "percent_ribo",
high_cutoff = high.cutoff.pc.ribo,
y_axis_label = "% Ribosomal Genes Counts",
plot_title = "Ribo genes % per Nucleus",
color_seed = reseed,
ggplot_default_colors = T
)
p6 <-
QC_Plots_Feature(
seurat_object = combined.subset.srt,
feature = "percent_hb",
high_cutoff = high.cutoff.pc.hb,
y_axis_label = "% Hemoglobin Genes Counts",
plot_title = "Hemoglobin genes % per Nucleus",
color_seed = reseed,
ggplot_default_colors = T
)
wrap_plots(p1, p2, p3, p4, p5, p6, ncol = 3)
Version | Author | Date |
---|---|---|
3b19c24 | Evgenii O. Tretiakov | 2023-02-02 |
combined.srt <- NormalizeData(combined.srt)
combined.srt <-
FindVariableFeatures(
combined.srt,
selection.method = "vst",
nfeatures = 3000)
top100 <- head(VariableFeatures(combined.srt), 100)
plot5 <- VariableFeaturePlot(combined.srt)
LabelPoints(plot = plot5, points = top100, repel = TRUE, xnudge = 0, ynudge = 0)
Version | Author | Date |
---|---|---|
3b19c24 | Evgenii O. Tretiakov | 2023-02-02 |
all.genes <- rownames(combined.srt)
hvg <- VariableFeatures(combined.srt)
var_regex <- '^Hla-|^Ig[hjkl]|^Rna|^mt-|^Rp[sl]|^Hb[^(p)]|^Gm'
hvg <- hvg[str_detect(pattern = var_regex, string = hvg, negate = T)]
combined.srt[["var_regex"]] <-
PercentageFeatureSet(combined.srt, pattern = var_regex)
combined.srt <- ScaleData(combined.srt,
features = all.genes,
vars.to.regress = c("log10GenesPerUMI"))
npcs <- 30
combined.srt <- RunPCA(combined.srt,
features = hvg,
npcs = npcs,
seed.use = reseed,
verbose = TRUE)
VizDimLoadings(combined.srt, dims = 1:9, reduction = "pca") &
theme(axis.text = element_text(size = 5),
axis.title = element_text(size = 8, face = "bold"))
Version | Author | Date |
---|---|---|
3b19c24 | Evgenii O. Tretiakov | 2023-02-02 |
DimHeatmap(combined.srt, dims = 1:9, nfeatures = 20, cells = 500, balanced = T)
Version | Author | Date |
---|---|---|
3b19c24 | Evgenii O. Tretiakov | 2023-02-02 |
DimPlot_scCustom(combined.srt, reduction = "pca", color_seed = reseed, ggplot_default_colors = T, pt.size = 3)
Version | Author | Date |
---|---|---|
3b19c24 | Evgenii O. Tretiakov | 2023-02-02 |
ElbowPlot(combined.srt)
Version | Author | Date |
---|---|---|
3b19c24 | Evgenii O. Tretiakov | 2023-02-02 |
combined.srt <-
JackStraw(
object = combined.srt,
assay = "RNA",
reduction = "pca",
dims = npcs,
num.replicate = 100,
prop.freq = 0.02,
maxit = 1000)
combined.srt <-
ScoreJackStraw(combined.srt,
dims = seq_along(combined.srt[["pca"]]@stdev))
JackStrawPlot(combined.srt, dims = seq_along(combined.srt[["pca"]]@stdev))
Version | Author | Date |
---|---|---|
3b19c24 | Evgenii O. Tretiakov | 2023-02-02 |
test_pc <-
PCScore(object = combined.srt,
PCs = seq_along(combined.srt[["pca"]]@stdev),
score.thresh = 1e-05)
selected_pcs <-
seq_along(
combined.srt[["pca"]]@stdev
)[test_pc$Score <= 1e-03 &
combined.srt[["pca"]]@stdev > quantile(combined.srt[["pca"]]@stdev, .25)]
selected_pcs
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
combined.srt <-
combined.srt |>
FindNeighbors(
dims = selected_pcs,
k.param = 15,
annoy.metric = "euclidean",
n.trees = 100,
verbose = FALSE) |>
RunUMAP(
dims = selected_pcs,
reduction.name = "umap",
reduction.key = "UMAP_",
return.model = FALSE,
umap.method = "umap-learn",
densmap = TRUE,
dens.lambda = 1L,
dens.frac = 0.3,
n.epochs = 1000L,
n.neighbors = 15L,
min.dist = 0.01,
spread = 2L,
metric = "correlation",
init = "pca",
seed.use = reseed,
verbose = FALSE)
metadata <- combined.srt@meta.data
rownames(metadata) <- colnames(combined.srt)
ref.labels <- metadata$orig.ident
resolutions <-
modularity_event_sampling(
A = combined.srt@graphs$RNA_snn,
n.res = 20,
gamma.min = 0.1,
gamma.max = 3.000001
) # sample based on the similarity matrix
# clustering using Suerat
combined.srt <- combined.srt |>
FindClusters(algorithm = 4, method = "igraph",
resolution = resolutions, random.seed = reseed,
verbose = FALSE)
# initial cluster tree from Seurat flat clustering
plot_clustree(
labelmat = combined.srt@meta.data,
prefix = 'RNA_snn_res.',
ref.labels = ref.labels,
plot.ref = FALSE
)
Version | Author | Date |
---|---|---|
3b19c24 | Evgenii O. Tretiakov | 2023-02-02 |
out <- mrtree(
combined.srt,
prefix = 'RNA_snn_res.',
n.cores = n_cores,
consensus = FALSE,
sample.weighted = TRUE,
augment.path = FALSE,
verbose = FALSE
)
|
|======================================================================| 100%
|
|= | 2%
|
|== | 3%
|
|=== | 5%
|
|==== | 6%
|
|===== | 8%
|
|====== | 9%
|
|======== | 11%
|
|========= | 12%
|
|========== | 14%
|
|============ | 17%
|
|============= | 18%
|
|============== | 20%
|
|=============== | 22%
|
|================ | 23%
|
|================= | 25%
|
|================== | 26%
|
|=================== | 28%
|
|==================== | 29%
|
|====================== | 31%
|
|======================= | 32%
|
|======================== | 34%
|
|========================= | 35%
|
|========================== | 37%
|
|=========================== | 38%
|
|============================== | 43%
|
|=============================== | 45%
|
|================================ | 46%
|
|================================= | 48%
|
|================================== | 49%
|
|==================================== | 51%
|
|===================================== | 52%
|
|====================================== | 54%
|
|======================================== | 57%
|
|========================================= | 58%
|
|========================================== | 60%
|
|=========================================== | 62%
|
|============================================ | 63%
|
|============================================= | 65%
|
|============================================== | 66%
|
|================================================ | 69%
|
|================================================== | 71%
|
|==================================================== | 74%
|
|===================================================== | 75%
|
|====================================================== | 77%
|
|======================================================= | 78%
|
|======================================================== | 80%
|
|========================================================= | 82%
|
|========================================================== | 83%
|
|=========================================================== | 85%
|
|============================================================ | 86%
|
|============================================================= | 88%
|
|============================================================== | 89%
|
|================================================================ | 91%
|
|================================================================= | 92%
|
|================================================================== | 94%
|
|=================================================================== | 95%
|
|==================================================================== | 97%
|
|===================================================================== | 98%
|
|======================================================================| 100%
# if there are few partitions per k, within resolution consensus step can speed up the algorithm
# weight per sample is encoraged if the classes are imbalanced
plot_tree(
labelmat = out$labelmat.mrtree,
ref.labels = ref.labels,
plot.piechart = TRUE,
node.size = 0.2,
tip.label.dist = 10,
bottom.margin = 30
)
Version | Author | Date |
---|---|---|
3b19c24 | Evgenii O. Tretiakov | 2023-02-02 |
# Adjusted Multiresolution Rand Index (AMRI)
ks.flat <- apply(
out$labelmat.flat,
2,
FUN = function(x)
length(unique(x))
)
ks.mrtree <- apply(
out$labelmat.mrtree,
2,
FUN = function(x)
length(unique(x))
)
amri.flat <- sapply(1:ncol(out$labelmat.flat), function(i)
AMRI(out$labelmat.flat[, i], ref.labels)$amri)
amri.flat <- aggregate(amri.flat, by = list(k = ks.flat), FUN = mean)
amri.recon <- sapply(1:ncol(out$labelmat.mrtree), function(i)
AMRI(out$labelmat.mrtree[, i], ref.labels)$amri)
df <- rbind(
data.frame(
k = amri.flat$k,
amri = amri.flat$x,
method = 'Seurat flat'
),
data.frame(k = ks.mrtree, amri = amri.recon, method = 'MRtree')
)
ggplot2::ggplot(data = df, aes(x = k, y = amri, color = method)) + geom_line() + theme_bw()
Version | Author | Date |
---|---|---|
3b19c24 | Evgenii O. Tretiakov | 2023-02-02 |
stab.out <- stability_plot(out)
stab.out$plot
Version | Author | Date |
---|---|---|
3b19c24 | Evgenii O. Tretiakov | 2023-02-02 |
kable_material(
kable(
stab.out$df,
"html"),
bootstrap_options = c("bordered",
"condensed",
"responsive",
"striped"),
position = "left",
font_size = 14
)
resolution | ari |
---|---|
7 | 0.9462109 |
8 | 0.6936598 |
9 | 0.7479854 |
10 | 0.6381063 |
11 | 0.7536902 |
12 | 0.9974854 |
13 | 0.9835726 |
14 | 0.9910735 |
15 | 0.9792653 |
16 | 0.9539976 |
17 | 0.9031287 |
20 | 0.8603113 |
23 | 0.8735061 |
resK <- SelectResolution(stab.out$df)
resK
[1] 14
kable_material(
kable(
table(
out$labelmat.mrtree[, which.min(
abs(as.integer(
str_remove(dimnames(
out$labelmat.mrtree)[[2]], "K"
)
) - resK)
)]
),
"html"),
bootstrap_options = c("bordered",
"condensed",
"responsive",
"striped"),
position = "left",
font_size = 14
)
Var1 | Freq |
---|---|
1 | 217 |
2 | 194 |
3 | 157 |
4 | 144 |
5 | 136 |
6 | 120 |
7 | 109 |
8 | 90 |
9 | 82 |
10 | 78 |
11 | 74 |
12 | 34 |
13 | 30 |
14 | 22 |
combined.srt$k_tree <- out$labelmat.mrtree[, which.min(
abs(as.integer(
str_remove(dimnames(
out$labelmat.mrtree)[[2]], "K"
)
) - resK)
)] %>% as.numeric() %>% as.factor()
QC_Plots_Mito(
combined.srt,
high_cutoff = high.cutoff.pc.mt,
plot_title = "Mito genes % per Nucleus (overclustered)",
color_seed = reseed,
ggplot_default_colors = T
)
QC_Plots_Feature(
combined.srt,
feature = "percent_ribo",
high_cutoff = high.cutoff.pc.ribo,
y_axis_label = "% Ribosomal Genes Counts",
plot_title = "Ribo genes % per Nucleus (overclustered)",
color_seed = reseed,
ggplot_default_colors = T
)
p1 <- DimPlot_scCustom(combined.srt, label = T, repel = T, pt.size = 2) + ggtitle("Unsupervised overclustering") + NoLegend()
p2 <- DimPlot_scCustom(combined.srt, label = T, repel = T, group.by = "k_tree", pt.size = 2) + ggtitle("MRTree") + NoLegend()
p1 | p2
Version | Author | Date |
---|---|---|
3b19c24 | Evgenii O. Tretiakov | 2023-02-02 |
Idents(combined.srt) <- "k_tree"
FeaturePlot_scCustom(combined.srt, features = "percent_mito", colors_use = combined.srt@misc$mdat_Colour_Pal, na_cutoff = NA, pt.size = 4, order = TRUE, alpha_na_exp = 0.3, alpha_exp = 0.75) &
theme(plot.title = element_text(size = 16))
FeaturePlot_scCustom(combined.srt, features = "percent_mito", colors_use = combined.srt@misc$mdat_Colour_Pal, na_cutoff = 5, pt.size = 4, order = TRUE, alpha_na_exp = 0.3, alpha_exp = 0.75)
FeaturePlot_scCustom(combined.srt, features = "nFeature_RNA", colors_use = combined.srt@misc$mdat_Colour_Pal, pt.size = 4, order = TRUE, alpha_na_exp = 0.3, alpha_exp = 0.75) &
theme(plot.title = element_text(size = 16))
Version | Author | Date |
---|---|---|
3b19c24 | Evgenii O. Tretiakov | 2023-02-02 |
For Cell Bender especially, but also potentially for other assays as well, it can be helpful during analysis to plot the corrected and uncorrected counts for given feature.
Both targets look fine.
DimPlot_scCustom(combined.srt, pt.size = 3, group.by = "QC", repel = T, label = T, label.size = 5)
DimPlot_scCustom(combined.srt, label.size = 5, repel = T, pt.size = 3, label = T)
combined.srt <- subset(combined.srt, subset = QC == "Pass")
DimPlot_scCustom(combined.srt, label.size = 4, repel = T, pt.size = 3, label = T)
Version | Author | Date |
---|---|---|
3b19c24 | Evgenii O. Tretiakov | 2023-02-02 |
combined.srt$comb_clstr1 <- Idents(combined.srt)
s.genes = gorth(cc.genes.updated.2019$s.genes, source_organism = "hsapiens", target_organism = "mmusculus")$ortholog_name
g2m.genes = gorth(cc.genes.updated.2019$g2m.genes, source_organism = "hsapiens", target_organism = "mmusculus")$ortholog_name
combined.srt <-
CellCycleScoring(combined.srt,
s.features = s.genes,
g2m.features = g2m.genes)
table(combined.srt[[]]$Phase)
G1 G2M S
588 213 515
FeaturePlot_scCustom(combined.srt,features = "percent_mito", label.size = 4, repel = T, pt.size = 3, label = T, colors_use = combined.srt@misc$mdat_Colour_Pal, order = TRUE, alpha_na_exp = 0.3, alpha_exp = 0.75) &
theme(plot.title = element_text(size = 16))
QC_Plots_Mito(
combined.srt,
high_cutoff = high.cutoff.pc.mt,
plot_title = "Mito genes % per Nucleus",
color_seed = reseed,
ggplot_default_colors = T
)
FeaturePlot_scCustom(combined.srt, features = "percent_ribo",
label.size = 4,repel = T,pt.size = 3,label = T, colors_use = combined.srt@misc$mdat_Colour_Pal, order = TRUE, alpha_na_exp = 0.3, alpha_exp = 0.75) &
theme(plot.title = element_text(size = 16))
QC_Plots_Feature(
combined.srt,
feature = "percent_ribo",
high_cutoff = high.cutoff.pc.ribo,
y_axis_label = "% Ribosomal Genes Counts",
plot_title = "Ribo genes % per Nucleus",
color_seed = reseed,
ggplot_default_colors = T
)
p1 <-
QC_Plots_Genes(
combined.srt,
low_cutoff = low.cutoff.gene,
high_cutoff = high.cutoff.gene,
plot_title = "Genes per Nucleus",
color_seed = reseed,
ggplot_default_colors = T
)
p2 <-
QC_Plots_UMIs(
combined.srt,
low_cutoff = low.cutoff.umis,
high_cutoff = high.cutoff.umis,
plot_title = "UMIs per Nucleus",
color_seed = reseed,
ggplot_default_colors = T
)
p1 | p2
FeaturePlot_scCustom(
combined.srt,
features = c("S.Score", "G2M.Score"),
label.size = 4,
repel = T,
pt.size = 3,
label = T,
colors_use = combined.srt@misc$mdat_Colour_Pal,
na_cutoff = NA,
order = TRUE,
alpha_na_exp = 0.3,
alpha_exp = 0.75) &
theme(plot.title = element_text(size = 16))
VlnPlot(combined.srt,
features = c("S.Score", "G2M.Score")) &
theme(plot.title = element_text(size=16))
# normalize and run dimensionality reduction on control dataset
npcs <- 30
metadata = combined.srt@meta.data
rownames(metadata) = colnames(combined.srt)
combined.srt <-
SCTransform(
combined.srt,
vst.flavor = "v2",
ncells = ncol(combined.srt),
variable.features.n = 3500,
vars.to.regress = c("log10GenesPerUMI",
"S.Score", "G2M.Score"),
return.only.var.genes = FALSE,
seed.use = reseed,
verbose = FALSE
)
hvg <- VariableFeatures(combined.srt)
var_regex <- '^Hla-|^Ig[hjkl]|^Rna|^mt-|^Rp[sl]|^Hb[^(p)]|^Gm'
hvg <- hvg[str_detect(pattern = var_regex, string = hvg, negate = T)]
combined.srt <- combined.srt %>%
RunPCA(features = hvg, npcs = npcs, seed.use = reseed, verbose = FALSE)
print(combined.srt[["pca"]], dims = 1:5, nfeatures = 5)
PC_ 1
Positive: Ntng1, Tenm2, Cntnap2, Cntn5, Sgcz
Negative: Dnah6, Dnah12, Cfap299, Cfap54, Ak9
PC_ 2
Positive: Atp1a2, Lama4, Arhgap31, Arhgap29, Flt1
Negative: Cntnap2, Tenm2, Ntng1, Meg3, Snhg11
PC_ 3
Positive: Ptprz1, Slc4a4, Npas3, Luzp2, Wdr17
Negative: Ebf1, Myo1b, Hmcn1, Slc38a2, Rapgef5
PC_ 4
Positive: Trpm3, Adam12, Ranbp3l, Slc6a13, Bmp6
Negative: Myo10, Ptprb, Ptprm, Egfl7, Slc7a5
PC_ 5
Positive: Lrrc4c, Dpp10, Galnt13, Galntl6, Hs3st4
Negative: Ntng1, 6330411D24Rik, Lef1, Rorb, Arpp21
VizDimLoadings(combined.srt, dims = 1:4, reduction = "pca")
DimHeatmap(combined.srt, dims = 1:15, cells = 500, balanced = TRUE)
ElbowPlot(combined.srt, ndims = npcs)
combined.srt <-
combined.srt |>
FindNeighbors(
dims = seq_along(combined.srt[["pca"]]@stdev),
k.param = 20,
annoy.metric = "euclidean",
n.trees = 100,
verbose = FALSE) |>
RunUMAP(
dims = seq_along(combined.srt[["pca"]]@stdev),
reduction.name = "umap",
reduction.key = "UMAP_",
return.model = TRUE,
umap.method = "umap-learn",
densmap = TRUE,
dens.lambda = 1L,
dens.frac = 0.1,
n.epochs = 1000L,
n.neighbors = 20L,
min.dist = 0.01,
spread = 4L,
metric = "correlation",
init = "pca",
seed.use = reseed,
verbose = FALSE) |>
FindNeighbors(
reduction = "umap",
dims = 1:2,
force.recalc = TRUE,
k.param = 20,
annoy.metric = "euclidean",
n.trees = 100,
verbose = FALSE)
Plot by source after clean up
plEmbCombBatch <- DimPlot_scCustom(combined.srt, reduction = "umap",
group.by = "orig.ident", pt.size = 3,
label = TRUE, repel = TRUE, seed = reseed,
ggplot_default_colors = TRUE, color_seed = reseed,
shuffle = TRUE) + NoLegend()
plEmbCombBatch
metadata <- combined.srt@meta.data
rownames(metadata) <- colnames(combined.srt)
ref.labels <- metadata$k_tree
resolutions <-
modularity_event_sampling(
A = combined.srt@graphs$SCT_snn,
n.res = 70,
gamma.min = 0.05,
gamma.max = 4.000001
) # sample based on the similarity matrix
# clustering using Suerat
combined.srt <- combined.srt |>
FindClusters(algorithm = 4, method = "igraph",
resolution = resolutions, random.seed = reseed,
verbose = FALSE)
# initial cluster tree from Seurat flat clustering
plot_clustree(
labelmat = combined.srt@meta.data,
prefix = 'SCT_snn_res.',
ref.labels = ref.labels,
plot.ref = FALSE
)
# Adjusted Multiresolution Rand Index (AMRI)
ks.flat <- apply(
out$labelmat.flat,
2,
FUN = function(x)
length(unique(x))
)
ks.mrtree <- apply(
out$labelmat.mrtree,
2,
FUN = function(x)
length(unique(x))
)
amri.flat <- sapply(1:ncol(out$labelmat.flat), function(i)
AMRI(out$labelmat.flat[, i], ref.labels)$amri)
amri.flat <- aggregate(amri.flat, by = list(k = ks.flat), FUN = mean)
amri.recon <- sapply(1:ncol(out$labelmat.mrtree), function(i)
AMRI(out$labelmat.mrtree[, i], ref.labels)$amri)
df <- rbind(
data.frame(
k = amri.flat$k,
amri = amri.flat$x,
method = 'Seurat flat'
),
data.frame(k = ks.mrtree, amri = amri.recon, method = 'MRtree')
)
ggplot2::ggplot(data = df, aes(x = k, y = amri, color = method)) + geom_line() + theme_bw()
stab.out <- stability_plot(out)
stab.out$plot
kable_material(
kable(
stab.out$df,
"html"),
bootstrap_options = c("bordered",
"condensed",
"responsive",
"striped"),
position = "left",
font_size = 14
)
resolution | ari |
---|---|
12 | 1.0000000 |
13 | 1.0000000 |
14 | 0.9950979 |
15 | 1.0000000 |
16 | 1.0000000 |
17 | 1.0000000 |
18 | 1.0000000 |
19 | 1.0000000 |
20 | 1.0000000 |
21 | 1.0000000 |
22 | 1.0000000 |
24 | 0.9772836 |
25 | 0.9982121 |
26 | 0.9967004 |
resK <- SelectResolution(stab.out$df)
resK
[1] 22 21 20 19 18 17 16 15 13 12
kable_material(
kable(
table(
out$labelmat.mrtree[, which.min(
abs(as.integer(
str_remove(dimnames(
out$labelmat.mrtree)[[2]], "K"
)
) - resK)
)]
),
"html"),
bootstrap_options = c("bordered",
"condensed",
"responsive",
"striped"),
position = "left",
font_size = 14
)
Var1 | Freq |
---|---|
1 | 166 |
2 | 163 |
3 | 142 |
4 | 138 |
5 | 110 |
6 | 90 |
7 | 72 |
8 | 70 |
9 | 62 |
10 | 61 |
11 | 58 |
12 | 41 |
13 | 34 |
14 | 30 |
15 | 30 |
16 | 28 |
17 | 21 |
combined.srt$k_tree <- out$labelmat.mrtree[, which.min(
abs(as.integer(
str_remove(dimnames(
out$labelmat.mrtree)[[2]], "K"
)
) - resK)
)] %>% as.numeric() %>% as.factor()
p1 <- DimPlot_scCustom(combined.srt, label = T, repel = T, pt.size = 2) + ggtitle("Unsupervised overclustering") + NoLegend()
p2 <- DimPlot_scCustom(combined.srt, label = T, repel = T, group.by = "k_tree", pt.size = 2) + ggtitle("MRTree") + NoLegend()
p1 | p2
FeaturePlot_scCustom(combined.srt, "Galr1", pt.size = 2, order = T, colors_use = combined.srt@misc$expr_Colour_Pal, alpha_na_exp = 0.3, alpha_exp = 0.75) +
ggtitle("Galr1: ") + theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(combined.srt, "Gal", pt.size = 2, order = T, colors_use = combined.srt@misc$expr_Colour_Pal, alpha_na_exp = 0.3, alpha_exp = 0.75) +
ggtitle("Gal: ") + theme(plot.title = element_text(size = 24))
DotPlot_scCustom(
seurat_object = combined.srt,
assay = "SCT",
features = genes.zh,
flip_axes = TRUE,
x_lab_rotate = TRUE,
colors_use = viridis(n = 30, alpha = .75, direction = -1, option = "G"))
Version | Author | Date |
---|---|---|
3b19c24 | Evgenii O. Tretiakov | 2023-02-02 |
DotPlot_scCustom(
seurat_object = combined.srt,
assay = "RNA",
features = genes.zh,
flip_axes = TRUE,
x_lab_rotate = TRUE,
colors_use = viridis(n = 30, alpha = .75, direction = -1, option = "E"))
Version | Author | Date |
---|---|---|
3b19c24 | Evgenii O. Tretiakov | 2023-02-02 |
We see the spread of our targets across derived clusters, which isn’t optimal. Lets see if we will see some significant hits with proper statistical testing.
