Last updated: 2023-03-04

Checks: 7 0

Knit directory: Hevesi_2023/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230121) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version bfa7d1f. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    .cache/
    Ignored:    .config/
    Ignored:    .nv/
    Ignored:    .snakemake/
    Ignored:    cellbender/
    Ignored:    cellbender_latest.sif
    Ignored:    cellranger/
    Ignored:    data/Pr5P7_clusters.h5Seurat
    Ignored:    data/Pr5P7_clusters.h5ad
    Ignored:    data/THP7_clusters.h5Seurat
    Ignored:    data/THP7_clusters.h5ad
    Ignored:    fastq/
    Ignored:    mm10_optimized/
    Ignored:    souporcell/
    Ignored:    souporcell_latest.sif

Untracked files:
    Untracked:  CITATION
    Untracked:  LICENSE
    Untracked:  analysis/figure_2d-THP7.Rmd
    Untracked:  analysis/figure_2e-Pr5P7.Rmd
    Untracked:  analysis/methods.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/eda.Rmd) and HTML (docs/eda.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd bfa7d1f Evgenii O. Tretiakov 2023-03-04 workflowr::wflow_publish("analysis/eda.Rmd", all = TRUE, update = TRUE,
html 3b19c24 Evgenii O. Tretiakov 2023-02-02 Build site.
Rmd ddf7471 Evgenii O. Tretiakov 2023-02-02 workflowr::wflow_publish("analysis/eda.Rmd", all = TRUE, update = TRUE,
Rmd b124415 Evgenii O. Tretiakov 2023-01-26 improve qc
Rmd 321af0c Evgenii O. Tretiakov 2023-01-25 fix original labels and adjust visualisations
html c82f5c0 Evgenii O. Tretiakov 2023-01-25 Build site.
Rmd 2d7093f Evgenii O. Tretiakov 2023-01-24 workflowr::wflow_publish("analysis/eda.Rmd", all = TRUE, verbose = TRUE)
Rmd 45efe1a Evgenii O. Tretiakov 2023-01-24 workflowr::wflow_publish("analysis/eda.Rmd", all = TRUE, verbose = TRUE)
Rmd 52ce403 Evgenii O. Tretiakov 2023-01-24 workflowr::wflow_publish("analysis/eda.Rmd", all = TRUE, verbose = TRUE)

Combined analysis of scRNA-seq datasets derived from the same experiment

Since it was derived from the same two pooled mice we might try to merge them together.

souporcell_THP7 <-
  read_tsv(here("souporcell/THP7", "clusters.tsv")) %>%
  mutate(origin = "THP7",
         cell_name = str_c("THP7_", barcode))
souporcell_Pr5P7 <-
  read_tsv(here("souporcell/Pr5P7", "clusters.tsv")) %>%
  mutate(origin = "Pr5P7",
         cell_name = str_c("Pr5P7_", barcode))
souporcell <-
  bind_rows(
    souporcell_THP7,
    souporcell_Pr5P7)

souporcell %>%
  janitor::tabyl(status, assignment, origin)
$Pr5P7
     status   0 0/1   1 1/0
    singlet 294   0 321   0
 unassigned  37   9  65   5

$THP7
     status   0 0/1   1 1/0
    singlet 492   0 318   0
 unassigned  70   5  29   9
cell_bender_merged <-
  Read_CellBender_h5_Multi_Directory(
    base_path = here("cellbender"),
    custom_name = "_output_filtered.h5",
    sample_names = sort(c("THP7", "Pr5P7")), # must be sorted as the function internally doesn't index output of list.dir so can't reorder or subset
    merge = TRUE)

cell_ranger_merged <-
  Read10X_h5_Multi_Directory(
    base_path = here("cellranger"),
    default_10X_path = TRUE,
    h5_filename = "filtered_feature_bc_matrix.h5",
    merge = TRUE,
    sample_names = sort(c("THP7", "Pr5P7")), # must be sorted as the function internally doesn't index output of list.dir so can't reorder or subset
    parallel = TRUE, 
    num_cores = 16)

combined.srt <-
  Create_CellBender_Merged_Seurat(
    raw_cell_bender_matrix = cell_bender_merged,
    raw_counts_matrix = cell_ranger_merged,
    raw_assay_name = "RAW")

After running troublet (genotyping-based detection of doublets), it seems that we don’t have much of doublets.

Elimination of ambient RNA

orig.ident nCount_RNA nFeature_RNA nCount_RAW nFeature_RAW nFeature_Diff nCount_Diff
Pr5P7_AAACCCAAGCTGACAG-1 Pr5P7 5526 2614 5542 2615 1 16
Pr5P7_AAACCCAGTCTTGTCC-1 Pr5P7 6876 2954 6898 2954 0 22
Pr5P7_AAACGAAGTGTTCCTC-1 Pr5P7 12076 4603 12110 4604 1 34
Pr5P7_AAACGCTTCCCTCGAT-1 Pr5P7 10009 3885 10046 3890 5 37
Pr5P7_AAAGGATGTTGCATGT-1 Pr5P7 3277 1840 3283 1840 0 6
orig.ident Median_nCount_RNA Median_nFeature_RNA Median_nCount_Diff Median_nFeature_Diff
Pr5P7 5142 2481 27 3
THP7 8434 3476 89 14
Totals (All Cells) 6489 2902 50 9
Raw_Counts CellBender_Counts Count_Diff Pct_Diff
1700054A03Rik 357 134 223 62.46499
Mt2 148 73 75 50.67568
Gm50306 28 14 14 50.00000
Hist2h2bb 9 5 4 44.44444
Ly6a 12 7 5 41.66667

Plot feature differences

In addition to returning the data.frame it can be useful to visually examine the changes/trends after running CellBender.

Version Author Date
c82f5c0 Evgenii O. Tretiakov 2023-01-25
sex_genes <-
  str_to_title(c('EHD2', 'ESPL1', 'JARID1D', 'PNPLA4',
                 'RPS4Y1', 'XIST','tsix', 'Eif2s3y',
                 'Ddx3y', 'Uty', 'Kdm5d')) %>% .[. %in% rownames(combined.srt)]
stress_genes <-
  str_to_title(c('Rpl26','Gstp1','Rpl35a','Erh',
                 'Slc25a5','Pgk1','Eno1',
                 'Tubb2a','Emc4','Scg5')) %>% .[. %in% rownames(combined.srt)]

combined.srt <-
  Store_Palette_Seurat(
    seurat_object = combined.srt,
    palette = rev(brewer.pal(n = 11, name = "RdYlGn")),
    palette_name = "mdat_Colour_Pal")
combined.srt <-
  Store_Palette_Seurat(
    seurat_object = combined.srt,
    palette = rev(brewer.pal(n = 11, name = "Spectral")),
    palette_name = "expr_Colour_Pal")

low.cutoff.gene          <- 500
high.cutoff.gene         <- NULL
high.cutoff.gene         <- Inf
low.cutoff.umis          <- NULL
low.cutoff.umis          <- -Inf
high.cutoff.umis         <- 45000
high.cutoff.pc.mt        <- 1
high.cutoff.pc.ribo      <- 1
high.cutoff.pc.hb        <- 0.5
high.cutoff.logprob.dupl <- NULL
high.cutoff.complexity   <- 0.8

combined.srt <-
  Add_Mito_Ribo_Seurat(combined.srt, species = "mouse")
combined.srt[["percent_hb"]] <- PercentageFeatureSet(combined.srt, pattern = "^Hb[^(p)]")
combined.srt <-
  Add_Cell_Complexity_Seurat(combined.srt)