Idents(combined.srt) <- "k_tree"
combined.srt <-
PrepSCTFindMarkers(combined.srt, assay = "SCT")
markers.logreg <-
FindAllMarkers(
combined.srt,
assay = "SCT",
verbose = FALSE,
random.seed = reseed,
only.pos = TRUE,
min.pct = 0.2,
base = 10,
logfc.threshold = 0.2,
densify = TRUE,
test.use = "LR")
write_csv(markers.logreg,
here(tables_dir,
'hevesi2023-all-mrk_logreg-sct_combined.csv'))
markers.logreg %>%
group_by(cluster) %>%
slice_max(n = 20, order_by = avg_log10FC) %>%
kable("html") %>%
kable_material(
bootstrap_options = c("bordered",
"condensed",
"responsive",
"striped"),
position = "left",
font_size = 14
)
p_val | avg_log10FC | pct.1 | pct.2 | p_val_adj | cluster | gene |
---|---|---|---|---|---|---|
0.0000000 | 0.6571165 | 0.988 | 0.593 | 0.0000000 | 1 | Tafa1 |
0.0000000 | 0.6502581 | 1.000 | 0.704 | 0.0000000 | 1 | Tenm1 |
0.0000000 | 0.5972545 | 1.000 | 0.678 | 0.0000000 | 1 | Ntng1 |
0.0000000 | 0.5949014 | 1.000 | 0.695 | 0.0000000 | 1 | Rnf220 |
0.0000000 | 0.5871276 | 0.976 | 0.670 | 0.0000000 | 1 | Shisa9 |
0.0000000 | 0.5609202 | 0.904 | 0.420 | 0.0000000 | 1 | Thsd7b |
0.0000000 | 0.5595962 | 0.994 | 0.502 | 0.0000000 | 1 | Samd5 |
0.0000000 | 0.5470635 | 0.904 | 0.299 | 0.0000000 | 1 | Gm48749 |
0.0000000 | 0.5171596 | 0.988 | 0.621 | 0.0000000 | 1 | Cntnap5a |
0.0000000 | 0.5032538 | 0.873 | 0.258 | 0.0000000 | 1 | Gm32647 |
0.0000000 | 0.4864269 | 0.994 | 0.610 | 0.0000000 | 1 | Tox |
0.0000000 | 0.4645483 | 0.855 | 0.285 | 0.0000000 | 1 | Trhde |
0.0000000 | 0.4464085 | 0.988 | 0.695 | 0.0000000 | 1 | Egfem1 |
0.0000000 | 0.4429732 | 1.000 | 0.756 | 0.0000000 | 1 | Cntnap2 |
0.0000000 | 0.4409920 | 1.000 | 0.878 | 0.0000000 | 1 | Ptprd |
0.0000000 | 0.4356482 | 1.000 | 0.773 | 0.0000000 | 1 | Grm7 |
0.0000000 | 0.4331818 | 1.000 | 0.654 | 0.0000000 | 1 | Arpp21 |
0.0000000 | 0.4261508 | 0.940 | 0.397 | 0.0000000 | 1 | Foxp2 |
0.0000000 | 0.4191931 | 0.994 | 0.868 | 0.0000000 | 1 | Grik2 |
0.0000000 | 0.4147323 | 0.880 | 0.437 | 0.0000000 | 1 | Cdh6 |
0.0000000 | 1.2753468 | 0.785 | 0.040 | 0.0000000 | 2 | Cfap299 |
0.0000000 | 1.2557930 | 0.761 | 0.023 | 0.0000000 | 2 | Dnah12 |
0.0000000 | 1.1597560 | 0.773 | 0.104 | 0.0000000 | 2 | Adamts20 |
0.0000000 | 1.0796429 | 0.755 | 0.039 | 0.0000000 | 2 | Dnah6 |
0.0000000 | 1.0502595 | 0.822 | 0.095 | 0.0000000 | 2 | Cfap54 |
0.0000000 | 1.0298384 | 0.810 | 0.118 | 0.0000000 | 2 | Spag16 |
0.0000000 | 1.0196588 | 0.804 | 0.072 | 0.0000000 | 2 | Ccdc162 |
0.0000000 | 1.0130810 | 0.791 | 0.032 | 0.0000000 | 2 | Hydin |
0.0000000 | 1.0021477 | 0.767 | 0.054 | 0.0000000 | 2 | Cfap61 |
0.0000000 | 1.0017248 | 0.804 | 0.056 | 0.0000000 | 2 | Rgs22 |
0.0000000 | 0.9974433 | 0.791 | 0.069 | 0.0000000 | 2 | Cfap44 |
0.0000000 | 0.9863835 | 0.847 | 0.103 | 0.0000000 | 2 | Gm973 |
0.0000000 | 0.9656747 | 0.791 | 0.049 | 0.0000000 | 2 | Spef2 |
0.0000000 | 0.9587074 | 0.761 | 0.051 | 0.0000000 | 2 | Ak7 |
0.0000000 | 0.9536831 | 0.791 | 0.024 | 0.0000000 | 2 | Ak9 |
0.0000000 | 0.9531191 | 0.969 | 0.884 | 0.0000000 | 2 | Syne1 |
0.0000000 | 0.9518822 | 0.810 | 0.059 | 0.0000000 | 2 | Kif6 |
0.0000000 | 0.9506150 | 0.798 | 0.132 | 0.0000000 | 2 | Dnah9 |
0.0000000 | 0.9440670 | 0.779 | 0.037 | 0.0000000 | 2 | Dnah11 |
0.0000000 | 0.9041702 | 0.761 | 0.026 | 0.0000000 | 2 | Cfap65 |
0.0000000 | 0.5608464 | 0.810 | 0.333 | 0.0000000 | 3 | Unc5d |
0.0000000 | 0.5580631 | 0.866 | 0.520 | 0.0000000 | 3 | Cdh18 |
0.0000000 | 0.4651351 | 0.866 | 0.335 | 0.0000000 | 3 | Tafa2 |
0.0000000 | 0.4597091 | 0.789 | 0.312 | 0.0000000 | 3 | Gm15398 |
0.0000000 | 0.4452701 | 0.915 | 0.682 | 0.0000000 | 3 | Galntl6 |
0.0000000 | 0.4450124 | 0.873 | 0.232 | 0.0000000 | 3 | Dlgap2 |
0.0000000 | 0.4358118 | 0.979 | 0.741 | 0.0000000 | 3 | Lrrtm4 |
0.0000000 | 0.4260853 | 0.873 | 0.363 | 0.0000000 | 3 | Gm26871 |
0.0000001 | 0.4250104 | 0.535 | 0.419 | 0.0010774 | 3 | Adarb2 |
0.0000000 | 0.4097539 | 0.873 | 0.488 | 0.0000000 | 3 | Gria1 |
0.0000000 | 0.4029539 | 0.958 | 0.718 | 0.0000000 | 3 | Lingo2 |
0.0000000 | 0.4002465 | 0.965 | 0.801 | 0.0000000 | 3 | Ralyl |
0.0000000 | 0.3943962 | 1.000 | 0.832 | 0.0000000 | 3 | Ahi1 |
0.0000000 | 0.3943376 | 1.000 | 0.766 | 0.0000000 | 3 | Dlg2 |
0.0000000 | 0.3921796 | 0.831 | 0.318 | 0.0000000 | 3 | Grin2a |
0.0000000 | 0.3850609 | 0.810 | 0.430 | 0.0000000 | 3 | Grm8 |
0.0000000 | 0.3732597 | 0.979 | 0.648 | 0.0000000 | 3 | A230006K03Rik |
0.0000000 | 0.3696774 | 0.979 | 0.784 | 0.0000000 | 3 | Dab1 |
0.0000000 | 0.3531083 | 0.683 | 0.121 | 0.0000000 | 3 | B230217J21Rik |
0.0000000 | 0.3444115 | 0.908 | 0.638 | 0.0000000 | 3 | Cntnap5a |
0.0000000 | 0.9047788 | 0.935 | 0.311 | 0.0000000 | 4 | Gm3764 |
0.0000000 | 0.8179890 | 0.971 | 0.628 | 0.0000000 | 4 | Ptprz1 |
0.0000000 | 0.7988612 | 0.949 | 0.429 | 0.0000000 | 4 | Slc4a4 |
0.0000000 | 0.7099902 | 0.971 | 0.734 | 0.0000000 | 4 | Npas3 |
0.0000000 | 0.6853820 | 0.928 | 0.665 | 0.0000000 | 4 | Luzp2 |
0.0000000 | 0.6719878 | 0.928 | 0.408 | 0.0000000 | 4 | Gm48747 |
0.0000000 | 0.6436592 | 0.790 | 0.180 | 0.0000000 | 4 | Slc6a11 |
0.0000000 | 0.6110417 | 0.899 | 0.374 | 0.0000000 | 4 | Nhsl1 |
0.0000000 | 0.6106302 | 0.935 | 0.639 | 0.0000000 | 4 | Gpc5 |
0.0000000 | 0.6049856 | 0.935 | 0.553 | 0.0000000 | 4 | Trim9 |
0.0000000 | 0.5907997 | 1.000 | 0.733 | 0.0000000 | 4 | Qk |
0.0000000 | 0.5708835 | 0.841 | 0.193 | 0.0000000 | 4 | Lrig1 |
0.0000000 | 0.5577725 | 0.928 | 0.508 | 0.0000000 | 4 | Wdr17 |
0.0000000 | 0.5505430 | 0.957 | 0.648 | 0.0000000 | 4 | Grm3 |
0.0000000 | 0.5466775 | 0.971 | 0.575 | 0.0000000 | 4 | Ptn |
0.0000000 | 0.5409534 | 0.906 | 0.492 | 0.0000000 | 4 | Slc1a2 |
0.0000000 | 0.5363683 | 0.790 | 0.168 | 0.0000000 | 4 | Bmpr1b |
0.0000000 | 0.5356458 | 0.848 | 0.261 | 0.0000000 | 4 | Plpp3 |
0.0000000 | 0.5292591 | 0.877 | 0.237 | 0.0000000 | 4 | Apoe |
0.0000000 | 0.5166935 | 0.717 | 0.141 | 0.0000000 | 4 | Pla2g7 |
0.0000000 | 0.4387974 | 0.991 | 0.896 | 0.0000000 | 5 | Gm42418 |
0.0000000 | 0.3672638 | 0.909 | 0.844 | 0.0000001 | 5 | Gm26917 |
0.0000000 | 0.3635542 | 0.682 | 0.455 | 0.0000001 | 5 | Cdh4 |
0.0000000 | 0.3596761 | 0.909 | 0.556 | 0.0000000 | 5 | Cmss1 |
0.0000000 | 0.3509651 | 0.836 | 0.481 | 0.0000000 | 5 | Rbfox3 |
0.0000000 | 0.3420507 | 0.727 | 0.390 | 0.0000000 | 5 | Gm26871 |
0.0000000 | 0.3377407 | 0.845 | 0.534 | 0.0000000 | 5 | Nxph1 |
0.0000000 | 0.3137945 | 0.791 | 0.549 | 0.0000000 | 5 | Gpi1 |
0.0000000 | 0.3093742 | 0.627 | 0.271 | 0.0000000 | 5 | Dlgap2 |
0.0000000 | 0.2992671 | 0.982 | 0.862 | 0.0000000 | 5 | Camta1 |
0.0000000 | 0.2979735 | 1.000 | 0.907 | 0.0000000 | 5 | Meg3 |
0.0000000 | 0.2919796 | 0.991 | 0.801 | 0.0000000 | 5 | Nkain2 |
0.0000000 | 0.2909660 | 0.955 | 0.695 | 0.0000000 | 5 | Celf4 |
0.0000000 | 0.2830124 | 0.836 | 0.580 | 0.0000000 | 5 | Klhl29 |
0.0000000 | 0.2805466 | 0.955 | 0.792 | 0.0000000 | 5 | Dab1 |
0.0000000 | 0.2784120 | 0.873 | 0.528 | 0.0000000 | 5 | Cdh18 |
0.0000000 | 0.2761471 | 0.909 | 0.637 | 0.0000000 | 5 | Usp29 |
0.0000000 | 0.2734255 | 0.955 | 0.737 | 0.0000001 | 5 | Schip1 |
0.0000048 | 0.2646295 | 0.527 | 0.318 | 0.0983789 | 5 | Gm32647 |
0.0000000 | 0.2646166 | 0.991 | 0.825 | 0.0000000 | 5 | Ptprn2 |
0.0000000 | 1.3287492 | 0.667 | 0.033 | 0.0000000 | 6 | Ptgds |
0.0000000 | 1.1001808 | 0.933 | 0.048 | 0.0000000 | 6 | Ranbp3l |
0.0000000 | 1.0231247 | 0.956 | 0.883 | 0.0000000 | 6 | Trpm3 |
0.0000000 | 0.9147659 | 0.933 | 0.225 | 0.0000000 | 6 | Adam12 |
0.0000000 | 0.8879254 | 0.867 | 0.056 | 0.0000000 | 6 | Slc6a20a |
0.0000000 | 0.8669011 | 0.844 | 0.109 | 0.0000000 | 6 | Adamts12 |
0.0000000 | 0.8499882 | 0.878 | 0.165 | 0.0000000 | 6 | Sidt1 |
0.0000000 | 0.7909713 | 0.767 | 0.144 | 0.0000000 | 6 | Bmp6 |
0.0000000 | 0.7883417 | 0.956 | 0.310 | 0.0000000 | 6 | Atp1a2 |
0.0000000 | 0.7644435 | 0.900 | 0.016 | 0.0000000 | 6 | Slc6a13 |
0.0000000 | 0.7474819 | 0.922 | 0.292 | 0.0000000 | 6 | Bicc1 |
0.0000000 | 0.7271937 | 0.744 | 0.183 | 0.0000000 | 6 | Slc7a11 |
0.0000000 | 0.7090860 | 0.867 | 0.701 | 0.0000000 | 6 | Nnat |
0.0000000 | 0.6924188 | 0.767 | 0.145 | 0.0000000 | 6 | Lrmda |
0.0000000 | 0.6884408 | 0.844 | 0.109 | 0.0000000 | 6 | Cped1 |
0.0000000 | 0.6758639 | 0.878 | 0.146 | 0.0000000 | 6 | Tmtc4 |
0.0000000 | 0.6605440 | 0.844 | 0.268 | 0.0000000 | 6 | Sned1 |
0.0000000 | 0.6390464 | 0.911 | 0.105 | 0.0000000 | 6 | Arhgap29 |
0.0000000 | 0.6233387 | 0.878 | 0.231 | 0.0000000 | 6 | Pdzrn3 |
0.0000000 | 0.5929585 | 0.822 | 0.138 | 0.0000000 | 6 | Colec12 |
0.0000000 | 0.9487361 | 0.958 | 0.304 | 0.0000000 | 7 | 6330411D24Rik |
0.0000000 | 0.8401545 | 0.972 | 0.336 | 0.0000000 | 7 | Pex5l |
0.0000000 | 0.6446468 | 0.986 | 0.511 | 0.0000000 | 7 | Ryr3 |
0.0000000 | 0.6350898 | 0.986 | 0.525 | 0.0000000 | 7 | Spock1 |
0.0000000 | 0.6163441 | 0.917 | 0.404 | 0.0000000 | 7 | Adarb1 |
0.0000000 | 0.5945646 | 1.000 | 0.783 | 0.0000000 | 7 | Hs6st3 |
0.0000000 | 0.5938236 | 0.861 | 0.163 | 0.0000000 | 7 | 4930419G24Rik |
0.0000000 | 0.5647983 | 0.986 | 0.521 | 0.0000000 | 7 | Edil3 |
0.0000000 | 0.5421220 | 0.944 | 0.233 | 0.0000000 | 7 | Ptpn3 |
0.0000000 | 0.5377003 | 1.000 | 0.518 | 0.0000000 | 7 | Zmat4 |
0.0000000 | 0.5373895 | 0.944 | 0.416 | 0.0000000 | 7 | Cntn3 |
0.0000000 | 0.5326070 | 1.000 | 0.696 | 0.0000000 | 7 | Frmpd4 |
0.0000000 | 0.5131547 | 1.000 | 0.617 | 0.0000000 | 7 | Zfp804b |
0.0000000 | 0.5076611 | 1.000 | 0.655 | 0.0000000 | 7 | Unc13c |
0.0000000 | 0.5075011 | 0.972 | 0.489 | 0.0000000 | 7 | Camk4 |
0.0000000 | 0.4950522 | 0.986 | 0.671 | 0.0000000 | 7 | Cacnb4 |
0.0000000 | 0.4940987 | 0.972 | 0.421 | 0.0000000 | 7 | Epb41l4b |
0.0000000 | 0.4919531 | 1.000 | 0.879 | 0.0000000 | 7 | Prickle2 |
0.0000000 | 0.4915512 | 0.944 | 0.265 | 0.0000000 | 7 | Fras1 |
0.0000000 | 0.4912050 | 0.958 | 0.587 | 0.0000000 | 7 | Pak7 |
0.0000000 | 0.9315875 | 0.957 | 0.429 | 0.0000000 | 8 | Hs3st4 |
0.0000000 | 0.8830266 | 1.000 | 0.797 | 0.0000000 | 8 | Lrrc4c |
0.0000000 | 0.8702088 | 0.814 | 0.196 | 0.0000000 | 8 | 4930445B16Rik |
0.0000000 | 0.8293413 | 1.000 | 0.698 | 0.0000000 | 8 | Dpp10 |
0.0000000 | 0.8184406 | 1.000 | 0.691 | 0.0000000 | 8 | Galntl6 |
0.0000000 | 0.7285249 | 0.914 | 0.279 | 0.0000000 | 8 | Kcnmb2 |
0.0000000 | 0.6817534 | 0.929 | 0.150 | 0.0000000 | 8 | Gm15155 |
0.0000000 | 0.6707176 | 0.886 | 0.192 | 0.0000000 | 8 | Meis2 |
0.0000000 | 0.6624833 | 0.971 | 0.813 | 0.0000000 | 8 | Asic2 |
0.0000000 | 0.6501771 | 0.943 | 0.288 | 0.0000000 | 8 | Ubash3b |
0.0000000 | 0.6447586 | 0.971 | 0.781 | 0.0000000 | 8 | Nrg1 |
0.0000000 | 0.6310500 | 0.871 | 0.071 | 0.0000000 | 8 | Gad1 |
0.0000000 | 0.6099125 | 0.957 | 0.096 | 0.0000000 | 8 | Gad2 |
0.0000000 | 0.5988190 | 0.986 | 0.663 | 0.0000000 | 8 | Grm3 |
0.0000000 | 0.5938922 | 0.729 | 0.148 | 0.0000000 | 8 | Sema3e |
0.0000000 | 0.5905362 | 0.886 | 0.132 | 0.0000000 | 8 | Ptchd1 |
0.0000000 | 0.5854086 | 1.000 | 0.880 | 0.0000000 | 8 | Nrxn3 |
0.0000000 | 0.5853860 | 0.971 | 0.432 | 0.0000000 | 8 | Fign |
0.0000000 | 0.5767985 | 0.871 | 0.336 | 0.0000000 | 8 | Ak5 |
0.0000000 | 0.5755538 | 0.986 | 0.610 | 0.0000000 | 8 | Zfp804a |
0.0000000 | 1.3227119 | 0.984 | 0.053 | 0.0000000 | 9 | Flt1 |
0.0000000 | 1.1177770 | 0.984 | 0.104 | 0.0000000 | 9 | Mecom |
0.0000000 | 0.9762405 | 0.984 | 0.210 | 0.0000000 | 9 | Dach1 |
0.0000000 | 0.9535095 | 0.952 | 0.149 | 0.0000000 | 9 | Slc7a1 |
0.0000000 | 0.9290368 | 0.935 | 0.053 | 0.0000000 | 9 | Ets1 |
0.0000000 | 0.9213625 | 0.887 | 0.116 | 0.0000000 | 9 | Slco1c1 |
0.0000000 | 0.9055905 | 0.935 | 0.069 | 0.0000000 | 9 | Slc7a5 |
0.0000000 | 0.8841938 | 0.919 | 0.015 | 0.0000000 | 9 | Egfl7 |
0.0000000 | 0.8678912 | 0.935 | 0.030 | 0.0000000 | 9 | Ptprb |
0.0000000 | 0.8581400 | 0.919 | 0.058 | 0.0000000 | 9 | Fli1 |
0.0000000 | 0.8457729 | 0.968 | 0.230 | 0.0000000 | 9 | Ccdc141 |
0.0000000 | 0.8305455 | 0.871 | 0.191 | 0.0000000 | 9 | Hmcn1 |
0.0000000 | 0.8284534 | 0.903 | 0.030 | 0.0000000 | 9 | Adgrl4 |
0.0000000 | 0.8179876 | 0.968 | 0.368 | 0.0000000 | 9 | Slc38a2 |
0.0000000 | 0.7916615 | 1.000 | 0.311 | 0.0000000 | 9 | Myo10 |
0.0000000 | 0.7810337 | 0.823 | 0.055 | 0.0000000 | 9 | Apcdd1 |
0.0000000 | 0.7741358 | 0.952 | 0.286 | 0.0000000 | 9 | Rapgef5 |
0.0000000 | 0.7670584 | 1.000 | 0.632 | 0.0000000 | 9 | Ptprm |
0.0000000 | 0.7670278 | 0.887 | 0.226 | 0.0000000 | 9 | Tfrc |
0.0000000 | 0.7660856 | 0.887 | 0.109 | 0.0000000 | 9 | Lama4 |
0.0000000 | 0.7966165 | 0.869 | 0.163 | 0.0000000 | 10 | 4930588A03Rik |
0.0000000 | 0.7900272 | 0.918 | 0.123 | 0.0000000 | 10 | Gm38505 |
0.0000000 | 0.7892775 | 0.984 | 0.469 | 0.0000000 | 10 | Pcdh15 |
0.0000000 | 0.7020805 | 1.000 | 0.441 | 0.0000000 | 10 | Sox6 |
0.0000000 | 0.6957390 | 0.984 | 0.527 | 0.0000000 | 10 | 6030443J06Rik |
0.0000000 | 0.6718450 | 0.836 | 0.129 | 0.0000000 | 10 | Pdgfra |
0.0000000 | 0.6512600 | 0.984 | 0.551 | 0.0000000 | 10 | Sox2ot |
0.0000000 | 0.6372609 | 0.967 | 0.471 | 0.0000000 | 10 | Lhfpl3 |
0.0000000 | 0.6270686 | 0.918 | 0.247 | 0.0000000 | 10 | Dscaml1 |
0.0000000 | 0.5654791 | 0.967 | 0.500 | 0.0000000 | 10 | Xylt1 |
0.0000000 | 0.5652314 | 0.951 | 0.514 | 0.0000000 | 10 | Epn2 |
0.0000000 | 0.5536460 | 0.820 | 0.083 | 0.0000000 | 10 | Sox10 |
0.0000000 | 0.5288474 | 0.918 | 0.309 | 0.0000000 | 10 | Mir9-3hg |
0.0000000 | 0.5160463 | 0.984 | 0.554 | 0.0000000 | 10 | Pcdh11x |
0.0000000 | 0.4990924 | 1.000 | 0.708 | 0.0000000 | 10 | Sgcd |
0.0000000 | 0.4937250 | 0.836 | 0.244 | 0.0000000 | 10 | Megf11 |
0.0000000 | 0.4869009 | 1.000 | 0.668 | 0.0000000 | 10 | Dcc |
0.0000000 | 0.4563497 | 0.918 | 0.431 | 0.0000000 | 10 | Tnr |
0.0000000 | 0.4527685 | 1.000 | 0.539 | 0.0000000 | 10 | Nxph1 |
0.0000000 | 0.4519295 | 0.820 | 0.224 | 0.0000000 | 10 | Arhgef3 |