# Visualize QC metrics as a violin plot
p1 <-
  QC_Plots_Complexity(
    combined.srt,
    high_cutoff = high.cutoff.complexity,
    color_seed = reseed)
p2 <-
  QC_Plots_Genes(
    combined.srt,
    low_cutoff = low.cutoff.gene,
    high_cutoff = high.cutoff.gene,
    plot_title = "Genes per Nucleus",
    color_seed = reseed,
    ggplot_default_colors = T
  )
p3 <-
  QC_Plots_UMIs(
    combined.srt,
    low_cutoff = low.cutoff.umis,
    high_cutoff = high.cutoff.umis,
    plot_title = "UMIs per Nucleus",
    color_seed = reseed,
    ggplot_default_colors = T
  )
p4 <-
  QC_Plots_Mito(
    combined.srt,
    high_cutoff = high.cutoff.pc.mt,
    plot_title = "Mito genes % per Nucleus",
    color_seed = reseed,
    ggplot_default_colors = T
  )
p5 <-
  QC_Plots_Feature(
    combined.srt,
    feature = "percent_ribo",
    high_cutoff = high.cutoff.pc.ribo,
    y_axis_label = "% Ribosomal Genes Counts",
    plot_title = "Ribo genes % per Nucleus",
    color_seed = reseed,
    ggplot_default_colors = T
  )
p6 <-
  QC_Plots_Feature(
    combined.srt,
    feature = "percent_hb",
    high_cutoff = high.cutoff.pc.hb,
    y_axis_label = "% Hemoglobin Genes Counts",
    plot_title = "Hemoglobin genes % per Nucleus",
    color_seed = reseed,
    ggplot_default_colors = T
  )

wrap_plots(p1, p2, p3, p4, p5, p6, ncol = 3)

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25
plot1 <- QC_Plot_GenevsFeature(seurat_object = combined.srt, feature1 = "percent_mito", low_cutoff_gene = low.cutoff.gene, high_cutoff_gene = high.cutoff.gene, high_cutoff_feature = high.cutoff.pc.mt, color_seed = reseed, ggplot_default_colors = T, pt.size = 4, shuffle_seed = reseed) & scale_y_log10()
plot2 <- QC_Plot_UMIvsGene(seurat_object = combined.srt, low_cutoff_gene = low.cutoff.gene, high_cutoff_gene = high.cutoff.gene, low_cutoff_UMI = low.cutoff.umis, high_cutoff_UMI = high.cutoff.umis, color_seed = reseed, ggplot_default_colors = T, pt.size = 4, shuffle_seed = reseed) & scale_x_log10() & scale_y_log10()
plot3 <- QC_Plot_GenevsFeature(seurat_object = combined.srt, feature1 = "percent_ribo", low_cutoff_gene = low.cutoff.gene, high_cutoff_gene = high.cutoff.gene, high_cutoff_feature = high.cutoff.pc.ribo, color_seed = reseed, ggplot_default_colors = T, pt.size = 4, shuffle_seed = reseed) & scale_y_log10()
plot4 <- FeatureScatter(combined.srt, feature1 = "percent_ribo", feature2 = "percent_mito", shuffle = T, pt.size = 4, seed = reseed)
(plot1 + plot2) / (plot3 + plot4)

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25
QC_Plot_UMIvsGene(seurat_object = combined.srt,
                  meta_gradient_name = "percent_mito",
                  low_cutoff_gene = low.cutoff.gene,
                  high_cutoff_gene = high.cutoff.gene,
                  high_cutoff_UMI = high.cutoff.umis,
                  meta_gradient_low_cutoff = high.cutoff.pc.mt,
                  meta_gradient_color = combined.srt@misc$mdat_Colour_Pal,
                  combination = TRUE,
                  color_seed = reseed,
                  ggplot_default_colors = TRUE,
                  pt.size = 4,
                  shuffle_seed = reseed) & 
  scale_x_log10() & scale_y_log10()

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
combined.srt$QC <-
  ifelse(
    combined.srt@meta.data$log10GenesPerUMI < high.cutoff.complexity &
      combined.srt@meta.data$QC == 'Pass',
    'Low_Complexity',
    combined.srt@meta.data$QC
  )
combined.srt$QC <-
  ifelse(
    combined.srt@meta.data$log10GenesPerUMI < high.cutoff.complexity &
      combined.srt@meta.data$QC != 'Pass' &
      combined.srt@meta.data$QC != 'Low_Complexity',
    paste('Low_Complexity', combined.srt@meta.data$QC, sep = ','),
    combined.srt@meta.data$QC
  )
combined.srt$QC <-
  ifelse(
    combined.srt@meta.data$nFeature_RNA < low.cutoff.gene &
      combined.srt@meta.data$QC == 'Pass',
    'Low_nFeature',
    combined.srt@meta.data$QC
  )
combined.srt$QC <-
  ifelse(
    combined.srt@meta.data$nFeature_RNA < low.cutoff.gene &
      combined.srt@meta.data$QC != 'Pass' &
      combined.srt@meta.data$QC != 'Low_nFeature',
    paste('Low_nFeature', combined.srt@meta.data$QC, sep = ','),
    combined.srt@meta.data$QC
  )
combined.srt$QC <-
  ifelse(
    combined.srt@meta.data$percent_mito > high.cutoff.pc.mt &
      combined.srt@meta.data$QC == 'Pass',
    'High_MT',
    combined.srt@meta.data$QC
  )
combined.srt$QC <-
  ifelse(
    combined.srt@meta.data$percent_mito > high.cutoff.pc.mt &
      combined.srt@meta.data$QC != 'Pass' &
      combined.srt@meta.data$QC != 'High_MT',
    paste('High_MT', combined.srt@meta.data$QC, sep = ','),
    combined.srt@meta.data$QC
  )
combined.srt$QC <-
  ifelse(
    combined.srt@meta.data$nCount_RNA > high.cutoff.umis &
      combined.srt@meta.data$QC == 'Pass',
    'High_UMIs',
    combined.srt@meta.data$QC
  )
combined.srt$QC <-
  ifelse(
    combined.srt@meta.data$nCount_RNA > high.cutoff.umis &
      combined.srt@meta.data$QC != 'Pass' &
      combined.srt@meta.data$QC != 'High_UMIs',
    paste('High_UMIs', combined.srt@meta.data$QC, sep = ','),
    combined.srt@meta.data$QC
  )
combined.srt$QC <-
  ifelse(
    combined.srt@meta.data$percent_ribo > high.cutoff.pc.ribo &
      combined.srt@meta.data$QC == 'Pass',
    'High_Ribo',
    combined.srt@meta.data$QC
  )
combined.srt$QC <-
  ifelse(
    combined.srt@meta.data$percent_ribo > high.cutoff.pc.ribo &
      combined.srt@meta.data$QC != 'Pass' &
      combined.srt@meta.data$QC != 'High_Ribo',
    paste('High_Ribo', combined.srt@meta.data$QC, sep = ','),
    combined.srt@meta.data$QC
  )
combined.srt$QC <-
  ifelse(
    combined.srt@meta.data$percent_hb > high.cutoff.pc.hb &
      combined.srt@meta.data$QC == 'Pass',
    'High_Hgb',
    combined.srt@meta.data$QC
  )
combined.srt$QC <-
  ifelse(
    combined.srt@meta.data$percent_hb > high.cutoff.pc.hb &
      combined.srt@meta.data$QC != 'Pass' &
      combined.srt@meta.data$QC != 'High_Hgb',
    paste('High_Hgb', combined.srt@meta.data$QC, sep = ','),
    combined.srt@meta.data$QC
  )
table(combined.srt$QC)

                                     High_Hgb 
                                            4 
                           High_Hgb,High_Ribo 
                                            1 
                                      High_MT 
                                           15 
                         High_MT,Low_nFeature 
                                            4 
          High_MT,Low_nFeature,Low_Complexity 
                                            1 
                                    High_Ribo 
                                           61 
                            High_Ribo,High_MT 
                                           33 
               High_Ribo,High_MT,Low_nFeature 
                                           13 
High_Ribo,High_MT,Low_nFeature,Low_Complexity 
                                            1 
                                    High_UMIs 
                                           35 
                                 Low_nFeature 
                                            3 
                                         Pass 
                                         1316 
# Visualize QC metrics as a violin plot again after subset
combined.subset.srt <- combined.srt
combined.subset.srt <- subset(combined.subset.srt, subset = QC == "Pass")
p1 <-
  QC_Plots_Complexity(
    seurat_object = combined.subset.srt,
    color_seed = reseed,
    ggplot_default_colors = T)
p2 <-
  QC_Plots_Genes(
    seurat_object = combined.subset.srt,
    low_cutoff = low.cutoff.gene,
    high_cutoff = high.cutoff.gene,
    plot_title = "Genes per Nucleus",
    color_seed = reseed,
    ggplot_default_colors = T
  )
p3 <-
  QC_Plots_UMIs(
    seurat_object = combined.subset.srt,
    low_cutoff = low.cutoff.umis,
    high_cutoff = high.cutoff.umis,
    plot_title = "UMIs per Nucleus",
    color_seed = reseed,
    ggplot_default_colors = T
  )
p4 <-
  QC_Plots_Mito(
    seurat_object = combined.subset.srt,
    high_cutoff = high.cutoff.pc.mt,
    plot_title = "Mito genes % per Nucleus",
    color_seed = reseed,
    ggplot_default_colors = T
  )
p5 <-
  QC_Plots_Feature(
    seurat_object = combined.subset.srt,
    feature = "percent_ribo",
    high_cutoff = high.cutoff.pc.ribo,
    y_axis_label = "% Ribosomal Genes Counts",
    plot_title = "Ribo genes % per Nucleus",
    color_seed = reseed,
    ggplot_default_colors = T
  )
p6 <-
  QC_Plots_Feature(
    seurat_object = combined.subset.srt,
    feature = "percent_hb",
    high_cutoff = high.cutoff.pc.hb,
    y_axis_label = "% Hemoglobin Genes Counts",
    plot_title = "Hemoglobin genes % per Nucleus",
    color_seed = reseed,
    ggplot_default_colors = T
  )