0.0000000 | 1.0241256 | 0.500 | 0.174 | 0.0000000 | 11 | Mbp |
0.0000000 | 0.8482169 | 0.379 | 0.153 | 0.0000000 | 11 | 9630013A20Rik |
0.0000000 | 0.8172537 | 0.328 | 0.092 | 0.0000000 | 11 | Plp1 |
0.0000000 | 0.7469378 | 0.310 | 0.055 | 0.0000000 | 11 | St18 |
0.0000000 | 0.7263954 | 0.517 | 0.087 | 0.0000000 | 11 | Npsr1 |
0.0000000 | 0.7020544 | 0.983 | 0.839 | 0.0000000 | 11 | Kcnip4 |
0.0000000 | 0.6602253 | 0.707 | 0.219 | 0.0000000 | 11 | Pcsk5 |
0.0000000 | 0.6549541 | 0.293 | 0.123 | 0.0000000 | 11 | Cnksr3 |
0.0000000 | 0.5952941 | 0.862 | 0.627 | 0.0000000 | 11 | Zfp804b |
0.0000000 | 0.5662574 | 0.259 | 0.006 | 0.0000000 | 11 | Mobp |
0.0000000 | 0.5583427 | 0.690 | 0.193 | 0.0000000 | 11 | Prox1 |
0.0000000 | 0.5540357 | 0.741 | 0.355 | 0.0000000 | 11 | Cntnap5c |
0.0000000 | 0.5495114 | 0.828 | 0.631 | 0.0000000 | 11 | Nfasc |
0.0000000 | 0.5457659 | 0.828 | 0.692 | 0.0000000 | 11 | Brinp3 |
0.0000000 | 0.5030720 | 0.293 | 0.020 | 0.0000000 | 11 | Mag |
0.0000005 | 0.4724393 | 0.759 | 0.648 | 0.0106283 | 11 | Tmeff2 |
0.0000000 | 0.4713310 | 0.948 | 0.626 | 0.0000000 | 11 | Gm20754 |
0.0000000 | 0.4706809 | 0.431 | 0.196 | 0.0000006 | 11 | Cemip2 |
0.0000000 | 0.4487399 | 0.862 | 0.672 | 0.0000000 | 11 | Rgs6 |
0.0000000 | 0.4460125 | 0.741 | 0.349 | 0.0000000 | 11 | Prr16 |
0.0006958 | 0.4808576 | 0.463 | 0.297 | 1.0000000 | 12 | Nwd2 |
0.0000000 | 0.4743175 | 0.610 | 0.355 | 0.0007256 | 12 | Gm15398 |
0.0000000 | 0.4619596 | 0.610 | 0.304 | 0.0000169 | 12 | Slit3 |
0.0000010 | 0.4598898 | 0.488 | 0.267 | 0.0208247 | 12 | Gm45321 |
0.0000000 | 0.4584631 | 0.683 | 0.308 | 0.0000001 | 12 | Stxbp5l |
0.0000004 | 0.4039485 | 0.610 | 0.315 | 0.0092817 | 12 | 4930555F03Rik |
0.0000000 | 0.4024779 | 0.976 | 0.760 | 0.0000001 | 12 | Lrrtm4 |
0.0000224 | 0.3880570 | 0.878 | 0.791 | 0.4636247 | 12 | Unc5c |
0.0000001 | 0.3812647 | 0.390 | 0.180 | 0.0010581 | 12 | Gfra1 |
0.0000067 | 0.3810508 | 0.561 | 0.325 | 0.1392465 | 12 | Kctd8 |
0.0000000 | 0.3777165 | 0.854 | 0.560 | 0.0000002 | 12 | Gpi1 |
0.0033288 | 0.3699645 | 0.756 | 0.580 | 1.0000000 | 12 | Cmss1 |
0.0000000 | 0.3641411 | 1.000 | 0.784 | 0.0000016 | 12 | Nrg1 |
0.0000114 | 0.3494685 | 1.000 | 0.892 | 0.2357880 | 12 | Kcnma1 |
0.0003471 | 0.3432635 | 0.268 | 0.101 | 1.0000000 | 12 | Npsr1 |
0.0000280 | 0.3364966 | 0.683 | 0.409 | 0.5785582 | 12 | C130073E24Rik |
0.0050611 | 0.3364041 | 0.976 | 0.901 | 1.0000000 | 12 | Gm42418 |
0.0031680 | 0.3301619 | 0.439 | 0.307 | 1.0000000 | 12 | Cpne4 |
0.0000000 | 0.3288227 | 0.732 | 0.411 | 0.0000709 | 12 | Unc13a |
0.0006945 | 0.3233748 | 0.902 | 0.848 | 1.0000000 | 12 | Gm26917 |
0.0000000 | 0.9449937 | 0.647 | 0.144 | 0.0000000 | 13 | Bcas1 |
0.0000000 | 0.9409910 | 0.706 | 0.447 | 0.0000000 | 13 | Tnr |
0.0000000 | 0.7218463 | 0.559 | 0.059 | 0.0000000 | 13 | Bcas1os2 |
0.0000000 | 0.6971670 | 0.647 | 0.215 | 0.0000000 | 13 | Tns3 |
0.0000000 | 0.6352373 | 0.882 | 0.746 | 0.0000000 | 13 | Fyn |
0.0000000 | 0.6340517 | 0.824 | 0.172 | 0.0000000 | 13 | Mbp |
0.0000000 | 0.6121338 | 0.676 | 0.300 | 0.0000000 | 13 | Itpr2 |
0.0000000 | 0.5947798 | 0.647 | 0.457 | 0.0000000 | 13 | Epb41l2 |
0.0000000 | 0.5885908 | 0.618 | 0.034 | 0.0000000 | 13 | Enpp6 |
0.0000000 | 0.5688640 | 0.882 | 0.821 | 0.0008781 | 13 | Opcml |
0.0000000 | 0.5635389 | 0.824 | 0.372 | 0.0000000 | 13 | Ust |
0.0000000 | 0.5545936 | 0.529 | 0.054 | 0.0000001 | 13 | St18 |
0.0000006 | 0.5448275 | 0.559 | 0.330 | 0.0127979 | 13 | Gm32647 |
0.0000000 | 0.5375124 | 0.824 | 0.590 | 0.0000004 | 13 | 9530059O14Rik |
0.0000000 | 0.5357745 | 1.000 | 0.651 | 0.0000000 | 13 | Tmem108 |
0.0000000 | 0.5283072 | 0.882 | 0.633 | 0.0000502 | 13 | Nfasc |
0.0000000 | 0.5262521 | 0.735 | 0.275 | 0.0000000 | 13 | Sirt2 |
0.0000000 | 0.5146112 | 0.588 | 0.360 | 0.0003282 | 13 | Prr16 |
0.0000000 | 0.5041546 | 0.588 | 0.244 | 0.0000000 | 13 | Abtb2 |
0.0000000 | 0.4999108 | 1.000 | 0.927 | 0.0001631 | 13 | Frmd4a |
0.0000000 | 1.3744411 | 1.000 | 0.080 | 0.0000000 | 14 | Bnc2 |
0.0000000 | 0.9355881 | 1.000 | 0.463 | 0.0000000 | 14 | Fbxl7 |
0.0000000 | 0.9272111 | 0.867 | 0.059 | 0.0000000 | 14 | Adamtsl3 |
0.0000000 | 0.9157545 | 0.933 | 0.158 | 0.0000000 | 14 | Thsd4 |
0.0000000 | 0.9076270 | 1.000 | 0.713 | 0.0000000 | 14 | Foxp1 |
0.0000000 | 0.8969509 | 1.000 | 0.383 | 0.0000000 | 14 | Slc38a2 |
0.0000000 | 0.8967671 | 0.933 | 0.320 | 0.0000000 | 14 | Nr3c2 |
0.0000000 | 0.8908707 | 0.900 | 0.546 | 0.0000000 | 14 | Slc4a10 |
0.0000000 | 0.8503342 | 0.933 | 0.065 | 0.0000000 | 14 | Trabd2b |
0.0000000 | 0.8333417 | 0.833 | 0.312 | 0.0000000 | 14 | Col25a1 |
0.0000000 | 0.8118453 | 0.833 | 0.183 | 0.0000000 | 14 | Itgbl1 |
0.0000000 | 0.7796978 | 0.933 | 0.357 | 0.0000000 | 14 | Gulp1 |
0.0000000 | 0.7562549 | 0.933 | 0.115 | 0.0000000 | 14 | Eya2 |
0.0000000 | 0.7426407 | 0.967 | 0.452 | 0.0000000 | 14 | Tmtc1 |
0.0000000 | 0.7338606 | 0.867 | 0.259 | 0.0000000 | 14 | Sh3pxd2a |
0.0000000 | 0.7283485 | 1.000 | 0.645 | 0.0000000 | 14 | Tmeff2 |
0.0000000 | 0.7180718 | 0.800 | 0.096 | 0.0000000 | 14 | Dock5 |
0.0000000 | 0.7033469 | 0.967 | 0.205 | 0.0000000 | 14 | Hmcn1 |
0.0000000 | 0.7017159 | 0.967 | 0.312 | 0.0000000 | 14 | Nxn |
0.0000000 | 0.6722369 | 0.567 | 0.067 | 0.0000000 | 14 | Crispld1 |
0.0000000 | 1.6692281 | 0.900 | 0.174 | 0.0000000 | 15 | Htr2c |
0.0000000 | 1.4475659 | 1.000 | 0.079 | 0.0000000 | 15 | Ttr |
0.0000000 | 0.9520627 | 1.000 | 0.542 | 0.0000000 | 15 | Wdr17 |
0.0000000 | 0.9413800 | 0.800 | 0.026 | 0.0000000 | 15 | Gmnc |
0.0000000 | 0.9072979 | 0.900 | 0.190 | 0.0000000 | 15 | Enpp2 |
0.0000000 | 0.8979889 | 0.967 | 0.065 | 0.0000000 | 15 | Rbm47 |
0.0000000 | 0.8974342 | 0.900 | 0.234 | 0.0000000 | 15 | Vat1l |
0.0000000 | 0.8787920 | 0.933 | 0.163 | 0.0000000 | 15 | Sulf1 |
0.0000000 | 0.8685294 | 0.933 | 0.192 | 0.0000000 | 15 | Otx2os1 |
0.0000000 | 0.8414672 | 0.967 | 0.673 | 0.0000000 | 15 | Stk39 |
0.0000000 | 0.8107865 | 1.000 | 0.885 | 0.0000000 | 15 | Trpm3 |
0.0000000 | 0.7751631 | 0.900 | 0.330 | 0.0000000 | 15 | Nhsl2 |
0.0000000 | 0.7668973 | 0.967 | 0.242 | 0.0000000 | 15 | C330002G04Rik |
0.0000000 | 0.7504541 | 0.967 | 0.383 | 0.0000000 | 15 | Itpr1 |
0.0000000 | 0.7147429 | 1.000 | 0.706 | 0.0000000 | 15 | Frmpd4 |
0.0000000 | 0.7066112 | 0.867 | 0.175 | 0.0000000 | 15 | Prdm16 |
0.0000000 | 0.7000165 | 1.000 | 0.589 | 0.0000000 | 15 | Rfx3 |
0.0000000 | 0.6970875 | 0.800 | 0.254 | 0.0000000 | 15 | Cab39l |
0.0000000 | 0.6945247 | 0.800 | 0.225 | 0.0000000 | 15 | Atp2b3 |
0.0000000 | 0.6784167 | 0.933 | 0.169 | 0.0000000 | 15 | Slc16a2 |
0.0000000 | 0.6093348 | 0.964 | 0.428 | 0.0000000 | 16 | Pcsk2 |
0.0000000 | 0.5823304 | 0.857 | 0.248 | 0.0000000 | 16 | Stxbp6 |
0.0000000 | 0.5686065 | 1.000 | 0.380 | 0.0000000 | 16 | Lef1 |
0.0000000 | 0.5294625 | 1.000 | 0.713 | 0.0000000 | 16 | Ntng1 |
0.0000000 | 0.5060755 | 0.964 | 0.434 | 0.0000000 | 16 | Cntn3 |
0.0000000 | 0.5014865 | 1.000 | 0.302 | 0.0000000 | 16 | Cpne7 |
0.0000000 | 0.4788813 | 0.964 | 0.199 | 0.0000000 | 16 | Prox1 |
0.0000000 | 0.4644870 | 0.893 | 0.422 | 0.0000716 | 16 | Adarb2 |
0.0000000 | 0.4626738 | 1.000 | 0.527 | 0.0000000 | 16 | Ryr3 |
0.0000010 | 0.4577550 | 0.643 | 0.318 | 0.0213566 | 16 | 4930555F03Rik |
0.0000000 | 0.4526475 | 1.000 | 0.782 | 0.0000000 | 16 | Cntnap2 |
0.0000000 | 0.4508588 | 0.964 | 0.739 | 0.0000000 | 16 | Lingo2 |
0.0000000 | 0.4413095 | 0.964 | 0.766 | 0.0000062 | 16 | Mgat4c |
0.0000000 | 0.4407631 | 0.964 | 0.723 | 0.0000002 | 16 | Sox5 |
0.0000000 | 0.4366980 | 0.893 | 0.328 | 0.0000169 | 16 | 6330411D24Rik |
0.0000000 | 0.4363868 | 0.679 | 0.189 | 0.0000005 | 16 | Sox5os4 |
0.0000000 | 0.4347882 | 0.750 | 0.125 | 0.0000000 | 16 | Rxfp1 |
0.0000000 | 0.4340566 | 1.000 | 0.534 | 0.0000002 | 16 | Zmat4 |
0.0000000 | 0.4294471 | 1.000 | 0.753 | 0.0000000 | 16 | Syt1 |
0.0000005 | 0.4211794 | 0.750 | 0.609 | 0.0097965 | 16 | Rorb |
0.0000000 | 0.8169323 | 1.000 | 0.632 | 0.0000000 | 17 | Zfp804b |
0.0000000 | 0.7913766 | 1.000 | 0.608 | 0.0000000 | 17 | Kcnq5 |
0.0000000 | 0.7854327 | 1.000 | 0.738 | 0.0000000 | 17 | Cntn5 |
0.0000000 | 0.7255555 | 1.000 | 0.842 | 0.0000000 | 17 | Kcnip4 |
0.0000000 | 0.7024320 | 1.000 | 0.785 | 0.0000000 | 17 | Tenm2 |
0.0000000 | 0.6813306 | 0.952 | 0.767 | 0.0000006 | 17 | Mgat4c |
0.0000000 | 0.6570441 | 1.000 | 0.751 | 0.0000000 | 17 | Schip1 |
0.0000000 | 0.5996349 | 0.905 | 0.377 | 0.0000000 | 17 | Epha3 |
0.0000000 | 0.5933017 | 1.000 | 0.819 | 0.0000000 | 17 | Opcml |
0.0000000 | 0.5851687 | 1.000 | 0.635 | 0.0000000 | 17 | Gm20754 |
0.0000000 | 0.5699112 | 0.857 | 0.304 | 0.0000003 | 17 | Slit3 |
0.0000000 | 0.5638579 | 0.952 | 0.764 | 0.0000009 | 17 | Lrrtm4 |
0.0000000 | 0.5532614 | 0.952 | 0.868 | 0.0000000 | 17 | Slc24a3 |
0.0000000 | 0.5432472 | 1.000 | 0.598 | 0.0000000 | 17 | Gabra2 |
0.0000000 | 0.5378526 | 0.952 | 0.434 | 0.0000017 | 17 | 4930509J09Rik |
0.0000000 | 0.5333226 | 1.000 | 0.724 | 0.0000010 | 17 | Sox5 |
0.0000004 | 0.5284057 | 0.524 | 0.100 | 0.0075898 | 17 | Npsr1 |
0.0000000 | 0.5197057 | 1.000 | 0.887 | 0.0000000 | 17 | Rims2 |
0.0000000 | 0.5170743 | 0.905 | 0.669 | 0.0000000 | 17 | Kcnc2 |
0.0000000 | 0.5093695 | 1.000 | 0.520 | 0.0000001 | 17 | Cdh8 |
markers.wilcox <-
FindAllMarkers(
combined.srt,
assay = "SCT",
verbose = FALSE,
random.seed = reseed,
only.pos = TRUE,
min.pct = 0.2,
base = 10,
logfc.threshold = 0.2,
densify = TRUE,
test.use = "wilcox")
write_csv(markers.wilcox,
here(tables_dir,
'hevesi2023-all-mrk_wilcox-sct_combined.csv'))
markers.wilcox %>%
group_by(cluster) %>%
slice_max(n = 20, order_by = avg_log10FC) %>%
kable("html") %>%
kable_material(
bootstrap_options = c("bordered",
"condensed",
"responsive",
"striped"),
position = "left",
font_size = 14
)
p_val | avg_log10FC | pct.1 | pct.2 | p_val_adj | cluster | gene |
---|---|---|---|---|---|---|
0.0000000 | 0.6571165 | 0.988 | 0.593 | 0.0000000 | 1 | Tafa1 |
0.0000000 | 0.6502581 | 1.000 | 0.704 | 0.0000000 | 1 | Tenm1 |
0.0000000 | 0.5972545 | 1.000 | 0.678 | 0.0000000 | 1 | Ntng1 |
0.0000000 | 0.5949014 | 1.000 | 0.695 | 0.0000000 | 1 | Rnf220 |
0.0000000 | 0.5871276 | 0.976 | 0.670 | 0.0000000 | 1 | Shisa9 |
0.0000000 | 0.5609202 | 0.904 | 0.420 | 0.0000000 | 1 | Thsd7b |
0.0000000 | 0.5595962 | 0.994 | 0.502 | 0.0000000 | 1 | Samd5 |
0.0000000 | 0.5470635 | 0.904 | 0.299 | 0.0000000 | 1 | Gm48749 |
0.0000000 | 0.5171596 | 0.988 | 0.621 | 0.0000000 | 1 | Cntnap5a |
0.0000000 | 0.5032538 | 0.873 | 0.258 | 0.0000000 | 1 | Gm32647 |
0.0000000 | 0.4864269 | 0.994 | 0.610 | 0.0000000 | 1 | Tox |
0.0000000 | 0.4645483 | 0.855 | 0.285 | 0.0000000 | 1 | Trhde |
0.0000000 | 0.4464085 | 0.988 | 0.695 | 0.0000000 | 1 | Egfem1 |
0.0000000 | 0.4429732 | 1.000 | 0.756 | 0.0000000 | 1 | Cntnap2 |
0.0000000 | 0.4409920 | 1.000 | 0.878 | 0.0000000 | 1 | Ptprd |
0.0000000 | 0.4356482 | 1.000 | 0.773 | 0.0000000 | 1 | Grm7 |
0.0000000 | 0.4331818 | 1.000 | 0.654 | 0.0000000 | 1 | Arpp21 |
0.0000000 | 0.4261508 | 0.940 | 0.397 | 0.0000000 | 1 | Foxp2 |
0.0000000 | 0.4191931 | 0.994 | 0.868 | 0.0000000 | 1 | Grik2 |
0.0000000 | 0.4147323 | 0.880 | 0.437 | 0.0000000 | 1 | Cdh6 |
0.0000000 | 1.2753468 | 0.785 | 0.040 | 0.0000000 | 2 | Cfap299 |
0.0000000 | 1.2557930 | 0.761 | 0.023 | 0.0000000 | 2 | Dnah12 |
0.0000000 | 1.1597560 | 0.773 | 0.104 | 0.0000000 | 2 | Adamts20 |
0.0000000 | 1.0796429 | 0.755 | 0.039 | 0.0000000 | 2 | Dnah6 |
0.0000000 | 1.0502595 | 0.822 | 0.095 | 0.0000000 | 2 | Cfap54 |
0.0000000 | 1.0298384 | 0.810 | 0.118 | 0.0000000 | 2 | Spag16 |
0.0000000 | 1.0196588 | 0.804 | 0.072 | 0.0000000 | 2 | Ccdc162 |
0.0000000 | 1.0130810 | 0.791 | 0.032 | 0.0000000 | 2 | Hydin |
0.0000000 | 1.0021477 | 0.767 | 0.054 | 0.0000000 | 2 | Cfap61 |
0.0000000 | 1.0017248 | 0.804 | 0.056 | 0.0000000 | 2 | Rgs22 |
0.0000000 | 0.9974433 | 0.791 | 0.069 | 0.0000000 | 2 | Cfap44 |
0.0000000 | 0.9863835 | 0.847 | 0.103 | 0.0000000 | 2 | Gm973 |
0.0000000 | 0.9656747 | 0.791 | 0.049 | 0.0000000 | 2 | Spef2 |
0.0000000 | 0.9587074 | 0.761 | 0.051 | 0.0000000 | 2 | Ak7 |
0.0000000 | 0.9536831 | 0.791 | 0.024 | 0.0000000 | 2 | Ak9 |
0.0000000 | 0.9531191 | 0.969 | 0.884 | 0.0000000 | 2 | Syne1 |
0.0000000 | 0.9518822 | 0.810 | 0.059 | 0.0000000 | 2 | Kif6 |
0.0000000 | 0.9506150 | 0.798 | 0.132 | 0.0000000 | 2 | Dnah9 |
0.0000000 | 0.9440670 | 0.779 | 0.037 | 0.0000000 | 2 | Dnah11 |
0.0000000 | 0.9041702 | 0.761 | 0.026 | 0.0000000 | 2 | Cfap65 |
0.0000000 | 0.5608464 | 0.810 | 0.333 | 0.0000000 | 3 | Unc5d |
0.0000000 | 0.5580631 | 0.866 | 0.520 | 0.0000000 | 3 | Cdh18 |
0.0000000 | 0.4651351 | 0.866 | 0.335 | 0.0000000 | 3 | Tafa2 |
0.0000000 | 0.4597091 | 0.789 | 0.312 | 0.0000000 | 3 | Gm15398 |
0.0000000 | 0.4452701 | 0.915 | 0.682 | 0.0000000 | 3 | Galntl6 |
0.0000000 | 0.4450124 | 0.873 | 0.232 | 0.0000000 | 3 | Dlgap2 |
0.0000000 | 0.4358118 | 0.979 | 0.741 | 0.0000000 | 3 | Lrrtm4 |
0.0000000 | 0.4260853 | 0.873 | 0.363 | 0.0000000 | 3 | Gm26871 |
0.0000480 | 0.4250104 | 0.535 | 0.419 | 0.9930575 | 3 | Adarb2 |
0.0000000 | 0.4097539 | 0.873 | 0.488 | 0.0000000 | 3 | Gria1 |
0.0000000 | 0.4029539 | 0.958 | 0.718 | 0.0000000 | 3 | Lingo2 |
0.0000000 | 0.4002465 | 0.965 | 0.801 | 0.0000000 | 3 | Ralyl |
0.0000000 | 0.3943962 | 1.000 | 0.832 | 0.0000000 | 3 | Ahi1 |
0.0000000 | 0.3943376 | 1.000 | 0.766 | 0.0000000 | 3 | Dlg2 |
0.0000000 | 0.3921796 | 0.831 | 0.318 | 0.0000000 | 3 | Grin2a |
0.0000000 | 0.3850609 | 0.810 | 0.430 | 0.0000000 | 3 | Grm8 |
0.0000000 | 0.3732597 | 0.979 | 0.648 | 0.0000000 | 3 | A230006K03Rik |
0.0000000 | 0.3696774 | 0.979 | 0.784 | 0.0000000 | 3 | Dab1 |
0.0000000 | 0.3531083 | 0.683 | 0.121 | 0.0000000 | 3 | B230217J21Rik |