wrap_plots(p1, p2, p3, p4, p5, p6, ncol = 3)

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
combined.srt <- NormalizeData(combined.srt)
combined.srt <- 
  FindVariableFeatures(
    combined.srt, 
    selection.method = "vst",
    nfeatures = 3000)
top100 <- head(VariableFeatures(combined.srt), 100)
plot5 <- VariableFeaturePlot(combined.srt)
LabelPoints(plot = plot5, points = top100, repel = TRUE, xnudge = 0, ynudge = 0)

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
all.genes <- rownames(combined.srt)
hvg <- VariableFeatures(combined.srt)
var_regex <- '^Hla-|^Ig[hjkl]|^Rna|^mt-|^Rp[sl]|^Hb[^(p)]|^Gm'
hvg <- hvg[str_detect(pattern = var_regex, string = hvg, negate = T)]
combined.srt[["var_regex"]] <-
  PercentageFeatureSet(combined.srt, pattern = var_regex)
combined.srt <- ScaleData(combined.srt,
                          features = all.genes,
                          vars.to.regress = c("log10GenesPerUMI"))
npcs <-  30
combined.srt <- RunPCA(combined.srt, 
               features = hvg,
               npcs = npcs,
               seed.use = reseed,
               verbose = TRUE)
VizDimLoadings(combined.srt, dims = 1:9, reduction = "pca") & 
  theme(axis.text = element_text(size = 5),
        axis.title = element_text(size = 8, face = "bold"))

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
DimHeatmap(combined.srt, dims = 1:9, nfeatures = 20, cells = 500, balanced = T)

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
DimPlot_scCustom(combined.srt, reduction = "pca", color_seed = reseed, ggplot_default_colors = T, pt.size = 3)

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
ElbowPlot(combined.srt)

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
combined.srt <-
  JackStraw(
    object = combined.srt,
    assay = "RNA",
    reduction = "pca",
    dims = npcs,
    num.replicate = 100,
    prop.freq = 0.02,
    maxit = 1000)
combined.srt <-
  ScoreJackStraw(combined.srt,
                 dims = seq_along(combined.srt[["pca"]]@stdev))
JackStrawPlot(combined.srt, dims = seq_along(combined.srt[["pca"]]@stdev))

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
test_pc <- 
  PCScore(object = combined.srt,
           PCs = seq_along(combined.srt[["pca"]]@stdev),
           score.thresh = 1e-05)
selected_pcs <-
  seq_along(
    combined.srt[["pca"]]@stdev
    )[test_pc$Score <= 1e-03 & 
        combined.srt[["pca"]]@stdev > quantile(combined.srt[["pca"]]@stdev, .25)]
selected_pcs
 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22
combined.srt <-
  combined.srt |>
  FindNeighbors(
    dims = selected_pcs,
    k.param = 15,
    annoy.metric = "euclidean",
    n.trees = 100,
    verbose = FALSE) |>
  RunUMAP(
    dims = selected_pcs,
    reduction.name = "umap",
    reduction.key = "UMAP_",
    return.model = FALSE,
    umap.method = "umap-learn",
    densmap = TRUE,
    dens.lambda = 1L,
    dens.frac = 0.3,
    n.epochs = 1000L,
    n.neighbors = 15L,
    min.dist = 0.01,
    spread = 2L,
    metric = "correlation",
    init = "pca",
    seed.use = reseed,
    verbose = FALSE)

metadata <- combined.srt@meta.data
rownames(metadata) <- colnames(combined.srt)
ref.labels <- metadata$orig.ident

resolutions <-
  modularity_event_sampling(
    A = combined.srt@graphs$RNA_snn,
    n.res = 20,
    gamma.min = 0.1,
    gamma.max = 3.000001
  ) # sample based on the similarity matrix

# clustering using Suerat
combined.srt <- combined.srt |> 
  FindClusters(algorithm = 4, method = "igraph",
               resolution = resolutions, random.seed = reseed,
               verbose = FALSE)

# initial cluster tree from Seurat flat clustering
plot_clustree(
  labelmat = combined.srt@meta.data,
  prefix = 'RNA_snn_res.',
  ref.labels = ref.labels,
  plot.ref = FALSE
)

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
out <-  mrtree(
  combined.srt,
  prefix = 'RNA_snn_res.',
  n.cores = n_cores,
  consensus = FALSE,
  sample.weighted = TRUE,
  augment.path = FALSE,
  verbose = FALSE
)

  |                                                                            
  |======================================================================| 100%
  |                                                                            
  |=                                                                     |   2%
  |                                                                            
  |==                                                                    |   3%
  |                                                                            
  |===                                                                   |   5%
  |                                                                            
  |====                                                                  |   6%
  |                                                                            
  |=====                                                                 |   8%
  |                                                                            
  |======                                                                |   9%
  |                                                                            
  |========                                                              |  11%
  |                                                                            
  |=========                                                             |  12%
  |                                                                            
  |==========                                                            |  14%
  |                                                                            
  |============                                                          |  17%
  |                                                                            
  |=============                                                         |  18%
  |                                                                            
  |==============                                                        |  20%
  |                                                                            
  |===============                                                       |  22%
  |                                                                            
  |================                                                      |  23%
  |                                                                            
  |=================                                                     |  25%
  |                                                                            
  |==================                                                    |  26%
  |                                                                            
  |===================                                                   |  28%
  |                                                                            
  |====================                                                  |  29%
  |                                                                            
  |======================                                                |  31%
  |                                                                            
  |=======================                                               |  32%
  |                                                                            
  |========================                                              |  34%
  |                                                                            
  |=========================                                             |  35%
  |                                                                            
  |==========================                                            |  37%
  |                                                                            
  |===========================                                           |  38%
  |                                                                            
  |==============================                                        |  43%
  |                                                                            
  |===============================                                       |  45%
  |                                                                            
  |================================                                      |  46%
  |                                                                            
  |=================================                                     |  48%
  |                                                                            
  |==================================                                    |  49%
  |                                                                            
  |====================================                                  |  51%
  |                                                                            
  |=====================================                                 |  52%
  |                                                                            
  |======================================                                |  54%
  |                                                                            
  |========================================                              |  57%
  |                                                                            
  |=========================================                             |  58%
  |                                                                            
  |==========================================                            |  60%
  |                                                                            
  |===========================================                           |  62%
  |                                                                            
  |============================================                          |  63%
  |                                                                            
  |=============================================                         |  65%
  |                                                                            
  |==============================================                        |  66%
  |                                                                            
  |================================================                      |  69%
  |                                                                            
  |==================================================                    |  71%
  |                                                                            
  |====================================================                  |  74%
  |                                                                            
  |=====================================================                 |  75%
  |                                                                            
  |======================================================                |  77%
  |                                                                            
  |=======================================================               |  78%
  |                                                                            
  |========================================================              |  80%
  |                                                                            
  |=========================================================             |  82%
  |                                                                            
  |==========================================================            |  83%
  |                                                                            
  |===========================================================           |  85%
  |                                                                            
  |============================================================          |  86%
  |                                                                            
  |=============================================================         |  88%
  |                                                                            
  |==============================================================        |  89%
  |                                                                            
  |================================================================      |  91%
  |                                                                            
  |=================================================================     |  92%
  |                                                                            
  |==================================================================    |  94%
  |                                                                            
  |===================================================================   |  95%
  |                                                                            
  |====================================================================  |  97%
  |                                                                            
  |===================================================================== |  98%
  |                                                                            
  |======================================================================| 100%
# if there are few partitions per k, within resolution consensus step can speed up the algorithm
# weight per sample is encoraged if the classes are imbalanced

plot_tree(
  labelmat = out$labelmat.mrtree,
  ref.labels = ref.labels,
  plot.piechart = TRUE,
  node.size = 0.2,
  tip.label.dist = 10,
  bottom.margin = 30
)