0.0000000 | 0.3444115 | 0.908 | 0.638 | 0.0000000 | 3 | Cntnap5a |
0.0000000 | 0.9047788 | 0.935 | 0.311 | 0.0000000 | 4 | Gm3764 |
0.0000000 | 0.8179890 | 0.971 | 0.628 | 0.0000000 | 4 | Ptprz1 |
0.0000000 | 0.7988612 | 0.949 | 0.429 | 0.0000000 | 4 | Slc4a4 |
0.0000000 | 0.7099902 | 0.971 | 0.734 | 0.0000000 | 4 | Npas3 |
0.0000000 | 0.6853820 | 0.928 | 0.665 | 0.0000000 | 4 | Luzp2 |
0.0000000 | 0.6719878 | 0.928 | 0.408 | 0.0000000 | 4 | Gm48747 |
0.0000000 | 0.6436592 | 0.790 | 0.180 | 0.0000000 | 4 | Slc6a11 |
0.0000000 | 0.6110417 | 0.899 | 0.374 | 0.0000000 | 4 | Nhsl1 |
0.0000000 | 0.6106302 | 0.935 | 0.639 | 0.0000000 | 4 | Gpc5 |
0.0000000 | 0.6049856 | 0.935 | 0.553 | 0.0000000 | 4 | Trim9 |
0.0000000 | 0.5907997 | 1.000 | 0.733 | 0.0000000 | 4 | Qk |
0.0000000 | 0.5708835 | 0.841 | 0.193 | 0.0000000 | 4 | Lrig1 |
0.0000000 | 0.5577725 | 0.928 | 0.508 | 0.0000000 | 4 | Wdr17 |
0.0000000 | 0.5505430 | 0.957 | 0.648 | 0.0000000 | 4 | Grm3 |
0.0000000 | 0.5466775 | 0.971 | 0.575 | 0.0000000 | 4 | Ptn |
0.0000000 | 0.5409534 | 0.906 | 0.492 | 0.0000000 | 4 | Slc1a2 |
0.0000000 | 0.5363683 | 0.790 | 0.168 | 0.0000000 | 4 | Bmpr1b |
0.0000000 | 0.5356458 | 0.848 | 0.261 | 0.0000000 | 4 | Plpp3 |
0.0000000 | 0.5292591 | 0.877 | 0.237 | 0.0000000 | 4 | Apoe |
0.0000000 | 0.5166935 | 0.717 | 0.141 | 0.0000000 | 4 | Pla2g7 |
0.0000000 | 0.4387974 | 0.991 | 0.896 | 0.0000000 | 5 | Gm42418 |
0.0000012 | 0.3672638 | 0.909 | 0.844 | 0.0239738 | 5 | Gm26917 |
0.0000000 | 0.3635542 | 0.682 | 0.455 | 0.0000481 | 5 | Cdh4 |
0.0000000 | 0.3596761 | 0.909 | 0.556 | 0.0000000 | 5 | Cmss1 |
0.0000000 | 0.3509651 | 0.836 | 0.481 | 0.0000000 | 5 | Rbfox3 |
0.0000000 | 0.3420507 | 0.727 | 0.390 | 0.0000000 | 5 | Gm26871 |
0.0000000 | 0.3377407 | 0.845 | 0.534 | 0.0000000 | 5 | Nxph1 |
0.0000000 | 0.3137945 | 0.791 | 0.549 | 0.0000000 | 5 | Gpi1 |
0.0000000 | 0.3093742 | 0.627 | 0.271 | 0.0000000 | 5 | Dlgap2 |
0.0000000 | 0.2992671 | 0.982 | 0.862 | 0.0000000 | 5 | Camta1 |
0.0000000 | 0.2979735 | 1.000 | 0.907 | 0.0000000 | 5 | Meg3 |
0.0000000 | 0.2919796 | 0.991 | 0.801 | 0.0000000 | 5 | Nkain2 |
0.0000000 | 0.2909660 | 0.955 | 0.695 | 0.0000000 | 5 | Celf4 |
0.0000000 | 0.2830124 | 0.836 | 0.580 | 0.0000001 | 5 | Klhl29 |
0.0000000 | 0.2805466 | 0.955 | 0.792 | 0.0000000 | 5 | Dab1 |
0.0000000 | 0.2784120 | 0.873 | 0.528 | 0.0000000 | 5 | Cdh18 |
0.0000000 | 0.2761471 | 0.909 | 0.637 | 0.0000000 | 5 | Usp29 |
0.0000000 | 0.2734255 | 0.955 | 0.737 | 0.0000002 | 5 | Schip1 |
0.0000019 | 0.2646295 | 0.527 | 0.318 | 0.0401717 | 5 | Gm32647 |
0.0000000 | 0.2646166 | 0.991 | 0.825 | 0.0000000 | 5 | Ptprn2 |
0.0000000 | 1.3287492 | 0.667 | 0.033 | 0.0000000 | 6 | Ptgds |
0.0000000 | 1.1001808 | 0.933 | 0.048 | 0.0000000 | 6 | Ranbp3l |
0.0000000 | 1.0231247 | 0.956 | 0.883 | 0.0000000 | 6 | Trpm3 |
0.0000000 | 0.9147659 | 0.933 | 0.225 | 0.0000000 | 6 | Adam12 |
0.0000000 | 0.8879254 | 0.867 | 0.056 | 0.0000000 | 6 | Slc6a20a |
0.0000000 | 0.8669011 | 0.844 | 0.109 | 0.0000000 | 6 | Adamts12 |
0.0000000 | 0.8499882 | 0.878 | 0.165 | 0.0000000 | 6 | Sidt1 |
0.0000000 | 0.7909713 | 0.767 | 0.144 | 0.0000000 | 6 | Bmp6 |
0.0000000 | 0.7883417 | 0.956 | 0.310 | 0.0000000 | 6 | Atp1a2 |
0.0000000 | 0.7644435 | 0.900 | 0.016 | 0.0000000 | 6 | Slc6a13 |
0.0000000 | 0.7474819 | 0.922 | 0.292 | 0.0000000 | 6 | Bicc1 |
0.0000000 | 0.7271937 | 0.744 | 0.183 | 0.0000000 | 6 | Slc7a11 |
0.0000000 | 0.7090860 | 0.867 | 0.701 | 0.0000000 | 6 | Nnat |
0.0000000 | 0.6924188 | 0.767 | 0.145 | 0.0000000 | 6 | Lrmda |
0.0000000 | 0.6884408 | 0.844 | 0.109 | 0.0000000 | 6 | Cped1 |
0.0000000 | 0.6758639 | 0.878 | 0.146 | 0.0000000 | 6 | Tmtc4 |
0.0000000 | 0.6605440 | 0.844 | 0.268 | 0.0000000 | 6 | Sned1 |
0.0000000 | 0.6390464 | 0.911 | 0.105 | 0.0000000 | 6 | Arhgap29 |
0.0000000 | 0.6233387 | 0.878 | 0.231 | 0.0000000 | 6 | Pdzrn3 |
0.0000000 | 0.5929585 | 0.822 | 0.138 | 0.0000000 | 6 | Colec12 |
0.0000000 | 0.9487361 | 0.958 | 0.304 | 0.0000000 | 7 | 6330411D24Rik |
0.0000000 | 0.8401545 | 0.972 | 0.336 | 0.0000000 | 7 | Pex5l |
0.0000000 | 0.6446468 | 0.986 | 0.511 | 0.0000000 | 7 | Ryr3 |
0.0000000 | 0.6350898 | 0.986 | 0.525 | 0.0000000 | 7 | Spock1 |
0.0000000 | 0.6163441 | 0.917 | 0.404 | 0.0000000 | 7 | Adarb1 |
0.0000000 | 0.5945646 | 1.000 | 0.783 | 0.0000000 | 7 | Hs6st3 |
0.0000000 | 0.5938236 | 0.861 | 0.163 | 0.0000000 | 7 | 4930419G24Rik |
0.0000000 | 0.5647983 | 0.986 | 0.521 | 0.0000000 | 7 | Edil3 |
0.0000000 | 0.5421220 | 0.944 | 0.233 | 0.0000000 | 7 | Ptpn3 |
0.0000000 | 0.5377003 | 1.000 | 0.518 | 0.0000000 | 7 | Zmat4 |
0.0000000 | 0.5373895 | 0.944 | 0.416 | 0.0000000 | 7 | Cntn3 |
0.0000000 | 0.5326070 | 1.000 | 0.696 | 0.0000000 | 7 | Frmpd4 |
0.0000000 | 0.5131547 | 1.000 | 0.617 | 0.0000000 | 7 | Zfp804b |
0.0000000 | 0.5076611 | 1.000 | 0.655 | 0.0000000 | 7 | Unc13c |
0.0000000 | 0.5075011 | 0.972 | 0.489 | 0.0000000 | 7 | Camk4 |
0.0000000 | 0.4950522 | 0.986 | 0.671 | 0.0000000 | 7 | Cacnb4 |
0.0000000 | 0.4940987 | 0.972 | 0.421 | 0.0000000 | 7 | Epb41l4b |
0.0000000 | 0.4919531 | 1.000 | 0.879 | 0.0000000 | 7 | Prickle2 |
0.0000000 | 0.4915512 | 0.944 | 0.265 | 0.0000000 | 7 | Fras1 |
0.0000000 | 0.4912050 | 0.958 | 0.587 | 0.0000000 | 7 | Pak7 |
0.0000000 | 0.9315875 | 0.957 | 0.429 | 0.0000000 | 8 | Hs3st4 |
0.0000000 | 0.8830266 | 1.000 | 0.797 | 0.0000000 | 8 | Lrrc4c |
0.0000000 | 0.8702088 | 0.814 | 0.196 | 0.0000000 | 8 | 4930445B16Rik |
0.0000000 | 0.8293413 | 1.000 | 0.698 | 0.0000000 | 8 | Dpp10 |
0.0000000 | 0.8184406 | 1.000 | 0.691 | 0.0000000 | 8 | Galntl6 |
0.0000000 | 0.7285249 | 0.914 | 0.279 | 0.0000000 | 8 | Kcnmb2 |
0.0000000 | 0.6817534 | 0.929 | 0.150 | 0.0000000 | 8 | Gm15155 |
0.0000000 | 0.6707176 | 0.886 | 0.192 | 0.0000000 | 8 | Meis2 |
0.0000000 | 0.6624833 | 0.971 | 0.813 | 0.0000000 | 8 | Asic2 |
0.0000000 | 0.6501771 | 0.943 | 0.288 | 0.0000000 | 8 | Ubash3b |
0.0000000 | 0.6447586 | 0.971 | 0.781 | 0.0000000 | 8 | Nrg1 |
0.0000000 | 0.6310500 | 0.871 | 0.071 | 0.0000000 | 8 | Gad1 |
0.0000000 | 0.6099125 | 0.957 | 0.096 | 0.0000000 | 8 | Gad2 |
0.0000000 | 0.5988190 | 0.986 | 0.663 | 0.0000000 | 8 | Grm3 |
0.0000000 | 0.5938922 | 0.729 | 0.148 | 0.0000000 | 8 | Sema3e |
0.0000000 | 0.5905362 | 0.886 | 0.132 | 0.0000000 | 8 | Ptchd1 |
0.0000000 | 0.5854086 | 1.000 | 0.880 | 0.0000000 | 8 | Nrxn3 |
0.0000000 | 0.5853860 | 0.971 | 0.432 | 0.0000000 | 8 | Fign |
0.0000000 | 0.5767985 | 0.871 | 0.336 | 0.0000000 | 8 | Ak5 |
0.0000000 | 0.5755538 | 0.986 | 0.610 | 0.0000000 | 8 | Zfp804a |
0.0000000 | 1.3227119 | 0.984 | 0.053 | 0.0000000 | 9 | Flt1 |
0.0000000 | 1.1177770 | 0.984 | 0.104 | 0.0000000 | 9 | Mecom |
0.0000000 | 0.9762405 | 0.984 | 0.210 | 0.0000000 | 9 | Dach1 |
0.0000000 | 0.9535095 | 0.952 | 0.149 | 0.0000000 | 9 | Slc7a1 |
0.0000000 | 0.9290368 | 0.935 | 0.053 | 0.0000000 | 9 | Ets1 |
0.0000000 | 0.9213625 | 0.887 | 0.116 | 0.0000000 | 9 | Slco1c1 |
0.0000000 | 0.9055905 | 0.935 | 0.069 | 0.0000000 | 9 | Slc7a5 |
0.0000000 | 0.8841938 | 0.919 | 0.015 | 0.0000000 | 9 | Egfl7 |
0.0000000 | 0.8678912 | 0.935 | 0.030 | 0.0000000 | 9 | Ptprb |
0.0000000 | 0.8581400 | 0.919 | 0.058 | 0.0000000 | 9 | Fli1 |
0.0000000 | 0.8457729 | 0.968 | 0.230 | 0.0000000 | 9 | Ccdc141 |
0.0000000 | 0.8305455 | 0.871 | 0.191 | 0.0000000 | 9 | Hmcn1 |
0.0000000 | 0.8284534 | 0.903 | 0.030 | 0.0000000 | 9 | Adgrl4 |
0.0000000 | 0.8179876 | 0.968 | 0.368 | 0.0000000 | 9 | Slc38a2 |
0.0000000 | 0.7916615 | 1.000 | 0.311 | 0.0000000 | 9 | Myo10 |
0.0000000 | 0.7810337 | 0.823 | 0.055 | 0.0000000 | 9 | Apcdd1 |
0.0000000 | 0.7741358 | 0.952 | 0.286 | 0.0000000 | 9 | Rapgef5 |
0.0000000 | 0.7670584 | 1.000 | 0.632 | 0.0000000 | 9 | Ptprm |
0.0000000 | 0.7670278 | 0.887 | 0.226 | 0.0000000 | 9 | Tfrc |
0.0000000 | 0.7660856 | 0.887 | 0.109 | 0.0000000 | 9 | Lama4 |
0.0000000 | 0.7966165 | 0.869 | 0.163 | 0.0000000 | 10 | 4930588A03Rik |
0.0000000 | 0.7900272 | 0.918 | 0.123 | 0.0000000 | 10 | Gm38505 |
0.0000000 | 0.7892775 | 0.984 | 0.469 | 0.0000000 | 10 | Pcdh15 |
0.0000000 | 0.7020805 | 1.000 | 0.441 | 0.0000000 | 10 | Sox6 |
0.0000000 | 0.6957390 | 0.984 | 0.527 | 0.0000000 | 10 | 6030443J06Rik |
0.0000000 | 0.6718450 | 0.836 | 0.129 | 0.0000000 | 10 | Pdgfra |
0.0000000 | 0.6512600 | 0.984 | 0.551 | 0.0000000 | 10 | Sox2ot |
0.0000000 | 0.6372609 | 0.967 | 0.471 | 0.0000000 | 10 | Lhfpl3 |
0.0000000 | 0.6270686 | 0.918 | 0.247 | 0.0000000 | 10 | Dscaml1 |
0.0000000 | 0.5654791 | 0.967 | 0.500 | 0.0000000 | 10 | Xylt1 |
0.0000000 | 0.5652314 | 0.951 | 0.514 | 0.0000000 | 10 | Epn2 |
0.0000000 | 0.5536460 | 0.820 | 0.083 | 0.0000000 | 10 | Sox10 |
0.0000000 | 0.5288474 | 0.918 | 0.309 | 0.0000000 | 10 | Mir9-3hg |
0.0000000 | 0.5160463 | 0.984 | 0.554 | 0.0000000 | 10 | Pcdh11x |
0.0000000 | 0.4990924 | 1.000 | 0.708 | 0.0000000 | 10 | Sgcd |
0.0000000 | 0.4937250 | 0.836 | 0.244 | 0.0000000 | 10 | Megf11 |
0.0000000 | 0.4869009 | 1.000 | 0.668 | 0.0000000 | 10 | Dcc |
0.0000000 | 0.4563497 | 0.918 | 0.431 | 0.0000000 | 10 | Tnr |
0.0000000 | 0.4527685 | 1.000 | 0.539 | 0.0000000 | 10 | Nxph1 |
0.0000000 | 0.4519295 | 0.820 | 0.224 | 0.0000000 | 10 | Arhgef3 |
0.0000000 | 1.0241256 | 0.500 | 0.174 | 0.0000000 | 11 | Mbp |
0.0000002 | 0.8482169 | 0.379 | 0.153 | 0.0048912 | 11 | 9630013A20Rik |
0.0000000 | 0.8172537 | 0.328 | 0.092 | 0.0000033 | 11 | Plp1 |
0.0000000 | 0.7469378 | 0.310 | 0.055 | 0.0000000 | 11 | St18 |
0.0000000 | 0.7263954 | 0.517 | 0.087 | 0.0000000 | 11 | Npsr1 |
0.0000000 | 0.7020544 | 0.983 | 0.839 | 0.0000000 | 11 | Kcnip4 |
0.0000000 | 0.6602253 | 0.707 | 0.219 | 0.0000000 | 11 | Pcsk5 |
0.0000126 | 0.6549541 | 0.293 | 0.123 | 0.2607246 | 11 | Cnksr3 |
0.0000000 | 0.5952941 | 0.862 | 0.627 | 0.0000002 | 11 | Zfp804b |
0.0000000 | 0.5662574 | 0.259 | 0.006 | 0.0000000 | 11 | Mobp |
0.0000000 | 0.5583427 | 0.690 | 0.193 | 0.0000000 | 11 | Prox1 |
0.0000000 | 0.5540357 | 0.741 | 0.355 | 0.0000000 | 11 | Cntnap5c |
0.0000004 | 0.5495114 | 0.828 | 0.631 | 0.0088573 | 11 | Nfasc |
0.0000000 | 0.5457659 | 0.828 | 0.692 | 0.0001353 | 11 | Brinp3 |
0.0000000 | 0.5030720 | 0.293 | 0.020 | 0.0000000 | 11 | Mag |
0.0003653 | 0.4724393 | 0.759 | 0.648 | 1.0000000 | 11 | Tmeff2 |
0.0000000 | 0.4713310 | 0.948 | 0.626 | 0.0000000 | 11 | Gm20754 |
0.0000010 | 0.4706809 | 0.431 | 0.196 | 0.0199178 | 11 | Cemip2 |
0.0000000 | 0.4487399 | 0.862 | 0.672 | 0.0000024 | 11 | Rgs6 |
0.0000000 | 0.4460125 | 0.741 | 0.349 | 0.0000000 | 11 | Prr16 |
0.0000041 | 0.4743175 | 0.610 | 0.355 | 0.0839666 | 12 | Gm15398 |
0.0000000 | 0.4619596 | 0.610 | 0.304 | 0.0010143 | 12 | Slit3 |
0.0000979 | 0.4598898 | 0.488 | 0.267 | 1.0000000 | 12 | Gm45321 |
0.0000000 | 0.4584631 | 0.683 | 0.308 | 0.0000188 | 12 | Stxbp5l |
0.0000015 | 0.4039485 | 0.610 | 0.315 | 0.0300932 | 12 | 4930555F03Rik |
0.0000000 | 0.4024779 | 0.976 | 0.760 | 0.0000028 | 12 | Lrrtm4 |
0.0021607 | 0.3880570 | 0.878 | 0.791 | 1.0000000 | 12 | Unc5c |
0.0000293 | 0.3812647 | 0.390 | 0.180 | 0.6059771 | 12 | Gfra1 |
0.0001393 | 0.3810508 | 0.561 | 0.325 | 1.0000000 | 12 | Kctd8 |
0.0000000 | 0.3777165 | 0.854 | 0.560 | 0.0005099 | 12 | Gpi1 |
0.0000000 | 0.3641411 | 1.000 | 0.784 | 0.0000130 | 12 | Nrg1 |
0.0009473 | 0.3494685 | 1.000 | 0.892 | 1.0000000 | 12 | Kcnma1 |
0.0002867 | 0.3432635 | 0.268 | 0.101 | 1.0000000 | 12 | Npsr1 |
0.0000532 | 0.3364966 | 0.683 | 0.409 | 1.0000000 | 12 | C130073E24Rik |
0.0000004 | 0.3288227 | 0.732 | 0.411 | 0.0073581 | 12 | Unc13a |
0.0000026 | 0.3222958 | 0.488 | 0.224 | 0.0548183 | 12 | Gm2516 |
0.0000006 | 0.3211624 | 0.829 | 0.518 | 0.0128026 | 12 | Cdh8 |
0.0000000 | 0.3122612 | 0.732 | 0.362 | 0.0009475 | 12 | Grin2a |
0.0000000 | 0.3033823 | 0.659 | 0.289 | 0.0002781 | 12 | Cntnap4 |
0.0000000 | 0.3031174 | 0.415 | 0.128 | 0.0002314 | 12 | Nefm |
0.0000000 | 0.9449937 | 0.647 | 0.144 | 0.0000000 | 13 | Bcas1 |
0.0000000 | 0.9409910 | 0.706 | 0.447 | 0.0002074 | 13 | Tnr |
0.0000000 | 0.7218463 | 0.559 | 0.059 | 0.0000000 | 13 | Bcas1os2 |
0.0000000 | 0.6971670 | 0.647 | 0.215 | 0.0000000 | 13 | Tns3 |
0.0000000 | 0.6352373 | 0.882 | 0.746 | 0.0010193 | 13 | Fyn |
0.0000000 | 0.6340517 | 0.824 | 0.172 | 0.0000000 | 13 | Mbp |
0.0000000 | 0.6121338 | 0.676 | 0.300 | 0.0000082 | 13 | Itpr2 |
0.0000045 | 0.5947798 | 0.647 | 0.457 | 0.0934544 | 13 | Epb41l2 |
0.0000000 | 0.5885908 | 0.618 | 0.034 | 0.0000000 | 13 | Enpp6 |
0.0000087 | 0.5688640 | 0.882 | 0.821 | 0.1789699 | 13 | Opcml |
0.0000000 | 0.5635389 | 0.824 | 0.372 | 0.0000001 | 13 | Ust |
0.0000000 | 0.5545936 | 0.529 | 0.054 | 0.0000000 | 13 | St18 |
0.0000618 | 0.5448275 | 0.559 | 0.330 | 1.0000000 | 13 | Gm32647 |
0.0000002 | 0.5375124 | 0.824 | 0.590 | 0.0040599 | 13 | 9530059O14Rik |
0.0000000 | 0.5357745 | 1.000 | 0.651 | 0.0000001 | 13 | Tmem108 |
0.0000063 | 0.5283072 | 0.882 | 0.633 | 0.1306024 | 13 | Nfasc |
0.0000000 | 0.5262521 | 0.735 | 0.275 | 0.0000000 | 13 | Sirt2 |
0.0000371 | 0.5146112 | 0.588 | 0.360 | 0.7666722 | 13 | Prr16 |
0.0000000 | 0.5041546 | 0.588 | 0.244 | 0.0002005 | 13 | Abtb2 |
0.0000030 | 0.4999108 | 1.000 | 0.927 | 0.0617428 | 13 | Frmd4a |
0.0000000 | 1.3744411 | 1.000 | 0.080 | 0.0000000 | 14 | Bnc2 |
0.0000000 | 0.9355881 | 1.000 | 0.463 | 0.0000000 | 14 | Fbxl7 |
0.0000000 | 0.9272111 | 0.867 | 0.059 | 0.0000000 | 14 | Adamtsl3 |
0.0000000 | 0.9157545 | 0.933 | 0.158 | 0.0000000 | 14 | Thsd4 |
0.0000000 | 0.9076270 | 1.000 | 0.713 | 0.0000000 | 14 | Foxp1 |
0.0000000 | 0.8969509 | 1.000 | 0.383 | 0.0000000 | 14 | Slc38a2 |
0.0000000 | 0.8967671 | 0.933 | 0.320 | 0.0000000 | 14 | Nr3c2 |
0.0000000 | 0.8908707 | 0.900 | 0.546 | 0.0000000 | 14 | Slc4a10 |
0.0000000 | 0.8503342 | 0.933 | 0.065 | 0.0000000 | 14 | Trabd2b |
0.0000000 | 0.8333417 | 0.833 | 0.312 | 0.0000000 | 14 | Col25a1 |
0.0000000 | 0.8118453 | 0.833 | 0.183 | 0.0000000 | 14 | Itgbl1 |
0.0000000 | 0.7796978 | 0.933 | 0.357 | 0.0000000 | 14 | Gulp1 |
0.0000000 | 0.7562549 | 0.933 | 0.115 | 0.0000000 | 14 | Eya2 |
0.0000000 | 0.7426407 | 0.967 | 0.452 | 0.0000000 | 14 | Tmtc1 |
0.0000000 | 0.7338606 | 0.867 | 0.259 | 0.0000000 | 14 | Sh3pxd2a |
0.0000000 | 0.7283485 | 1.000 | 0.645 | 0.0000000 | 14 | Tmeff2 |
0.0000000 | 0.7180718 | 0.800 | 0.096 | 0.0000000 | 14 | Dock5 |
0.0000000 | 0.7033469 | 0.967 | 0.205 | 0.0000000 | 14 | Hmcn1 |
0.0000000 | 0.7017159 | 0.967 | 0.312 | 0.0000000 | 14 | Nxn |
0.0000000 | 0.6722369 | 0.567 | 0.067 | 0.0000000 | 14 | Crispld1 |
0.0000000 | 1.6692281 | 0.900 | 0.174 | 0.0000000 | 15 | Htr2c |
0.0000000 | 1.4475659 | 1.000 | 0.079 | 0.0000000 | 15 | Ttr |
0.0000000 | 0.9520627 | 1.000 | 0.542 | 0.0000000 | 15 | Wdr17 |
0.0000000 | 0.9413800 | 0.800 | 0.026 | 0.0000000 | 15 | Gmnc |
0.0000000 | 0.9072979 | 0.900 | 0.190 | 0.0000000 | 15 | Enpp2 |
0.0000000 | 0.8979889 | 0.967 | 0.065 | 0.0000000 | 15 | Rbm47 |
0.0000000 | 0.8974342 | 0.900 | 0.234 | 0.0000000 | 15 | Vat1l |
0.0000000 | 0.8787920 | 0.933 | 0.163 | 0.0000000 | 15 | Sulf1 |
0.0000000 | 0.8685294 | 0.933 | 0.192 | 0.0000000 | 15 | Otx2os1 |
0.0000000 | 0.8414672 | 0.967 | 0.673 | 0.0000000 | 15 | Stk39 |
0.0000000 | 0.8107865 | 1.000 | 0.885 | 0.0000000 | 15 | Trpm3 |
0.0000000 | 0.7751631 | 0.900 | 0.330 | 0.0000000 | 15 | Nhsl2 |
0.0000000 | 0.7668973 | 0.967 | 0.242 | 0.0000000 | 15 | C330002G04Rik |
0.0000000 | 0.7504541 | 0.967 | 0.383 | 0.0000000 | 15 | Itpr1 |
0.0000000 | 0.7147429 | 1.000 | 0.706 | 0.0000000 | 15 | Frmpd4 |
0.0000000 | 0.7066112 | 0.867 | 0.175 | 0.0000000 | 15 | Prdm16 |
0.0000000 | 0.7000165 | 1.000 | 0.589 | 0.0000000 | 15 | Rfx3 |
0.0000000 | 0.6970875 | 0.800 | 0.254 | 0.0000000 | 15 | Cab39l |
0.0000000 | 0.6945247 | 0.800 | 0.225 | 0.0000000 | 15 | Atp2b3 |
0.0000000 | 0.6784167 | 0.933 | 0.169 | 0.0000000 | 15 | Slc16a2 |
0.0000000 | 0.6093348 | 0.964 | 0.428 | 0.0000000 | 16 | Pcsk2 |
0.0000000 | 0.5823304 | 0.857 | 0.248 | 0.0000000 | 16 | Stxbp6 |
0.0000000 | 0.5686065 | 1.000 | 0.380 | 0.0000000 | 16 | Lef1 |
0.0000000 | 0.5294625 | 1.000 | 0.713 | 0.0000000 | 16 | Ntng1 |
0.0000000 | 0.5060755 | 0.964 | 0.434 | 0.0000000 | 16 | Cntn3 |
0.0000000 | 0.5014865 | 1.000 | 0.302 | 0.0000000 | 16 | Cpne7 |
0.0000000 | 0.4788813 | 0.964 | 0.199 | 0.0000000 | 16 | Prox1 |
0.0000000 | 0.4644870 | 0.893 | 0.422 | 0.0000100 | 16 | Adarb2 |
0.0000000 | 0.4626738 | 1.000 | 0.527 | 0.0000000 | 16 | Ryr3 |
0.0000037 | 0.4577550 | 0.643 | 0.318 | 0.0757812 | 16 | 4930555F03Rik |
0.0000000 | 0.4526475 | 1.000 | 0.782 | 0.0000000 | 16 | Cntnap2 |
0.0000000 | 0.4508588 | 0.964 | 0.739 | 0.0000034 | 16 | Lingo2 |
0.0000000 | 0.4413095 | 0.964 | 0.766 | 0.0000730 | 16 | Mgat4c |
0.0000000 | 0.4407631 | 0.964 | 0.723 | 0.0000254 | 16 | Sox5 |
0.0000000 | 0.4366980 | 0.893 | 0.328 | 0.0000000 | 16 | 6330411D24Rik |
0.0000000 | 0.4363868 | 0.679 | 0.189 | 0.0000000 | 16 | Sox5os4 |
0.0000000 | 0.4347882 | 0.750 | 0.125 | 0.0000000 | 16 | Rxfp1 |
0.0000000 | 0.4340566 | 1.000 | 0.534 | 0.0000009 | 16 | Zmat4 |
0.0000000 | 0.4294471 | 1.000 | 0.753 | 0.0000001 | 16 | Syt1 |
0.0000208 | 0.4211794 | 0.750 | 0.609 | 0.4296014 | 16 | Rorb |
0.0000000 | 0.8169323 | 1.000 | 0.632 | 0.0000000 | 17 | Zfp804b |
0.0000000 | 0.7913766 | 1.000 | 0.608 | 0.0000000 | 17 | Kcnq5 |
0.0000000 | 0.7854327 | 1.000 | 0.738 | 0.0000002 | 17 | Cntn5 |
0.0000000 | 0.7255555 | 1.000 | 0.842 | 0.0000001 | 17 | Kcnip4 |
0.0000000 | 0.7024320 | 1.000 | 0.785 | 0.0000000 | 17 | Tenm2 |
0.0000001 | 0.6813306 | 0.952 | 0.767 | 0.0017939 | 17 | Mgat4c |
0.0000000 | 0.6570441 | 1.000 | 0.751 | 0.0000010 | 17 | Schip1 |
0.0000000 | 0.5996349 | 0.905 | 0.377 | 0.0000001 | 17 | Epha3 |
0.0000000 | 0.5933017 | 1.000 | 0.819 | 0.0000023 | 17 | Opcml |
0.0000000 | 0.5851687 | 1.000 | 0.635 | 0.0000007 | 17 | Gm20754 |
0.0000000 | 0.5699112 | 0.857 | 0.304 | 0.0000004 | 17 | Slit3 |
0.0000000 | 0.5638579 | 0.952 | 0.764 | 0.0001885 | 17 | Lrrtm4 |
0.0000000 | 0.5532614 | 0.952 | 0.868 | 0.0000636 | 17 | Slc24a3 |
0.0000000 | 0.5432472 | 1.000 | 0.598 | 0.0000004 | 17 | Gabra2 |
0.0000000 | 0.5378526 | 0.952 | 0.434 | 0.0000181 | 17 | 4930509J09Rik |
0.0000001 | 0.5333226 | 1.000 | 0.724 | 0.0014001 | 17 | Sox5 |
0.0000000 | 0.5284057 | 0.524 | 0.100 | 0.0000015 | 17 | Npsr1 |
0.0000000 | 0.5197057 | 1.000 | 0.887 | 0.0000022 | 17 | Rims2 |
0.0000000 | 0.5170743 | 0.905 | 0.669 | 0.0000508 | 17 | Kcnc2 |
0.0000000 | 0.5093695 | 1.000 | 0.520 | 0.0000015 | 17 | Cdh8 |
Version | Author | Date |
---|---|---|
3b19c24 | Evgenii O. Tretiakov | 2023-02-02 |
markers.logreg %>%
group_by(cluster) %>%
top_n(n = 10, wt = avg_log10FC) -> top10
DoHeatmap(combined.srt, features = top10$gene) + NoLegend()
It seems that we should split datasets despite the fact that they’re derived from the same experiment. It should help us to get better embeddings and clusters.
DefaultAssay(combined.srt) <- "RNA"
combined.srt$comb_clstr2 <- Idents(combined.srt)
combined.srt@meta.data <-
combined.srt@meta.data %>%
select(nCount_RNA,
nFeature_RNA,
log10GenesPerUMI,
percent_mito,
percent_ribo,
percent_hb,
var_regex,
S.Score,
G2M.Score,
log_prob_doublet,
orig.ident,
comb_clstr1,
comb_clstr2,
QC,
cell_name)
srt.list <- SplitObject(combined.srt,
split.by = "orig.ident")
THP7 <- srt.list[["THP7"]]
Pr5P7 <- srt.list[["Pr5P7"]]
plan("sequential")
invisible(gc())
plan("multisession", workers = 4)
n_cores <- 4
options(future.globals.maxSize = 8000 * 1024^2)
n_pcs <- 100
c(THP7, THP7.markers.logreg, THP7.markers.mast) %<-% DeriveKTree(THP7)
|
|======================================================================| 100%
|
|== | 3%
|
|==== | 5%
|
|===== | 8%
|
|======= | 10%
|
|========= | 13%
|
|=========== | 15%
|
|============== | 21%
|
|================== | 26%
|
|==================== | 28%
|
|======================= | 33%
|
|========================= | 36%
|
|=========================== | 38%
|
|============================= | 41%
|
|================================ | 46%
|
|================================== | 49%
|
|==================================== | 51%
|
|====================================== | 54%
|
|======================================= | 56%
|
|========================================= | 59%
|
|=========================================== | 62%
|
|============================================= | 64%
|
|=============================================== | 67%
|
|================================================ | 69%
|
|================================================== | 72%
|
|==================================================== | 74%
|
|======================================================== | 79%
|
|========================================================= | 82%
|
|=========================================================== | 85%
|
|=============================================================== | 90%
|
|================================================================= | 92%
|
|================================================================== | 95%
|
|==================================================================== | 97%
|
|======================================================================| 100%
Idents(THP7) <- "k_tree"
THP7$sep_clstr <- Idents(THP7)
THP7.markers.logreg %>%
group_by(cluster) %>%
slice_max(n = 20, order_by = avg_log10FC) %>%
kable("html") %>%
kable_material(
bootstrap_options = c("bordered",
"condensed",
"responsive",
"striped"),
position = "left",
font_size = 14
)
p_val | avg_log10FC | pct.1 | pct.2 | p_val_adj | cluster | gene |
---|---|---|---|---|---|---|
0 | 0.7640263 | 0.950 | 0.664 | 0 | 1 | Kcnip4 |
0 | 0.7242854 | 0.940 | 0.440 | 0 | 1 | Tenm2 |
0 | 0.6964606 | 0.855 | 0.418 | 0 | 1 | Brinp3 |
0 | 0.6258743 | 0.840 | 0.433 | 0 | 1 | Cntn5 |
0 | 0.6240539 | 0.840 | 0.312 | 0 | 1 | Gm20754 |
0 | 0.6158324 | 0.810 | 0.401 | 0 | 1 | Kcnq5 |
0 | 0.6118205 | 0.890 | 0.444 | 0 | 1 | Lrrtm4 |
0 | 0.5953479 | 0.730 | 0.291 | 0 | 1 | Pcdh15 |
0 | 0.5813549 | 0.365 | 0.069 | 0 | 1 | Npsr1 |
0 | 0.5753793 | 0.730 | 0.222 | 0 | 1 | Tafa2 |
0 | 0.5498454 | 0.805 | 0.446 | 0 | 1 | Dcc |
0 | 0.5455645 | 0.945 | 0.556 | 0 | 1 | Opcml |
0 | 0.5315668 | 0.805 | 0.532 | 0 | 1 | Zfp804b |
0 | 0.5139852 | 0.865 | 0.347 | 0 | 1 | Khdrbs2 |
0 | 0.5019838 | 0.795 | 0.388 | 0 | 1 | Gria1 |
0 | 0.5018060 | 0.915 | 0.461 | 0 | 1 | Sntg1 |
0 | 0.4986099 | 0.625 | 0.356 | 0 | 1 | Nxph1 |
0 | 0.4919916 | 0.670 | 0.244 | 0 | 1 | 4930509J09Rik |
0 | 0.4905154 | 0.795 | 0.263 | 0 | 1 | Pcsk2 |
0 | 0.4835379 | 0.700 | 0.321 | 0 | 1 | Prr16 |
0 | 1.4353259 | 0.959 | 0.107 | 0 | 2 | Cfap299 |
0 | 1.4343721 | 0.959 | 0.055 | 0 | 2 | Dnah12 |
0 | 1.3442395 | 0.951 | 0.253 | 0 | 2 | Adamts20 |
0 | 1.2221474 | 0.951 | 0.124 | 0 | 2 | Dnah6 |
0 | 1.2009083 | 0.951 | 0.137 | 0 | 2 | Rgs22 |
0 | 1.1988035 | 0.951 | 0.103 | 0 | 2 | Hydin |
0 | 1.1947244 | 0.959 | 0.164 | 0 | 2 | Cfap61 |
0 | 1.1822099 | 0.959 | 0.098 | 0 | 2 | Ak7 |
0 | 1.1679765 | 0.967 | 0.234 | 0 | 2 | Cfap54 |
0 | 1.1573976 | 0.934 | 0.138 | 0 | 2 | Cfap44 |
0 | 1.1542253 | 0.959 | 0.214 | 0 | 2 | Ccdc162 |
0 | 1.1378544 | 0.959 | 0.085 | 0 | 2 | Ak9 |
0 | 1.1361903 | 0.967 | 0.162 | 0 | 2 | Kif6 |
0 | 1.1337913 | 0.959 | 0.148 | 0 | 2 | Spef2 |
0 | 1.1293963 | 0.959 | 0.232 | 0 | 2 | Gm973 |
0 | 1.1273505 | 0.959 | 0.234 | 0 | 2 | Dnah9 |
0 | 1.1142377 | 0.951 | 0.292 | 0 | 2 | Spag16 |
0 | 1.1087591 | 0.967 | 0.077 | 0 | 2 | Cfap65 |
0 | 1.1018309 | 0.918 | 0.054 | 0 | 2 | Spag17 |
0 | 1.1011970 | 0.951 | 0.111 | 0 | 2 | Dnah11 |
0 | 1.1422599 | 0.916 | 0.163 | 0 | 3 | 6330411D24Rik |
0 | 0.7427098 | 0.935 | 0.309 | 0 | 3 | Pex5l |
0 | 0.7227560 | 0.963 | 0.438 | 0 | 3 | Ntng1 |
0 | 0.6957097 | 0.963 | 0.418 | 0 | 3 | Arpp21 |
0 | 0.6897156 | 0.944 | 0.397 | 0 | 3 | Ryr3 |
0 | 0.6812756 | 0.888 | 0.336 | 0 | 3 | Spock1 |
0 | 0.6269982 | 0.907 | 0.381 | 0 | 3 | Edil3 |
0 | 0.6125840 | 0.935 | 0.382 | 0 | 3 | Camk4 |
0 | 0.5941741 | 0.953 | 0.659 | 0 | 3 | Hs6st3 |
0 | 0.5767449 | 0.832 | 0.275 | 0 | 3 | Adarb2 |
0 | 0.5651408 | 0.953 | 0.539 | 0 | 3 | Lrrc7 |
0 | 0.5642189 | 0.944 | 0.400 | 0 | 3 | Zmat4 |
0 | 0.5489119 | 0.935 | 0.408 | 0 | 3 | Hs3st5 |
0 | 0.5474077 | 0.963 | 0.515 | 0 | 3 | Syt1 |
0 | 0.5442789 | 0.841 | 0.160 | 0 | 3 | 4930419G24Rik |
0 | 0.5364514 | 0.888 | 0.348 | 0 | 3 | Cntn3 |
0 | 0.5343979 | 0.907 | 0.481 | 0 | 3 | Adarb1 |
0 | 0.5270442 | 0.935 | 0.332 | 0 | 3 | Nell1 |
0 | 0.5266853 | 0.963 | 0.508 | 0 | 3 | Cntnap2 |
0 | 0.5239474 | 0.832 | 0.233 | 0 | 3 | Gm48749 |
0 | 1.0601642 | 0.974 | 0.323 | 0 | 4 | Gm3764 |
0 | 1.0035949 | 0.974 | 0.491 | 0 | 4 | Slc4a4 |
0 | 0.8680456 | 0.987 | 0.653 | 0 | 4 | Ptprz1 |
0 | 0.8458438 | 0.921 | 0.464 | 0 | 4 | Gm48747 |
0 | 0.8097657 | 0.921 | 0.170 | 0 | 4 | Bmpr1b |
0 | 0.7941314 | 0.803 | 0.197 | 0 | 4 | Slc6a11 |
0 | 0.7930614 | 0.934 | 0.313 | 0 | 4 | Apoe |
0 | 0.7570380 | 0.868 | 0.558 | 0 | 4 | Luzp2 |
0 | 0.7566663 | 0.987 | 0.315 | 0 | 4 | Plpp3 |
0 | 0.7471816 | 0.803 | 0.473 | 0 | 4 | Gpc5 |
0 | 0.7341970 | 0.908 | 0.264 | 0 | 4 | Lrig1 |
0 | 0.7309734 | 0.842 | 0.216 | 0 | 4 | Pla2g7 |
0 | 0.7302177 | 0.921 | 0.614 | 0 | 4 | Trim9 |
0 | 0.7299330 | 0.711 | 0.162 | 0 | 4 | Tnc |
0 | 0.7265035 | 0.974 | 0.594 | 0 | 4 | Ptn |
0 | 0.7001316 | 0.829 | 0.158 | 0 | 4 | Egfr |
0 | 0.6932982 | 0.987 | 0.650 | 0 | 4 | Gpm6b |
0 | 0.6907836 | 1.000 | 0.726 | 0 | 4 | Npas3 |
0 | 0.6835288 | 0.855 | 0.228 | 0 | 4 | Cdh20 |
0 | 0.6759784 | 1.000 | 0.774 | 0 | 4 | Qk |
0 | 1.2233431 | 0.585 | 0.070 | 0 | 5 | Flt1 |
0 | 1.1530867 | 0.938 | 0.437 | 0 | 5 | Dlc1 |
0 | 1.1040712 | 0.831 | 0.132 | 0 | 5 | Ebf1 |
0 | 0.9695445 | 0.385 | 0.080 | 0 | 5 | Atp13a5 |
0 | 0.9447831 | 0.646 | 0.050 | 0 | 5 | Itga1 |
0 | 0.9233525 | 0.723 | 0.115 | 0 | 5 | Cped1 |
0 | 0.9164770 | 0.692 | 0.052 | 0 | 5 | Ets1 |
0 | 0.9156116 | 0.538 | 0.139 | 0 | 5 | Adamts12 |
0 | 0.9017114 | 0.492 | 0.187 | 0 | 5 | Mecom |
0 | 0.8743776 | 0.708 | 0.262 | 0 | 5 | Dach1 |
0 | 0.8571195 | 0.615 | 0.262 | 0 | 5 | Adam12 |
0 | 0.8482186 | 0.738 | 0.077 | 0 | 5 | Lama4 |
0 | 0.8392114 | 0.600 | 0.242 | 0 | 5 | Slc7a1 |
0 | 0.8326942 | 0.646 | 0.384 | 0 | 5 | Rapgef5 |
0 | 0.8221493 | 0.523 | 0.025 | 0 | 5 | Rgs5 |
0 | 0.8115852 | 0.615 | 0.062 | 0 | 5 | Fli1 |
0 | 0.7913175 | 0.462 | 0.027 | 0 | 5 | Egfl7 |
0 | 0.7888761 | 0.569 | 0.247 | 0 | 5 | Hmcn1 |
0 | 0.7753925 | 0.677 | 0.526 | 0 | 5 | Slc38a2 |
0 | 0.7750763 | 0.538 | 0.033 | 0 | 5 | Morrbid |
0 | 1.0385184 | 0.940 | 0.312 | 0 | 6 | Hs3st4 |
0 | 0.9788616 | 0.970 | 0.531 | 0 | 6 | Dpp10 |
0 | 0.9569103 | 1.000 | 0.668 | 0 | 6 | Lrrc4c |
0 | 0.9222581 | 0.985 | 0.503 | 0 | 6 | Galntl6 |
0 | 0.9116642 | 0.821 | 0.198 | 0 | 6 | 4930445B16Rik |
0 | 0.8126178 | 0.970 | 0.606 | 0 | 6 | Nrg1 |
0 | 0.7723695 | 0.910 | 0.183 | 0 | 6 | Gm15155 |
0 | 0.7621331 | 0.970 | 0.737 | 0 | 6 | Asic2 |
0 | 0.7432652 | 0.881 | 0.315 | 0 | 6 | Kcnmb2 |
0 | 0.7145113 | 1.000 | 0.467 | 0 | 6 | Sgcz |
0 | 0.7131163 | 0.925 | 0.338 | 0 | 6 | Ubash3b |
0 | 0.7086752 | 0.940 | 0.377 | 0 | 6 | Fign |
0 | 0.6962755 | 0.866 | 0.243 | 0 | 6 | Meis2 |
0 | 0.6839052 | 0.940 | 0.420 | 0 | 6 | Galnt13 |
0 | 0.6736126 | 0.806 | 0.164 | 0 | 6 | D030068K23Rik |
0 | 0.6671779 | 1.000 | 0.757 | 0 | 6 | Nrxn3 |
0 | 0.6667063 | 0.955 | 0.451 | 0 | 6 | Zfp804a |
0 | 0.6661510 | 0.940 | 0.104 | 0 | 6 | Gad2 |
0 | 0.6614709 | 0.881 | 0.104 | 0 | 6 | Gad1 |
0 | 0.6524320 | 0.881 | 0.367 | 0 | 6 | Ak5 |
0 | 1.9640315 | 1.000 | 0.140 | 0 | 7 | Htr2c |