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
# Adjusted Multiresolution Rand Index (AMRI)
ks.flat <-  apply(
  out$labelmat.flat,
  2,
  FUN = function(x)
    length(unique(x))
)
ks.mrtree <-  apply(
  out$labelmat.mrtree,
  2,
  FUN = function(x)
    length(unique(x))
)
amri.flat <-  sapply(1:ncol(out$labelmat.flat), function(i)
  AMRI(out$labelmat.flat[, i], ref.labels)$amri)
amri.flat <-  aggregate(amri.flat, by = list(k = ks.flat), FUN = mean)
amri.recon <-  sapply(1:ncol(out$labelmat.mrtree), function(i)
  AMRI(out$labelmat.mrtree[, i], ref.labels)$amri)

df <-  rbind(
  data.frame(
    k = amri.flat$k,
    amri = amri.flat$x,
    method = 'Seurat flat'
  ),
  data.frame(k = ks.mrtree, amri = amri.recon, method = 'MRtree')
)
ggplot2::ggplot(data = df, aes(x = k, y = amri, color = method)) + geom_line() + theme_bw()

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
stab.out <- stability_plot(out)
stab.out$plot

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
kable_material(
  kable(
    stab.out$df,
    "html"),
  bootstrap_options = c("bordered",
                          "condensed",
                          "responsive",
                          "striped"),
  position = "left",
  font_size = 14
)
resolution ari
7 0.9462109
8 0.6936598
9 0.7479854
10 0.6381063
11 0.7536902
12 0.9974854
13 0.9835726
14 0.9910735
15 0.9792653
16 0.9539976
17 0.9031287
20 0.8603113
23 0.8735061
resK <- SelectResolution(stab.out$df)
resK
[1] 14
kable_material(
  kable(
    table(
      out$labelmat.mrtree[, which.min(
        abs(as.integer(
          str_remove(dimnames(
            out$labelmat.mrtree)[[2]], "K"
          )
        ) - resK)
      )]
    ),
    "html"),
  bootstrap_options = c("bordered",
                          "condensed",
                          "responsive",
                          "striped"),
  position = "left",
  font_size = 14
)
Var1 Freq
1 217
2 194
3 157
4 144
5 136
6 120
7 109
8 90
9 82
10 78
11 74
12 34
13 30
14 22
combined.srt$k_tree <- out$labelmat.mrtree[, which.min(
  abs(as.integer(
    str_remove(dimnames(
      out$labelmat.mrtree)[[2]], "K"
    )
  ) - resK)
)] %>% as.numeric() %>% as.factor()
QC_Plots_Mito(
  combined.srt,
  high_cutoff = high.cutoff.pc.mt,
  plot_title = "Mito genes % per Nucleus (overclustered)",
  color_seed = reseed,
  ggplot_default_colors = T
)

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25
QC_Plots_Feature(
  combined.srt,
  feature = "percent_ribo",
  high_cutoff = high.cutoff.pc.ribo,
  y_axis_label = "% Ribosomal Genes Counts",
  plot_title = "Ribo genes % per Nucleus (overclustered)",
  color_seed = reseed,
  ggplot_default_colors = T
)

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25
p1 <- DimPlot_scCustom(combined.srt, label = T, repel = T, pt.size = 2) + ggtitle("Unsupervised overclustering") + NoLegend()
p2 <- DimPlot_scCustom(combined.srt, label = T, repel = T, group.by = "k_tree", pt.size = 2) + ggtitle("MRTree") + NoLegend()

p1 | p2

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
Idents(combined.srt) <- "k_tree"
FeaturePlot_scCustom(combined.srt, features = "percent_mito", colors_use = combined.srt@misc$mdat_Colour_Pal, na_cutoff = NA, pt.size = 4, order = TRUE, alpha_na_exp = 0.3, alpha_exp = 0.75) & 
  theme(plot.title = element_text(size = 16))