0 | 1.4597121 | 1.000 | 0.177 | 0 | 7 | Ttr |
0 | 1.2423272 | 0.926 | 0.052 | 0 | 7 | Gmnc |
0 | 1.1559174 | 1.000 | 0.253 | 0 | 7 | Vat1l |
0 | 1.1478074 | 1.000 | 0.769 | 0 | 7 | Trpm3 |
0 | 1.1352757 | 1.000 | 0.143 | 0 | 7 | Sulf1 |
0 | 1.1263682 | 1.000 | 0.089 | 0 | 7 | Rbm47 |
0 | 1.0851914 | 0.963 | 0.253 | 0 | 7 | Enpp2 |
0 | 1.0289727 | 1.000 | 0.322 | 0 | 7 | Otx2os1 |
0 | 1.0243521 | 0.963 | 0.656 | 0 | 7 | Stk39 |
0 | 1.0196880 | 1.000 | 0.336 | 0 | 7 | C330002G04Rik |
0 | 1.0076501 | 0.963 | 0.378 | 0 | 7 | Nhsl2 |
0 | 0.9995940 | 1.000 | 0.630 | 0 | 7 | Wdr17 |
0 | 0.9747735 | 0.926 | 0.317 | 0 | 7 | Atp2b3 |
0 | 0.9328334 | 0.815 | 0.046 | 0 | 7 | Col8a1 |
0 | 0.9033041 | 0.963 | 0.188 | 0 | 7 | Slc16a2 |
0 | 0.8731274 | 0.889 | 0.556 | 0 | 7 | Slc4a10 |
0 | 0.8715270 | 0.778 | 0.198 | 0 | 7 | Gm28376 |
0 | 0.8700451 | 0.852 | 0.435 | 0 | 7 | Cab39l |
0 | 0.8429674 | 0.926 | 0.297 | 0 | 7 | Prdm16 |
THP7.markers.mast %>%
group_by(cluster) %>%
slice_max(n = 20, order_by = avg_log10FC) %>%
kable("html") %>%
kable_material(
bootstrap_options = c("bordered",
"condensed",
"responsive",
"striped"),
position = "left",
font_size = 14
)
p_val | avg_log10FC | pct.1 | pct.2 | p_val_adj | cluster | gene |
---|---|---|---|---|---|---|
0 | 0.7640263 | 0.950 | 0.664 | 0 | 1 | Kcnip4 |
0 | 0.7242854 | 0.940 | 0.440 | 0 | 1 | Tenm2 |
0 | 0.6964606 | 0.855 | 0.418 | 0 | 1 | Brinp3 |
0 | 0.6258743 | 0.840 | 0.433 | 0 | 1 | Cntn5 |
0 | 0.6240539 | 0.840 | 0.312 | 0 | 1 | Gm20754 |
0 | 0.6158324 | 0.810 | 0.401 | 0 | 1 | Kcnq5 |
0 | 0.6118205 | 0.890 | 0.444 | 0 | 1 | Lrrtm4 |
0 | 0.5953479 | 0.730 | 0.291 | 0 | 1 | Pcdh15 |
0 | 0.5813549 | 0.365 | 0.069 | 0 | 1 | Npsr1 |
0 | 0.5753793 | 0.730 | 0.222 | 0 | 1 | Tafa2 |
0 | 0.5498454 | 0.805 | 0.446 | 0 | 1 | Dcc |
0 | 0.5455645 | 0.945 | 0.556 | 0 | 1 | Opcml |
0 | 0.5315668 | 0.805 | 0.532 | 0 | 1 | Zfp804b |
0 | 0.5139852 | 0.865 | 0.347 | 0 | 1 | Khdrbs2 |
0 | 0.5019838 | 0.795 | 0.388 | 0 | 1 | Gria1 |
0 | 0.5018060 | 0.915 | 0.461 | 0 | 1 | Sntg1 |
0 | 0.4986099 | 0.625 | 0.356 | 0 | 1 | Nxph1 |
0 | 0.4919916 | 0.670 | 0.244 | 0 | 1 | 4930509J09Rik |
0 | 0.4905154 | 0.795 | 0.263 | 0 | 1 | Pcsk2 |
0 | 0.4835379 | 0.700 | 0.321 | 0 | 1 | Prr16 |
0 | 1.4353259 | 0.959 | 0.107 | 0 | 2 | Cfap299 |
0 | 1.4343721 | 0.959 | 0.055 | 0 | 2 | Dnah12 |
0 | 1.3442395 | 0.951 | 0.253 | 0 | 2 | Adamts20 |
0 | 1.2221474 | 0.951 | 0.124 | 0 | 2 | Dnah6 |
0 | 1.2009083 | 0.951 | 0.137 | 0 | 2 | Rgs22 |
0 | 1.1988035 | 0.951 | 0.103 | 0 | 2 | Hydin |
0 | 1.1947244 | 0.959 | 0.164 | 0 | 2 | Cfap61 |
0 | 1.1822099 | 0.959 | 0.098 | 0 | 2 | Ak7 |
0 | 1.1679765 | 0.967 | 0.234 | 0 | 2 | Cfap54 |
0 | 1.1573976 | 0.934 | 0.138 | 0 | 2 | Cfap44 |
0 | 1.1542253 | 0.959 | 0.214 | 0 | 2 | Ccdc162 |
0 | 1.1378544 | 0.959 | 0.085 | 0 | 2 | Ak9 |
0 | 1.1361903 | 0.967 | 0.162 | 0 | 2 | Kif6 |
0 | 1.1337913 | 0.959 | 0.148 | 0 | 2 | Spef2 |
0 | 1.1293963 | 0.959 | 0.232 | 0 | 2 | Gm973 |
0 | 1.1273505 | 0.959 | 0.234 | 0 | 2 | Dnah9 |
0 | 1.1142377 | 0.951 | 0.292 | 0 | 2 | Spag16 |
0 | 1.1087591 | 0.967 | 0.077 | 0 | 2 | Cfap65 |
0 | 1.1018309 | 0.918 | 0.054 | 0 | 2 | Spag17 |
0 | 1.1011970 | 0.951 | 0.111 | 0 | 2 | Dnah11 |
0 | 1.1422599 | 0.916 | 0.163 | 0 | 3 | 6330411D24Rik |
0 | 0.7427098 | 0.935 | 0.309 | 0 | 3 | Pex5l |
0 | 0.7227560 | 0.963 | 0.438 | 0 | 3 | Ntng1 |
0 | 0.6957097 | 0.963 | 0.418 | 0 | 3 | Arpp21 |
0 | 0.6897156 | 0.944 | 0.397 | 0 | 3 | Ryr3 |
0 | 0.6812756 | 0.888 | 0.336 | 0 | 3 | Spock1 |
0 | 0.6269982 | 0.907 | 0.381 | 0 | 3 | Edil3 |
0 | 0.6125840 | 0.935 | 0.382 | 0 | 3 | Camk4 |
0 | 0.5941741 | 0.953 | 0.659 | 0 | 3 | Hs6st3 |
0 | 0.5767449 | 0.832 | 0.275 | 0 | 3 | Adarb2 |
0 | 0.5651408 | 0.953 | 0.539 | 0 | 3 | Lrrc7 |
0 | 0.5642189 | 0.944 | 0.400 | 0 | 3 | Zmat4 |
0 | 0.5489119 | 0.935 | 0.408 | 0 | 3 | Hs3st5 |
0 | 0.5474077 | 0.963 | 0.515 | 0 | 3 | Syt1 |
0 | 0.5442789 | 0.841 | 0.160 | 0 | 3 | 4930419G24Rik |
0 | 0.5364514 | 0.888 | 0.348 | 0 | 3 | Cntn3 |
0 | 0.5343979 | 0.907 | 0.481 | 0 | 3 | Adarb1 |
0 | 0.5270442 | 0.935 | 0.332 | 0 | 3 | Nell1 |
0 | 0.5266853 | 0.963 | 0.508 | 0 | 3 | Cntnap2 |
0 | 0.5239474 | 0.832 | 0.233 | 0 | 3 | Gm48749 |
0 | 1.0601642 | 0.974 | 0.323 | 0 | 4 | Gm3764 |
0 | 1.0035949 | 0.974 | 0.491 | 0 | 4 | Slc4a4 |
0 | 0.8680456 | 0.987 | 0.653 | 0 | 4 | Ptprz1 |
0 | 0.8458438 | 0.921 | 0.464 | 0 | 4 | Gm48747 |
0 | 0.8097657 | 0.921 | 0.170 | 0 | 4 | Bmpr1b |
0 | 0.7941314 | 0.803 | 0.197 | 0 | 4 | Slc6a11 |
0 | 0.7930614 | 0.934 | 0.313 | 0 | 4 | Apoe |
0 | 0.7570380 | 0.868 | 0.558 | 0 | 4 | Luzp2 |
0 | 0.7566663 | 0.987 | 0.315 | 0 | 4 | Plpp3 |
0 | 0.7471816 | 0.803 | 0.473 | 0 | 4 | Gpc5 |
0 | 0.7341970 | 0.908 | 0.264 | 0 | 4 | Lrig1 |
0 | 0.7309734 | 0.842 | 0.216 | 0 | 4 | Pla2g7 |
0 | 0.7302177 | 0.921 | 0.614 | 0 | 4 | Trim9 |
0 | 0.7299330 | 0.711 | 0.162 | 0 | 4 | Tnc |
0 | 0.7265035 | 0.974 | 0.594 | 0 | 4 | Ptn |
0 | 0.7001316 | 0.829 | 0.158 | 0 | 4 | Egfr |
0 | 0.6932982 | 0.987 | 0.650 | 0 | 4 | Gpm6b |
0 | 0.6907836 | 1.000 | 0.726 | 0 | 4 | Npas3 |
0 | 0.6835288 | 0.855 | 0.228 | 0 | 4 | Cdh20 |
0 | 0.6759784 | 1.000 | 0.774 | 0 | 4 | Qk |
0 | 1.2233431 | 0.585 | 0.070 | 0 | 5 | Flt1 |
0 | 1.1530867 | 0.938 | 0.437 | 0 | 5 | Dlc1 |
0 | 1.1040712 | 0.831 | 0.132 | 0 | 5 | Ebf1 |
0 | 0.9695445 | 0.385 | 0.080 | 0 | 5 | Atp13a5 |
0 | 0.9447831 | 0.646 | 0.050 | 0 | 5 | Itga1 |
0 | 0.9233525 | 0.723 | 0.115 | 0 | 5 | Cped1 |
0 | 0.9164770 | 0.692 | 0.052 | 0 | 5 | Ets1 |
0 | 0.9156116 | 0.538 | 0.139 | 0 | 5 | Adamts12 |
0 | 0.9017114 | 0.492 | 0.187 | 0 | 5 | Mecom |
0 | 0.8743776 | 0.708 | 0.262 | 0 | 5 | Dach1 |
0 | 0.8571195 | 0.615 | 0.262 | 0 | 5 | Adam12 |
0 | 0.8482186 | 0.738 | 0.077 | 0 | 5 | Lama4 |
0 | 0.8392114 | 0.600 | 0.242 | 0 | 5 | Slc7a1 |
0 | 0.8326942 | 0.646 | 0.384 | 0 | 5 | Rapgef5 |
0 | 0.8221493 | 0.523 | 0.025 | 0 | 5 | Rgs5 |
0 | 0.8115852 | 0.615 | 0.062 | 0 | 5 | Fli1 |
0 | 0.7913175 | 0.462 | 0.027 | 0 | 5 | Egfl7 |
0 | 0.7888761 | 0.569 | 0.247 | 0 | 5 | Hmcn1 |
0 | 0.7753925 | 0.677 | 0.526 | 0 | 5 | Slc38a2 |
0 | 0.7750763 | 0.538 | 0.033 | 0 | 5 | Morrbid |
0 | 1.0385184 | 0.940 | 0.312 | 0 | 6 | Hs3st4 |
0 | 0.9788616 | 0.970 | 0.531 | 0 | 6 | Dpp10 |
0 | 0.9569103 | 1.000 | 0.668 | 0 | 6 | Lrrc4c |
0 | 0.9222581 | 0.985 | 0.503 | 0 | 6 | Galntl6 |
0 | 0.9116642 | 0.821 | 0.198 | 0 | 6 | 4930445B16Rik |
0 | 0.8126178 | 0.970 | 0.606 | 0 | 6 | Nrg1 |
0 | 0.7723695 | 0.910 | 0.183 | 0 | 6 | Gm15155 |
0 | 0.7621331 | 0.970 | 0.737 | 0 | 6 | Asic2 |
0 | 0.7432652 | 0.881 | 0.315 | 0 | 6 | Kcnmb2 |
0 | 0.7145113 | 1.000 | 0.467 | 0 | 6 | Sgcz |
0 | 0.7131163 | 0.925 | 0.338 | 0 | 6 | Ubash3b |
0 | 0.7086752 | 0.940 | 0.377 | 0 | 6 | Fign |
0 | 0.6962755 | 0.866 | 0.243 | 0 | 6 | Meis2 |
0 | 0.6839052 | 0.940 | 0.420 | 0 | 6 | Galnt13 |
0 | 0.6736126 | 0.806 | 0.164 | 0 | 6 | D030068K23Rik |
0 | 0.6671779 | 1.000 | 0.757 | 0 | 6 | Nrxn3 |
0 | 0.6667063 | 0.955 | 0.451 | 0 | 6 | Zfp804a |
0 | 0.6661510 | 0.940 | 0.104 | 0 | 6 | Gad2 |
0 | 0.6614709 | 0.881 | 0.104 | 0 | 6 | Gad1 |
0 | 0.6524320 | 0.881 | 0.367 | 0 | 6 | Ak5 |
0 | 1.9640315 | 1.000 | 0.140 | 0 | 7 | Htr2c |
0 | 1.4597121 | 1.000 | 0.177 | 0 | 7 | Ttr |
0 | 1.2423272 | 0.926 | 0.052 | 0 | 7 | Gmnc |
0 | 1.1559174 | 1.000 | 0.253 | 0 | 7 | Vat1l |
0 | 1.1478074 | 1.000 | 0.769 | 0 | 7 | Trpm3 |
0 | 1.1352757 | 1.000 | 0.143 | 0 | 7 | Sulf1 |
0 | 1.1263682 | 1.000 | 0.089 | 0 | 7 | Rbm47 |
0 | 1.0851914 | 0.963 | 0.253 | 0 | 7 | Enpp2 |
0 | 1.0289727 | 1.000 | 0.322 | 0 | 7 | Otx2os1 |
0 | 1.0243521 | 0.963 | 0.656 | 0 | 7 | Stk39 |
0 | 1.0196880 | 1.000 | 0.336 | 0 | 7 | C330002G04Rik |
0 | 1.0076501 | 0.963 | 0.378 | 0 | 7 | Nhsl2 |
0 | 0.9995940 | 1.000 | 0.630 | 0 | 7 | Wdr17 |
0 | 0.9747735 | 0.926 | 0.317 | 0 | 7 | Atp2b3 |
0 | 0.9328334 | 0.815 | 0.046 | 0 | 7 | Col8a1 |
0 | 0.9033041 | 0.963 | 0.188 | 0 | 7 | Slc16a2 |
0 | 0.8731274 | 0.889 | 0.556 | 0 | 7 | Slc4a10 |
0 | 0.8715270 | 0.778 | 0.198 | 0 | 7 | Gm28376 |
0 | 0.8700451 | 0.852 | 0.435 | 0 | 7 | Cab39l |
0 | 0.8429674 | 0.926 | 0.297 | 0 | 7 | Prdm16 |
THP7.markers.mast %>%
group_by(cluster) %>%
top_n(n = 10, wt = avg_log10FC) -> top10
DoHeatmap(THP7, features = top10$gene) + NoLegend()
Version | Author | Date |
---|---|---|
3b19c24 | Evgenii O. Tretiakov | 2023-02-02 |
Version | Author | Date |
---|---|---|
3b19c24 | Evgenii O. Tretiakov | 2023-02-02 |
FeaturePlot_scCustom(THP7, "Galr1", pt.size = 3, order = T, colors_use = combined.srt@misc$expr_Colour_Pal) +
ggtitle("Galr1: ") + theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(THP7, "Gal", pt.size = 3, order = T, colors_use = combined.srt@misc$expr_Colour_Pal) +
ggtitle("Gal: ") + theme(plot.title = element_text(size = 24))
Version | Author | Date |
---|---|---|
3b19c24 | Evgenii O. Tretiakov | 2023-02-02 |
SaveH5Seurat(THP7,
filename = here(data_dir,
"THP7_clusters.h5Seurat"),
overwrite = TRUE)
Convert(here(data_dir,
"THP7_clusters.h5Seurat"),
dest = "h5ad",
overwrite = TRUE)
plan("sequential")
invisible(gc())
plan("multisession", workers = 4)
n_cores <- 4
options(future.globals.maxSize = 8000 * 1024^2)
n_pcs <- 100
c(Pr5P7, Pr5P7.markers.logreg, Pr5P7.markers.mast) %<-% DeriveKTree(Pr5P7)
|
|======================================================================| 100%
|
|= | 2%
|
|== | 3%
|
|=== | 5%
|
|==== | 6%
|
|====== | 8%
|
|======== | 11%
|
|========= | 13%
|
|========== | 14%
|
|=========== | 16%
|
|============= | 19%
|
|============== | 21%
|
|================ | 22%
|
|===================== | 30%
|
|======================= | 33%
|
|======================== | 35%
|
|========================== | 37%
|
|=========================== | 38%
|
|============================ | 40%
|
|============================= | 41%
|
|=============================== | 44%
|
|================================ | 46%
|
|================================== | 49%
|
|==================================== | 51%
|
|===================================== | 52%
|
|====================================== | 54%
|
|======================================= | 56%
|
|======================================== | 57%
|
|========================================= | 59%
|
|========================================== | 60%
|
|=========================================== | 62%
|
|============================================ | 63%
|
|============================================== | 65%
|
|================================================ | 68%
|
|================================================== | 71%
|
|=================================================== | 73%
|
|===================================================== | 76%
|
|====================================================== | 78%
|
|======================================================== | 79%
|
|=========================================================== | 84%
|
|============================================================ | 86%
|
|============================================================== | 89%
|
|=============================================================== | 90%
|
|================================================================ | 92%
|
|================================================================== | 94%
|
|=================================================================== | 95%
|
|==================================================================== | 97%
|
|===================================================================== | 98%
|
|======================================================================| 100%
Idents(Pr5P7) <- "k_tree"
Pr5P7$sep_clstr <- Idents(Pr5P7)
Pr5P7.markers.logreg %>%
group_by(cluster) %>%
slice_max(n = 20, order_by = avg_log10FC) %>%
kable("html") %>%
kable_material(
bootstrap_options = c("bordered",
"condensed",
"responsive",
"striped"),
position = "left",
font_size = 14
)
p_val | avg_log10FC | pct.1 | pct.2 | p_val_adj | cluster | gene |
---|---|---|---|---|---|---|
0.0000000 | 0.7682727 | 0.994 | 0.522 | 0.0000000 | 1 | Ntng1 |
0.0000000 | 0.6587305 | 0.987 | 0.528 | 0.0000000 | 1 | Tenm1 |
0.0000000 | 0.6417097 | 0.994 | 0.472 | 0.0000000 | 1 | Rnf220 |
0.0000000 | 0.6295557 | 0.987 | 0.399 | 0.0000000 | 1 | Samd5 |
0.0000000 | 0.6142961 | 0.962 | 0.548 | 0.0000000 | 1 | Shisa9 |
0.0000000 | 0.6052970 | 0.885 | 0.300 | 0.0000000 | 1 | Gm48749 |
0.0000000 | 0.6023628 | 0.974 | 0.492 | 0.0000000 | 1 | Tafa1 |
0.0000000 | 0.5527608 | 0.827 | 0.317 | 0.0000000 | 1 | Zmat4 |
0.0000000 | 0.5396341 | 0.808 | 0.286 | 0.0000000 | 1 | 6330411D24Rik |
0.0000000 | 0.5392844 | 0.885 | 0.349 | 0.0000000 | 1 | Cdh6 |
0.0000000 | 0.5356545 | 0.897 | 0.417 | 0.0000000 | 1 | Thsd7b |
0.0000000 | 0.5311141 | 0.962 | 0.516 | 0.0000000 | 1 | Egfem1 |
0.0000000 | 0.5296590 | 0.936 | 0.389 | 0.0000000 | 1 | Nell1 |
0.0000000 | 0.5153773 | 0.994 | 0.536 | 0.0000000 | 1 | Syt1 |
0.0000000 | 0.4994833 | 0.929 | 0.407 | 0.0000000 | 1 | Nell2 |
0.0000000 | 0.4905964 | 0.968 | 0.512 | 0.0000000 | 1 | Tox |
0.0000000 | 0.4753295 | 0.635 | 0.196 | 0.0000000 | 1 | Lef1 |
0.0000000 | 0.4737435 | 0.974 | 0.585 | 0.0000000 | 1 | Rims1 |
0.0000000 | 0.4729598 | 0.878 | 0.310 | 0.0000000 | 1 | Kcnh8 |
0.0000000 | 0.4711861 | 0.987 | 0.812 | 0.0000000 | 1 | Ptprd |
0.0000000 | 0.5694511 | 0.814 | 0.335 | 0.0000000 | 2 | Unc5d |
0.0000000 | 0.5683756 | 0.831 | 0.536 | 0.0000000 | 2 | Galntl6 |
0.0000000 | 0.5150861 | 0.780 | 0.367 | 0.0000000 | 2 | Gm15398 |
0.0000000 | 0.5064937 | 0.856 | 0.313 | 0.0000000 | 2 | Tafa2 |
0.0000000 | 0.4883352 | 0.958 | 0.534 | 0.0000000 | 2 | Dpp10 |
0.0000000 | 0.4771407 | 0.780 | 0.382 | 0.0000000 | 2 | Zfp804b |
0.0000000 | 0.4499682 | 0.839 | 0.301 | 0.0000000 | 2 | Grin2a |
0.0000000 | 0.4485589 | 0.992 | 0.627 | 0.0000000 | 2 | Nrg1 |
0.0000000 | 0.4462044 | 0.720 | 0.167 | 0.0000000 | 2 | B230217J21Rik |
0.0000000 | 0.4445790 | 0.907 | 0.532 | 0.0000000 | 2 | Cdh18 |
0.0000000 | 0.4296846 | 0.814 | 0.386 | 0.0000000 | 2 | Rmst |
0.0000000 | 0.4176821 | 0.856 | 0.301 | 0.0000000 | 2 | Dlgap2 |
0.0000000 | 0.4149623 | 0.873 | 0.337 | 0.0000000 | 2 | Kif26b |
0.0000000 | 0.3945519 | 0.839 | 0.468 | 0.0000000 | 2 | Galnt13 |
0.0000241 | 0.3940254 | 0.297 | 0.178 | 0.5111098 | 2 | Meis2 |
0.0000000 | 0.3916516 | 0.992 | 0.655 | 0.0000000 | 2 | Ahi1 |
0.0000000 | 0.3846131 | 0.898 | 0.605 | 0.0000000 | 2 | Asic2 |
0.0000000 | 0.3834957 | 0.805 | 0.391 | 0.0000000 | 2 | Esrrg |
0.0000000 | 0.3797631 | 0.500 | 0.187 | 0.0000000 | 2 | Klhl1 |
0.0000000 | 0.3796274 | 0.788 | 0.470 | 0.0000000 | 2 | Grm8 |
0.0000000 | 0.8745001 | 0.378 | 0.043 | 0.0000000 | 3 | Flt1 |
0.0000000 | 0.7594669 | 0.378 | 0.045 | 0.0000000 | 3 | Mecom |
0.0000000 | 0.7378892 | 0.694 | 0.195 | 0.0000000 | 3 | Dach1 |
0.0000000 | 0.6856541 | 0.418 | 0.063 | 0.0000000 | 3 | Slc7a5 |
0.0000000 | 0.6395670 | 0.439 | 0.043 | 0.0000000 | 3 | Fli1 |
0.0000000 | 0.5893545 | 0.531 | 0.164 | 0.0000000 | 3 | Slc7a1 |
0.0000000 | 0.5835394 | 0.551 | 0.125 | 0.0000000 | 3 | Ccdc141 |
0.0000000 | 0.5390925 | 0.347 | 0.042 | 0.0000000 | 3 | Slco1c1 |
0.0000000 | 0.5380678 | 0.347 | 0.060 | 0.0000000 | 3 | Ets1 |
0.0000000 | 0.5341887 | 0.286 | 0.016 | 0.0000000 | 3 | Egfl7 |
0.0000000 | 0.5124712 | 0.337 | 0.027 | 0.0000000 | 3 | Adgrl4 |
0.0000000 | 0.5078686 | 0.796 | 0.307 | 0.0000000 | 3 | Rapgef5 |
0.0000000 | 0.4877063 | 0.837 | 0.377 | 0.0000000 | 3 | Dlc1 |
0.0000000 | 0.4856556 | 0.347 | 0.023 | 0.0000000 | 3 | Ptprb |
0.0000000 | 0.4692441 | 0.296 | 0.013 | 0.0000000 | 3 | Rassf9 |
0.0000000 | 0.4623950 | 0.337 | 0.063 | 0.0000000 | 3 | Itga1 |
0.0000000 | 0.4617441 | 0.296 | 0.027 | 0.0000000 | 3 | Cyyr1 |
0.0000000 | 0.4599659 | 0.796 | 0.309 | 0.0000000 | 3 | Mef2c |
0.0000000 | 0.4437452 | 0.592 | 0.227 | 0.0000000 | 3 | Tfrc |
0.0000000 | 0.4402024 | 0.898 | 0.578 | 0.0000000 | 3 | Igf1r |
0.0000000 | 0.5455166 | 0.912 | 0.832 | 0.0000299 | 4 | Gm42418 |
0.0000000 | 0.4732368 | 0.647 | 0.493 | 0.0000055 | 4 | Cdh4 |
0.0000000 | 0.4105305 | 0.750 | 0.543 | 0.0000013 | 4 | Rbfox3 |
0.0000000 | 0.4041384 | 0.735 | 0.509 | 0.0000000 | 4 | Gm26871 |
0.0000000 | 0.4007033 | 0.809 | 0.423 | 0.0000000 | 4 | Rmst |
0.0000000 | 0.3995068 | 0.618 | 0.435 | 0.0000717 | 4 | Zfp804b |
0.0000000 | 0.3977313 | 0.735 | 0.536 | 0.0000002 | 4 | Klhl29 |
0.0000014 | 0.3971734 | 0.485 | 0.397 | 0.0297113 | 4 | Gm30382 |
0.0000006 | 0.3781426 | 0.618 | 0.467 | 0.0133712 | 4 | Gria1 |
0.0000043 | 0.3733441 | 0.426 | 0.348 | 0.0905385 | 4 | Matk |
0.0000000 | 0.3706291 | 0.691 | 0.368 | 0.0000001 | 4 | Dlgap2 |
0.0000005 | 0.3619140 | 0.559 | 0.442 | 0.0106278 | 4 | Olfm2 |
0.0000003 | 0.3617732 | 0.529 | 0.418 | 0.0058702 | 4 | Sorcs1 |
0.0000000 | 0.3608576 | 0.735 | 0.538 | 0.0000000 | 4 | Nxph1 |
0.0000000 | 0.3543118 | 0.794 | 0.586 | 0.0000000 | 4 | Grik1 |
0.0000002 | 0.3509807 | 0.706 | 0.551 | 0.0034683 | 4 | Gpi1 |
0.0000000 | 0.3468623 | 0.662 | 0.481 | 0.0000950 | 4 | Camk2b |
0.0000000 | 0.3441086 | 0.721 | 0.502 | 0.0000002 | 4 | Ephb2 |
0.0000000 | 0.3312443 | 0.515 | 0.339 | 0.0008383 | 4 | Cpne7 |
0.0000000 | 0.3201622 | 0.559 | 0.413 | 0.0002159 | 4 | Pdzrn4 |
0.0000000 | 1.0964172 | 0.971 | 0.310 | 0.0000000 | 5 | Gm3764 |
0.0000000 | 1.0318885 | 0.926 | 0.433 | 0.0000000 | 5 | Wdr17 |
0.0000000 | 0.9875801 | 0.985 | 0.402 | 0.0000000 | 5 | Slc4a4 |
0.0000000 | 0.9368011 | 1.000 | 0.622 | 0.0000000 | 5 | Npas3 |
0.0000000 | 0.8908786 | 0.985 | 0.529 | 0.0000000 | 5 | Ptprz1 |
0.0000000 | 0.8719069 | 0.632 | 0.118 | 0.0000000 | 5 | Tnc |
0.0000000 | 0.8546109 | 0.971 | 0.437 | 0.0000000 | 5 | Gm48747 |
0.0000000 | 0.8507387 | 0.779 | 0.245 | 0.0000000 | 5 | Slc6a11 |
0.0000000 | 0.8316447 | 0.882 | 0.322 | 0.0000000 | 5 | Nhsl1 |
0.0000000 | 0.8060870 | 0.853 | 0.243 | 0.0000000 | 5 | Sparcl1 |
0.0000000 | 0.8015543 | 0.985 | 0.620 | 0.0000000 | 5 | Luzp2 |
0.0000000 | 0.7850233 | 0.868 | 0.209 | 0.0000000 | 5 | Lrig1 |
0.0000000 | 0.7839993 | 0.809 | 0.212 | 0.0000000 | 5 | Bmpr1b |
0.0000000 | 0.7433248 | 0.853 | 0.432 | 0.0000000 | 5 | Slc1a2 |
0.0000000 | 0.7171399 | 0.676 | 0.173 | 0.0000000 | 5 | Tnfaip8 |
0.0000000 | 0.7138261 | 0.779 | 0.378 | 0.0000000 | 5 | Sfxn5 |
0.0000000 | 0.7008990 | 0.912 | 0.341 | 0.0000000 | 5 | Mir9-3hg |
0.0000000 | 0.6985497 | 0.632 | 0.092 | 0.0000000 | 5 | Slc39a12 |
0.0000000 | 0.6907878 | 0.897 | 0.500 | 0.0000000 | 5 | Trim9 |
0.0000000 | 0.6816227 | 0.662 | 0.125 | 0.0000000 | 5 | Pla2g7 |
0.0000000 | 1.0605910 | 0.449 | 0.209 | 0.0000000 | 6 | Mbp |
0.0000000 | 1.0156204 | 0.592 | 0.100 | 0.0000000 | 6 | Bcas1 |
0.0000000 | 1.0120110 | 0.878 | 0.285 | 0.0000000 | 6 | Sox6 |
0.0000000 | 0.9753918 | 0.694 | 0.138 | 0.0000000 | 6 | Gm38505 |
0.0000000 | 0.9180520 | 0.714 | 0.090 | 0.0000000 | 6 | Sox10 |
0.0000000 | 0.9156013 | 0.837 | 0.420 | 0.0000000 | 6 | Tnr |
0.0000000 | 0.9155389 | 0.286 | 0.080 | 0.0000000 | 6 | Plp1 |
0.0000000 | 0.8841322 | 0.714 | 0.235 | 0.0000000 | 6 | 4930588A03Rik |
0.0000000 | 0.8707625 | 0.449 | 0.182 | 0.0000000 | 6 | 9630013A20Rik |
0.0000000 | 0.8562393 | 0.918 | 0.401 | 0.0000000 | 6 | Sox2ot |
0.0000000 | 0.8056588 | 0.653 | 0.368 | 0.0000000 | 6 | Pacrg |
0.0000000 | 0.7909532 | 0.265 | 0.065 | 0.0000000 | 6 | St18 |
0.0000000 | 0.7803360 | 0.653 | 0.192 | 0.0000000 | 6 | Tns3 |
0.0000000 | 0.7175360 | 0.449 | 0.045 | 0.0000000 | 6 | Bcas1os2 |
0.0000000 | 0.6976459 | 0.143 | 0.015 | 0.0000294 | 6 | Mobp |
0.0000000 | 0.6891951 | 0.714 | 0.078 | 0.0000000 | 6 | Prkcq |
0.0000000 | 0.6870148 | 0.571 | 0.161 | 0.0000000 | 6 | Pdgfra |
0.0000000 | 0.6845440 | 0.857 | 0.313 | 0.0000000 | 6 | Dscaml1 |
0.0000000 | 0.6835054 | 0.796 | 0.496 | 0.0000000 | 6 | Pcdh15 |
0.0000001 | 0.6520577 | 0.245 | 0.090 | 0.0014227 | 6 | Cnksr3 |
0.0000000 | 1.5543447 | 0.729 | 0.079 | 0.0000000 | 7 | Ptgds |
0.0000000 | 1.3853127 | 1.000 | 0.084 | 0.0000000 | 7 | Ranbp3l |
0.0000000 | 1.2886189 | 0.938 | 0.076 | 0.0000000 | 7 | Slc6a20a |
0.0000000 | 1.1765734 | 0.875 | 0.833 | 0.0000000 | 7 | Trpm3 |
0.0000000 | 1.1306027 | 0.917 | 0.257 | 0.0000000 | 7 | Sidt1 |
0.0000000 | 1.0809888 | 0.938 | 0.331 | 0.0000000 | 7 | Adam12 |
0.0000000 | 1.0798617 | 0.938 | 0.051 | 0.0000000 | 7 | Slc6a13 |
0.0000000 | 1.0558545 | 0.833 | 0.114 | 0.0000000 | 7 | Bmp6 |
0.0000000 | 1.0432585 | 0.979 | 0.321 | 0.0000000 | 7 | Atp1a2 |
0.0000000 | 1.0375787 | 0.938 | 0.255 | 0.0000000 | 7 | Bicc1 |
0.0000000 | 1.0160532 | 0.812 | 0.169 | 0.0000000 | 7 | Adamts12 |
0.0000000 | 1.0154212 | 0.833 | 0.192 | 0.0000000 | 7 | Lrmda |
0.0000000 | 1.0065613 | 0.771 | 0.656 | 0.0000000 | 7 | Nnat |
0.0000000 | 1.0044631 | 0.792 | 0.195 | 0.0000000 | 7 | Slc7a11 |
0.0000000 | 0.9952095 | 0.875 | 0.248 | 0.0000000 | 7 | Sned1 |
0.0000000 | 0.9610983 | 0.896 | 0.248 | 0.0000000 | 7 | Tmtc4 |
0.0000000 | 0.9392163 | 0.958 | 0.131 | 0.0000000 | 7 | Arhgap29 |
0.0000000 | 0.8767605 | 0.896 | 0.240 | 0.0000000 | 7 | Pdzrn3 |
0.0000000 | 0.8741322 | 0.792 | 0.111 | 0.0000000 | 7 | Eya1 |
0.0000000 | 0.8643599 | 0.854 | 0.131 | 0.0000000 | 7 | Colec12 |
0.0000000 | 1.5180739 | 1.000 | 0.125 | 0.0000000 | 8 | Bnc2 |
0.0000000 | 1.2317607 | 0.897 | 0.104 | 0.0000000 | 8 | Adamtsl3 |
0.0000000 | 1.1389751 | 0.931 | 0.177 | 0.0000000 | 8 | Thsd4 |
0.0000000 | 1.1196392 | 0.931 | 0.061 | 0.0000000 | 8 | Trabd2b |
0.0000000 | 1.1169845 | 0.931 | 0.525 | 0.0000000 | 8 | Slc4a10 |
0.0000000 | 1.1058182 | 1.000 | 0.413 | 0.0000000 | 8 | Slc38a2 |
0.0000000 | 1.0887117 | 0.828 | 0.343 | 0.0000000 | 8 | Col25a1 |
0.0000000 | 1.0463921 | 1.000 | 0.474 | 0.0000000 | 8 | Fbxl7 |
0.0000000 | 1.0442771 | 1.000 | 0.605 | 0.0000000 | 8 | Foxp1 |
0.0000000 | 1.0199695 | 0.759 | 0.002 | 0.0000000 | 8 | Slc47a1 |
0.0000000 | 1.0069592 | 0.862 | 0.265 | 0.0000000 | 8 | Itgbl1 |
0.0000000 | 0.9757935 | 0.793 | 0.088 | 0.0000000 | 8 | Dock5 |
0.0000000 | 0.9689388 | 0.966 | 0.213 | 0.0000000 | 8 | Hmcn1 |
0.0000000 | 0.9624254 | 0.931 | 0.388 | 0.0000000 | 8 | Nr3c2 |
0.0000000 | 0.9498822 | 0.931 | 0.368 | 0.0000000 | 8 | Gulp1 |
0.0000000 | 0.9328857 | 0.586 | 0.111 | 0.0000000 | 8 | Crispld1 |
0.0000000 | 0.9293280 | 0.862 | 0.324 | 0.0000000 | 8 | Sh3pxd2a |
0.0000000 | 0.9111383 | 0.931 | 0.165 | 0.0000000 | 8 | Eya2 |
0.0000000 | 0.8943753 | 0.828 | 0.294 | 0.0000000 | 8 | Slit2 |
0.0000000 | 0.8872551 | 0.931 | 0.490 | 0.0000000 | 8 | Tmtc1 |
0.0000000 | 0.7973422 | 0.833 | 0.375 | 0.0000000 | 9 | Stxbp5l |
0.0000000 | 0.7943548 | 0.500 | 0.052 | 0.0000062 | 9 | Gm42397 |
0.0000000 | 0.7756423 | 0.944 | 0.699 | 0.0000000 | 9 | Unc5c |
0.0000000 | 0.7623770 | 0.444 | 0.036 | 0.0000076 | 9 | Lmx1a |
0.0000009 | 0.7539547 | 0.556 | 0.218 | 0.0184195 | 9 | Reln |
0.0000004 | 0.7345614 | 0.333 | 0.044 | 0.0091203 | 9 | Gm27016 |
0.0000052 | 0.7092636 | 0.667 | 0.333 | 0.1092290 | 9 | Chn2 |
0.0000000 | 0.7032384 | 0.500 | 0.188 | 0.0000886 | 9 | Adamts18 |
0.0000001 | 0.6979407 | 0.722 | 0.205 | 0.0025532 | 9 | Ror1 |
0.0000000 | 0.6910469 | 0.667 | 0.131 | 0.0000210 | 9 | Tll1 |
0.0000000 | 0.6586472 | 0.722 | 0.379 | 0.0002766 | 9 | Cntnap4 |
0.0000000 | 0.6332334 | 0.500 | 0.058 | 0.0000007 | 9 | Gm2694 |
0.0000000 | 0.6099621 | 0.556 | 0.076 | 0.0000139 | 9 | Tmem178 |
0.0000000 | 0.6086758 | 1.000 | 0.658 | 0.0000000 | 9 | Arpp21 |
0.0000147 | 0.6040286 | 0.556 | 0.213 | 0.3114939 | 9 | Ano3 |
0.0000001 | 0.6038905 | 0.778 | 0.620 | 0.0019772 | 9 | Mgat5 |
0.0000000 | 0.5908940 | 0.833 | 0.243 | 0.0009734 | 9 | Meis1 |
0.0000231 | 0.5869130 | 0.722 | 0.566 | 0.4897056 | 9 | Zfp804a |
0.0000003 | 0.5791601 | 0.500 | 0.238 | 0.0061775 | 9 | Vegfc |
0.0021706 | 0.5738713 | 0.500 | 0.424 | 1.0000000 | 9 | Gm45321 |
Pr5P7.markers.mast %>%
group_by(cluster) %>%
slice_max(n = 20, order_by = avg_log10FC) %>%
kable("html") %>%
kable_material(
bootstrap_options = c("bordered",
"condensed",
"responsive",
"striped"),
position = "left",
font_size = 14
)
p_val | avg_log10FC | pct.1 | pct.2 | p_val_adj | cluster | gene |
---|---|---|---|---|---|---|
0.0000000 | 0.7682727 | 0.994 | 0.522 | 0.0000000 | 1 | Ntng1 |
0.0000000 | 0.6587305 | 0.987 | 0.528 | 0.0000000 | 1 | Tenm1 |
0.0000000 | 0.6417097 | 0.994 | 0.472 | 0.0000000 | 1 | Rnf220 |
0.0000000 | 0.6295557 | 0.987 | 0.399 | 0.0000000 | 1 | Samd5 |
0.0000000 | 0.6142961 | 0.962 | 0.548 | 0.0000000 | 1 | Shisa9 |
0.0000000 | 0.6052970 | 0.885 | 0.300 | 0.0000000 | 1 | Gm48749 |
0.0000000 | 0.6023628 | 0.974 | 0.492 | 0.0000000 | 1 | Tafa1 |
0.0000000 | 0.5527608 | 0.827 | 0.317 | 0.0000000 | 1 | Zmat4 |
0.0000000 | 0.5396341 | 0.808 | 0.286 | 0.0000000 | 1 | 6330411D24Rik |
0.0000000 | 0.5392844 | 0.885 | 0.349 | 0.0000000 | 1 | Cdh6 |
0.0000000 | 0.5356545 | 0.897 | 0.417 | 0.0000000 | 1 | Thsd7b |
0.0000000 | 0.5311141 | 0.962 | 0.516 | 0.0000000 | 1 | Egfem1 |
0.0000000 | 0.5296590 | 0.936 | 0.389 | 0.0000000 | 1 | Nell1 |
0.0000000 | 0.5153773 | 0.994 | 0.536 | 0.0000000 | 1 | Syt1 |
0.0000000 | 0.4994833 | 0.929 | 0.407 | 0.0000000 | 1 | Nell2 |
0.0000000 | 0.4905964 | 0.968 | 0.512 | 0.0000000 | 1 | Tox |
0.0000000 | 0.4753295 | 0.635 | 0.196 | 0.0000000 | 1 | Lef1 |
0.0000000 | 0.4737435 | 0.974 | 0.585 | 0.0000000 | 1 | Rims1 |
0.0000000 | 0.4729598 | 0.878 | 0.310 | 0.0000000 | 1 | Kcnh8 |
0.0000000 | 0.4711861 | 0.987 | 0.812 | 0.0000000 | 1 | Ptprd |
0.0000000 | 0.5694511 | 0.814 | 0.335 | 0.0000000 | 2 | Unc5d |
0.0000000 | 0.5683756 | 0.831 | 0.536 | 0.0000000 | 2 | Galntl6 |
0.0000000 | 0.5150861 | 0.780 | 0.367 | 0.0000000 | 2 | Gm15398 |
0.0000000 | 0.5064937 | 0.856 | 0.313 | 0.0000000 | 2 | Tafa2 |
0.0000000 | 0.4883352 | 0.958 | 0.534 | 0.0000000 | 2 | Dpp10 |
0.0000000 | 0.4771407 | 0.780 | 0.382 | 0.0000000 | 2 | Zfp804b |
0.0000000 | 0.4499682 | 0.839 | 0.301 | 0.0000000 | 2 | Grin2a |
0.0000000 | 0.4485589 | 0.992 | 0.627 | 0.0000000 | 2 | Nrg1 |
0.0000000 | 0.4462044 | 0.720 | 0.167 | 0.0000000 | 2 | B230217J21Rik |
0.0000000 | 0.4445790 | 0.907 | 0.532 | 0.0000000 | 2 | Cdh18 |
0.0000000 | 0.4296846 | 0.814 | 0.386 | 0.0000000 | 2 | Rmst |
0.0000000 | 0.4176821 | 0.856 | 0.301 | 0.0000000 | 2 | Dlgap2 |
0.0000000 | 0.4149623 | 0.873 | 0.337 | 0.0000000 | 2 | Kif26b |
0.0000000 | 0.3945519 | 0.839 | 0.468 | 0.0000000 | 2 | Galnt13 |
0.0000001 | 0.3940254 | 0.297 | 0.178 | 0.0014188 | 2 | Meis2 |
0.0000000 | 0.3916516 | 0.992 | 0.655 | 0.0000000 | 2 | Ahi1 |
0.0000000 | 0.3846131 | 0.898 | 0.605 | 0.0000000 | 2 | Asic2 |
0.0000000 | 0.3834957 | 0.805 | 0.391 | 0.0000000 | 2 | Esrrg |
0.0000000 | 0.3797631 | 0.500 | 0.187 | 0.0000000 | 2 | Klhl1 |
0.0000000 | 0.3796274 | 0.788 | 0.470 | 0.0000255 | 2 | Grm8 |
0.0000000 | 0.8745001 | 0.378 | 0.043 | 0.0000000 | 3 | Flt1 |
0.0000000 | 0.7594669 | 0.378 | 0.045 | 0.0000000 | 3 | Mecom |
0.0000000 | 0.7378892 | 0.694 | 0.195 | 0.0000000 | 3 | Dach1 |
0.0000000 | 0.6856541 | 0.418 | 0.063 | 0.0000000 | 3 | Slc7a5 |
0.0000000 | 0.6395670 | 0.439 | 0.043 | 0.0000000 | 3 | Fli1 |
0.0000000 | 0.5893545 | 0.531 | 0.164 | 0.0000000 | 3 | Slc7a1 |
0.0000000 | 0.5835394 | 0.551 | 0.125 | 0.0000000 | 3 | Ccdc141 |
0.0000000 | 0.5390925 | 0.347 | 0.042 | 0.0000000 | 3 | Slco1c1 |
0.0000000 | 0.5380678 | 0.347 | 0.060 | 0.0000000 | 3 | Ets1 |
0.0000000 | 0.5341887 | 0.286 | 0.016 | 0.0000000 | 3 | Egfl7 |
0.0000000 | 0.5124712 | 0.337 | 0.027 | 0.0000000 | 3 | Adgrl4 |
0.0000000 | 0.5078686 | 0.796 | 0.307 | 0.0000000 | 3 | Rapgef5 |
0.0000000 | 0.4877063 | 0.837 | 0.377 | 0.0000000 | 3 | Dlc1 |
0.0000000 | 0.4856556 | 0.347 | 0.023 | 0.0000000 | 3 | Ptprb |
0.0000000 | 0.4692441 | 0.296 | 0.013 | 0.0000000 | 3 | Rassf9 |
0.0000000 | 0.4623950 | 0.337 | 0.063 | 0.0000000 | 3 | Itga1 |
0.0000000 | 0.4617441 | 0.296 | 0.027 | 0.0000000 | 3 | Cyyr1 |
0.0000000 | 0.4599659 | 0.796 | 0.309 | 0.0000000 | 3 | Mef2c |
0.0000000 | 0.4437452 | 0.592 | 0.227 | 0.0000004 | 3 | Tfrc |
0.0000000 | 0.4402024 | 0.898 | 0.578 | 0.0000000 | 3 | Igf1r |
0.0000000 | 0.5455166 | 0.912 | 0.832 | 0.0000002 | 4 | Gm42418 |
0.0000000 | 0.4732368 | 0.647 | 0.493 | 0.0000024 | 4 | Cdh4 |
0.0000000 | 0.4105305 | 0.750 | 0.543 | 0.0000000 | 4 | Rbfox3 |
0.0008440 | 0.4085170 | 0.721 | 0.729 | 1.0000000 | 4 | Gm26917 |
0.0000000 | 0.4041384 | 0.735 | 0.509 | 0.0000000 | 4 | Gm26871 |
0.0000000 | 0.4007033 | 0.809 | 0.423 | 0.0000000 | 4 | Rmst |
0.0000000 | 0.3995068 | 0.618 | 0.435 | 0.0003662 | 4 | Zfp804b |
0.0000000 | 0.3977313 | 0.735 | 0.536 | 0.0000000 | 4 | Klhl29 |
0.0000069 | 0.3971734 | 0.485 | 0.397 | 0.1461315 | 4 | Gm30382 |
0.0000011 | 0.3781426 | 0.618 | 0.467 | 0.0234642 | 4 | Gria1 |
0.0000054 | 0.3733441 | 0.426 | 0.348 | 0.1140371 | 4 | Matk |
0.0000000 | 0.3706291 | 0.691 | 0.368 | 0.0000000 | 4 | Dlgap2 |
0.0000003 | 0.3619140 | 0.559 | 0.442 | 0.0058549 | 4 | Olfm2 |
0.0000007 | 0.3617732 | 0.529 | 0.418 | 0.0155928 | 4 | Sorcs1 |
0.0000000 | 0.3608576 | 0.735 | 0.538 | 0.0000001 | 4 | Nxph1 |
0.0000000 | 0.3543118 | 0.794 | 0.586 | 0.0000000 | 4 | Grik1 |
0.0000001 | 0.3509807 | 0.706 | 0.551 | 0.0026335 | 4 | Gpi1 |
0.0000000 | 0.3468623 | 0.662 | 0.481 | 0.0000871 | 4 | Camk2b |
0.0000000 | 0.3441086 | 0.721 | 0.502 | 0.0000000 | 4 | Ephb2 |
0.0000002 | 0.3312443 | 0.515 | 0.339 | 0.0041291 | 4 | Cpne7 |
0.0000000 | 1.0964172 | 0.971 | 0.310 | 0.0000000 | 5 | Gm3764 |
0.0000000 | 1.0318885 | 0.926 | 0.433 | 0.0000000 | 5 | Wdr17 |
0.0000000 | 0.9875801 | 0.985 | 0.402 | 0.0000000 | 5 | Slc4a4 |
0.0000000 | 0.9368011 | 1.000 | 0.622 | 0.0000000 | 5 | Npas3 |
0.0000000 | 0.8908786 | 0.985 | 0.529 | 0.0000000 | 5 | Ptprz1 |
0.0000000 | 0.8719069 | 0.632 | 0.118 | 0.0000000 | 5 | Tnc |
0.0000000 | 0.8546109 | 0.971 | 0.437 | 0.0000000 | 5 | Gm48747 |
0.0000000 | 0.8507387 | 0.779 | 0.245 | 0.0000000 | 5 | Slc6a11 |
0.0000000 | 0.8316447 | 0.882 | 0.322 | 0.0000000 | 5 | Nhsl1 |
0.0000000 | 0.8060870 | 0.853 | 0.243 | 0.0000000 | 5 | Sparcl1 |
0.0000000 | 0.8015543 | 0.985 | 0.620 | 0.0000000 | 5 | Luzp2 |
0.0000000 | 0.7850233 | 0.868 | 0.209 | 0.0000000 | 5 | Lrig1 |
0.0000000 | 0.7839993 | 0.809 | 0.212 | 0.0000000 | 5 | Bmpr1b |
0.0000000 | 0.7433248 | 0.853 | 0.432 | 0.0000000 | 5 | Slc1a2 |
0.0000000 | 0.7171399 | 0.676 | 0.173 | 0.0000000 | 5 | Tnfaip8 |
0.0000000 | 0.7138261 | 0.779 | 0.378 | 0.0000000 | 5 | Sfxn5 |
0.0000000 | 0.7008990 | 0.912 | 0.341 | 0.0000000 | 5 | Mir9-3hg |
0.0000000 | 0.6985497 | 0.632 | 0.092 | 0.0000000 | 5 | Slc39a12 |
0.0000000 | 0.6907878 | 0.897 | 0.500 | 0.0000000 | 5 | Trim9 |
0.0000000 | 0.6816227 | 0.662 | 0.125 | 0.0000000 | 5 | Pla2g7 |
0.0000000 | 1.0605910 | 0.449 | 0.209 | 0.0000000 | 6 | Mbp |
0.0000000 | 1.0156204 | 0.592 | 0.100 | 0.0000000 | 6 | Bcas1 |
0.0000000 | 1.0120110 | 0.878 | 0.285 | 0.0000000 | 6 | Sox6 |
0.0000000 | 0.9753918 | 0.694 | 0.138 | 0.0000000 | 6 | Gm38505 |
0.0000000 | 0.9180520 | 0.714 | 0.090 | 0.0000000 | 6 | Sox10 |
0.0000000 | 0.9156013 | 0.837 | 0.420 | 0.0000000 | 6 | Tnr |
0.0000000 | 0.9155389 | 0.286 | 0.080 | 0.0000000 | 6 | Plp1 |
0.0000000 | 0.8841322 | 0.714 | 0.235 | 0.0000000 | 6 | 4930588A03Rik |
0.0000000 | 0.8707625 | 0.449 | 0.182 | 0.0000000 | 6 | 9630013A20Rik |
0.0000000 | 0.8562393 | 0.918 | 0.401 | 0.0000000 | 6 | Sox2ot |
0.0000000 | 0.8056588 | 0.653 | 0.368 | 0.0000000 | 6 | Pacrg |
0.0000000 | 0.7909532 | 0.265 | 0.065 | 0.0000000 | 6 | St18 |
0.0000000 | 0.7803360 | 0.653 | 0.192 | 0.0000000 | 6 | Tns3 |
0.0000000 | 0.7175360 | 0.449 | 0.045 | 0.0000000 | 6 | Bcas1os2 |
0.0000000 | 0.6976459 | 0.143 | 0.015 | 0.0000287 | 6 | Mobp |
0.0000000 | 0.6891951 | 0.714 | 0.078 | 0.0000000 | 6 | Prkcq |
0.0000000 | 0.6870148 | 0.571 | 0.161 | 0.0000000 | 6 | Pdgfra |
0.0000000 | 0.6845440 | 0.857 | 0.313 | 0.0000000 | 6 | Dscaml1 |
0.0000000 | 0.6835054 | 0.796 | 0.496 | 0.0000000 | 6 | Pcdh15 |
0.0000000 | 0.6520577 | 0.245 | 0.090 | 0.0000804 | 6 | Cnksr3 |
0.0000000 | 1.5543447 | 0.729 | 0.079 | 0.0000000 | 7 | Ptgds |
0.0000000 | 1.3853127 | 1.000 | 0.084 | 0.0000000 | 7 | Ranbp3l |
0.0000000 | 1.2886189 | 0.938 | 0.076 | 0.0000000 | 7 | Slc6a20a |
0.0000000 | 1.1765734 | 0.875 | 0.833 | 0.0000000 | 7 | Trpm3 |
0.0000000 | 1.1306027 | 0.917 | 0.257 | 0.0000000 | 7 | Sidt1 |
0.0000000 | 1.0809888 | 0.938 | 0.331 | 0.0000000 | 7 | Adam12 |
0.0000000 | 1.0798617 | 0.938 | 0.051 | 0.0000000 | 7 | Slc6a13 |
0.0000000 | 1.0558545 | 0.833 | 0.114 | 0.0000000 | 7 | Bmp6 |
0.0000000 | 1.0432585 | 0.979 | 0.321 | 0.0000000 | 7 | Atp1a2 |
0.0000000 | 1.0375787 | 0.938 | 0.255 | 0.0000000 | 7 | Bicc1 |
0.0000000 | 1.0160532 | 0.812 | 0.169 | 0.0000000 | 7 | Adamts12 |
0.0000000 | 1.0154212 | 0.833 | 0.192 | 0.0000000 | 7 | Lrmda |
0.0000000 | 1.0065613 | 0.771 | 0.656 | 0.0000000 | 7 | Nnat |
0.0000000 | 1.0044631 | 0.792 | 0.195 | 0.0000000 | 7 | Slc7a11 |
0.0000000 | 0.9952095 | 0.875 | 0.248 | 0.0000000 | 7 | Sned1 |
0.0000000 | 0.9610983 | 0.896 | 0.248 | 0.0000000 | 7 | Tmtc4 |
0.0000000 | 0.9392163 | 0.958 | 0.131 | 0.0000000 | 7 | Arhgap29 |
0.0000000 | 0.8767605 | 0.896 | 0.240 | 0.0000000 | 7 | Pdzrn3 |
0.0000000 | 0.8741322 | 0.792 | 0.111 | 0.0000000 | 7 | Eya1 |
0.0000000 | 0.8643599 | 0.854 | 0.131 | 0.0000000 | 7 | Colec12 |
0.0000000 | 1.5180739 | 1.000 | 0.125 | 0.0000000 | 8 | Bnc2 |
0.0000000 | 1.2317607 | 0.897 | 0.104 | 0.0000000 | 8 | Adamtsl3 |
0.0000000 | 1.1389751 | 0.931 | 0.177 | 0.0000000 | 8 | Thsd4 |
0.0000000 | 1.1196392 | 0.931 | 0.061 | 0.0000000 | 8 | Trabd2b |
0.0000000 | 1.1169845 | 0.931 | 0.525 | 0.0000000 | 8 | Slc4a10 |
0.0000000 | 1.1058182 | 1.000 | 0.413 | 0.0000000 | 8 | Slc38a2 |
0.0000000 | 1.0887117 | 0.828 | 0.343 | 0.0000000 | 8 | Col25a1 |
0.0000000 | 1.0463921 | 1.000 | 0.474 | 0.0000000 | 8 | Fbxl7 |
0.0000000 | 1.0442771 | 1.000 | 0.605 | 0.0000000 | 8 | Foxp1 |
0.0000000 | 1.0199695 | 0.759 | 0.002 | 0.0000000 | 8 | Slc47a1 |
0.0000000 | 1.0069592 | 0.862 | 0.265 | 0.0000000 | 8 | Itgbl1 |
0.0000000 | 0.9757935 | 0.793 | 0.088 | 0.0000000 | 8 | Dock5 |
0.0000000 | 0.9689388 | 0.966 | 0.213 | 0.0000000 | 8 | Hmcn1 |
0.0000000 | 0.9624254 | 0.931 | 0.388 | 0.0000000 | 8 | Nr3c2 |
0.0000000 | 0.9498822 | 0.931 | 0.368 | 0.0000000 | 8 | Gulp1 |
0.0000000 | 0.9328857 | 0.586 | 0.111 | 0.0000000 | 8 | Crispld1 |
0.0000000 | 0.9293280 | 0.862 | 0.324 | 0.0000000 | 8 | Sh3pxd2a |
0.0000000 | 0.9111383 | 0.931 | 0.165 | 0.0000000 | 8 | Eya2 |
0.0000000 | 0.8943753 | 0.828 | 0.294 | 0.0000000 | 8 | Slit2 |
0.0000000 | 0.8872551 | 0.931 | 0.490 | 0.0000000 | 8 | Tmtc1 |
0.0000000 | 0.7973422 | 0.833 | 0.375 | 0.0000000 | 9 | Stxbp5l |
0.0000000 | 0.7943548 | 0.500 | 0.052 | 0.0000693 | 9 | Gm42397 |
0.0000000 | 0.7756423 | 0.944 | 0.699 | 0.0000000 | 9 | Unc5c |
0.0000000 | 0.7623770 | 0.444 | 0.036 | 0.0003760 | 9 | Lmx1a |
0.0000006 | 0.7539547 | 0.556 | 0.218 | 0.0128781 | 9 | Reln |
0.0000012 | 0.7345614 | 0.333 | 0.044 | 0.0257720 | 9 | Gm27016 |
0.0000001 | 0.7092636 | 0.667 | 0.333 | 0.0018579 | 9 | Chn2 |
0.0000000 | 0.7032384 | 0.500 | 0.188 | 0.0000002 | 9 | Adamts18 |
0.0000003 | 0.6979407 | 0.722 | 0.205 | 0.0062991 | 9 | Ror1 |
0.0000000 | 0.6910469 | 0.667 | 0.131 | 0.0000111 | 9 | Tll1 |
0.0000000 | 0.6586472 | 0.722 | 0.379 | 0.0000169 | 9 | Cntnap4 |
0.0000000 | 0.6332334 | 0.500 | 0.058 | 0.0001458 | 9 | Gm2694 |
0.0000000 | 0.6099621 | 0.556 | 0.076 | 0.0000234 | 9 | Tmem178 |
0.0000000 | 0.6086758 | 1.000 | 0.658 | 0.0000000 | 9 | Arpp21 |
0.0000081 | 0.6040286 | 0.556 | 0.213 | 0.1715667 | 9 | Ano3 |
0.0000000 | 0.6038905 | 0.778 | 0.620 | 0.0000007 | 9 | Mgat5 |
0.0000002 | 0.5908940 | 0.833 | 0.243 | 0.0048746 | 9 | Meis1 |
0.0000018 | 0.5869130 | 0.722 | 0.566 | 0.0389649 | 9 | Zfp804a |
0.0000000 | 0.5791601 | 0.500 | 0.238 | 0.0000748 | 9 | Vegfc |
0.0023235 | 0.5738713 | 0.500 | 0.424 | 1.0000000 | 9 | Gm45321 |
Pr5P7.markers.mast %>%
group_by(cluster) %>%
top_n(n = 10, wt = avg_log10FC) -> top10
DoHeatmap(Pr5P7, features = top10$gene) + NoLegend()
Version | Author | Date |
---|---|---|
3b19c24 | Evgenii O. Tretiakov | 2023-02-02 |
Version | Author | Date |
---|---|---|
3b19c24 | Evgenii O. Tretiakov | 2023-02-02 |
FeaturePlot_scCustom(Pr5P7, "Galr1", pt.size = 3, order = T, colors_use = combined.srt@misc$expr_Colour_Pal) +
ggtitle("Galr1: ") + theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(Pr5P7, "Gal", pt.size = 3, order = T, colors_use = combined.srt@misc$expr_Colour_Pal) +
ggtitle("Gal: ") + theme(plot.title = element_text(size = 24))
Version | Author | Date |
---|---|---|
3b19c24 | Evgenii O. Tretiakov | 2023-02-02 |
SaveH5Seurat(Pr5P7,
filename = here(data_dir,
"Pr5P7_clusters.h5Seurat"),
overwrite = TRUE)
Convert(here(data_dir,
"Pr5P7_clusters.h5Seurat"),
dest = "h5ad",
overwrite = TRUE)
sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.1 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ggraph_2.1.0.9000 gprofiler2_0.2.1 mrtree_0.0.0.9000
[4] Nebulosa_1.8.0 scCustomize_1.1.1 Scillus_0.5.0
[7] qs_0.25.4 patchwork_1.1.2.9000 glmGamPoi_1.10.2
[10] sctransform_0.3.5 SeuratDisk_0.0.0.9020 SeuratWrappers_0.3.1
[13] SeuratObject_4.1.3 Seurat_4.3.0 reticulate_1.28
[16] kableExtra_1.3.4 zeallot_0.1.0 future_1.31.0
[19] skimr_2.1.5 magrittr_2.0.3 lubridate_1.9.0
[22] timechange_0.1.1 forcats_0.5.2 stringr_1.5.0
[25] dplyr_1.1.0 purrr_1.0.1 readr_2.1.3
[28] tidyr_1.3.0 tibble_3.1.8 ggplot2_3.4.1
[31] tidyverse_1.3.2.9000 viridis_0.6.2 viridisLite_0.4.1
[34] RColorBrewer_1.1-3 here_1.0.1 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] rsvd_1.0.5 ica_1.0-3
[3] svglite_2.1.0 ps_1.7.2
[5] foreach_1.5.2 lmtest_0.9-40
[7] rprojroot_2.0.3 crayon_1.5.2
[9] MASS_7.3-58.1 MAST_1.24.1
[11] nlme_3.1-161 backports_1.4.1
[13] rlang_1.0.6 XVector_0.38.0
[15] ROCR_1.0-11 irlba_2.3.5.1
[17] callr_3.7.3 limma_3.54.1
[19] stringfish_0.15.7 data.tree_1.0.0
[21] rjson_0.2.21 bit64_4.0.5
[23] glue_1.6.2 parallel_4.2.2
[25] processx_3.8.0 vipor_0.4.5
[27] spatstat.sparse_3.0-0 BiocGenerics_0.44.0
[29] spatstat.geom_3.0-6 tidyselect_1.2.0
[31] SummarizedExperiment_1.28.0 fitdistrplus_1.1-8
[33] zoo_1.8-11 xtable_1.8-4
[35] formattable_0.2.1 evaluate_0.20
[37] cli_3.6.0 zlibbioc_1.44.0
[39] rstudioapi_0.14 miniUI_0.1.1.1
[41] sp_1.6-0 whisker_0.4.1
[43] bslib_0.4.2 fastmatch_1.1-3
[45] treeio_1.23.0 maps_3.4.1
[47] shiny_1.7.4 xfun_0.37
[49] clue_0.3-63 cluster_2.1.4
[51] tidygraph_1.2.2 clusterGeneration_1.3.7
[53] expm_0.999-6 SymSim_0.0.0.9000
[55] ggrepel_0.9.2.9999 ape_5.6-2
[57] listenv_0.9.0 dendextend_1.16.0
[59] png_0.1-8 withr_2.5.0
[61] bitops_1.0-7 ggforce_0.4.1.9000
[63] plyr_1.8.8 pracma_2.4.2
[65] coda_0.19-4 pillar_1.8.1
[67] RcppParallel_5.1.5 GlobalOptions_0.1.2
[69] cachem_1.0.6 fs_1.6.1
[71] scatterplot3d_0.3-42 hdf5r_1.3.7
[73] GetoptLong_1.0.5 paletteer_1.5.0
[75] vctrs_0.5.2 ellipsis_0.3.2
[77] generics_0.1.3 RApiSerialize_0.1.2
[79] tools_4.2.2 beeswarm_0.4.0
[81] munsell_0.5.0 tweenr_2.0.2
[83] DelayedArray_0.24.0 fastmap_1.1.0
[85] compiler_4.2.2 abind_1.4-5
[87] httpuv_1.6.9 ggimage_0.3.1
[89] plotly_4.10.1 GenomeInfoDbData_1.2.9
[91] gridExtra_2.3 lattice_0.20-45
[93] deldir_1.0-6 utf8_1.2.3
[95] later_1.3.0 prismatic_1.1.1
[97] jsonlite_1.8.4 scales_1.2.1
[99] tidytree_0.4.2 pbapply_1.7-0
[101] lazyeval_0.2.2 promises_1.2.0.1
[103] doParallel_1.0.17 R.utils_2.12.2
[105] goftest_1.2-3 spatstat.utils_3.0-1
[107] checkmate_2.1.0 rmarkdown_2.20
[109] cowplot_1.1.1 webshot_0.5.4
[111] Rtsne_0.16 Biobase_2.58.0
[113] uwot_0.1.14 igraph_1.3.5
[115] survival_3.4-0 numDeriv_2016.8-1.1
[117] yaml_2.3.7 plotrix_3.8-2
[119] systemfonts_1.0.4 htmltools_0.5.4
[121] graphlayouts_0.8.4 IRanges_2.32.0
[123] quadprog_1.5-8 digest_0.6.31
[125] mime_0.12 repr_1.1.4
[127] yulab.utils_0.0.6 future.apply_1.10.0
[129] ggmin_0.0.0.9000 remotes_2.4.2
[131] data.table_1.14.8 S4Vectors_0.36.1
[133] R.oo_1.25.0 splines_4.2.2
[135] labeling_0.4.2 rematch2_2.1.2
[137] Cairo_1.6-0 RCurl_1.98-1.9
[139] ks_1.14.0 hms_1.1.2
[141] colorspace_2.1-0 base64enc_0.1-3
[143] BiocManager_1.30.19 mnormt_2.1.1
[145] ggbeeswarm_0.7.1.9000 GenomicRanges_1.50.2
[147] shape_1.4.6 aplot_0.1.9
[149] ggrastr_1.0.1 sass_0.4.5
[151] Rcpp_1.0.10 mclust_6.0.0
[153] RANN_2.6.1 mvtnorm_1.1-3
[155] circlize_0.4.15 fansi_1.0.4
[157] tzdb_0.3.0 parallelly_1.34.0
[159] R6_2.5.1 grid_4.2.2
[161] ggridges_0.5.4 lifecycle_1.0.3
[163] phytools_1.2-0 leiden_0.4.3
[165] phangorn_2.10.0 jquerylib_0.1.4
[167] snakecase_0.11.0 Matrix_1.5-3
[169] RcppAnnoy_0.0.20 iterators_1.0.14
[171] spatstat.explore_3.0-6 htmlwidgets_1.6.1
[173] polyclip_1.10-4 gridGraphics_0.5-1
[175] optimParallel_1.0-2 rvest_1.0.3
[177] ComplexHeatmap_2.14.0 globals_0.16.2
[179] spatstat.random_3.1-3 progressr_0.13.0
[181] codetools_0.2-18 matrixStats_0.63.0
[183] prettyunits_1.1.1 getPass_0.2-2
[185] SingleCellExperiment_1.20.0 RSpectra_0.16-1
[187] R.methodsS3_1.8.2 GenomeInfoDb_1.34.9
[189] DBI_1.1.3 gtable_0.3.1
[191] git2r_0.30.1 stats4_4.2.2
[193] ggfun_0.0.9 tensor_1.5
[195] httr_1.4.4 highr_0.10
[197] KernSmooth_2.23-20 progress_1.2.2
[199] stringi_1.7.12 vroom_1.6.0
[201] reshape2_1.4.4 farver_2.1.1
[203] magick_2.7.3 ggtree_3.7.1.002
[205] xml2_1.3.3 combinat_0.0-8
[207] ggplotify_0.1.0 scattermore_0.8
[209] bit_4.0.5 clustree_0.5.0
[211] MatrixGenerics_1.10.0 spatstat.data_3.0-0
[213] janitor_2.2.0.9000 pkgconfig_2.0.3
[215] ggprism_1.0.4 knitr_1.42