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25
FeaturePlot_scCustom(combined.srt, features = "percent_mito", colors_use = combined.srt@misc$mdat_Colour_Pal, na_cutoff = 5, pt.size = 4, order = TRUE, alpha_na_exp = 0.3, alpha_exp = 0.75)

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25
FeaturePlot_scCustom(combined.srt, features = "nFeature_RNA", colors_use = combined.srt@misc$mdat_Colour_Pal, pt.size = 4, order = TRUE, alpha_na_exp = 0.3, alpha_exp = 0.75) & 
  theme(plot.title = element_text(size = 16))

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02

Dual Assay Plotting

For Cell Bender especially, but also potentially for other assays as well, it can be helpful during analysis to plot the corrected and uncorrected counts for given feature.

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25

Both targets look fine.

DimPlot_scCustom(combined.srt, pt.size = 3, group.by = "QC", repel = T, label = T, label.size = 5)

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25
DimPlot_scCustom(combined.srt, label.size = 5, repel = T, pt.size = 3, label = T)

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25
combined.srt <- subset(combined.srt, subset = QC == "Pass")
DimPlot_scCustom(combined.srt, label.size = 4, repel = T, pt.size = 3, label = T)

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02

Reevaluate after subsetting low-quality cells

combined.srt$comb_clstr1 <- Idents(combined.srt)
s.genes = gorth(cc.genes.updated.2019$s.genes, source_organism = "hsapiens", target_organism = "mmusculus")$ortholog_name
g2m.genes = gorth(cc.genes.updated.2019$g2m.genes, source_organism = "hsapiens", target_organism = "mmusculus")$ortholog_name

combined.srt <-
  CellCycleScoring(combined.srt,
                   s.features = s.genes,
                   g2m.features = g2m.genes)
table(combined.srt[[]]$Phase)

 G1 G2M   S 
588 213 515 
FeaturePlot_scCustom(combined.srt,features = "percent_mito", label.size = 4, repel = T, pt.size = 3, label = T, colors_use = combined.srt@misc$mdat_Colour_Pal, order = TRUE, alpha_na_exp = 0.3, alpha_exp = 0.75)  & 
  theme(plot.title = element_text(size = 16))

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25
QC_Plots_Mito(
  combined.srt,
  high_cutoff = high.cutoff.pc.mt,
  plot_title = "Mito genes % per Nucleus",
  color_seed = reseed,
  ggplot_default_colors = T
)

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25
FeaturePlot_scCustom(combined.srt, features = "percent_ribo",
            label.size = 4,repel = T,pt.size = 3,label = T, colors_use = combined.srt@misc$mdat_Colour_Pal, order = TRUE, alpha_na_exp = 0.3, alpha_exp = 0.75)  & 
  theme(plot.title = element_text(size = 16))

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25
QC_Plots_Feature(
  combined.srt,
  feature = "percent_ribo",
  high_cutoff = high.cutoff.pc.ribo,
  y_axis_label = "% Ribosomal Genes Counts",
  plot_title = "Ribo genes % per Nucleus",
  color_seed = reseed,
  ggplot_default_colors = T
)

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25
p1 <-
  QC_Plots_Genes(
    combined.srt,
    low_cutoff = low.cutoff.gene,
    high_cutoff = high.cutoff.gene,
    plot_title = "Genes per Nucleus",
    color_seed = reseed,
    ggplot_default_colors = T
  )
p2 <-
  QC_Plots_UMIs(
    combined.srt,
    low_cutoff = low.cutoff.umis,
    high_cutoff = high.cutoff.umis,
    plot_title = "UMIs per Nucleus",
    color_seed = reseed,
    ggplot_default_colors = T
  )
p1 | p2

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25
FeaturePlot_scCustom(
  combined.srt,
  features = c("S.Score", "G2M.Score"),
  label.size = 4,
  repel = T,
  pt.size = 3,
  label = T,
  colors_use = combined.srt@misc$mdat_Colour_Pal,
  na_cutoff = NA,
  order = TRUE,
  alpha_na_exp = 0.3,
  alpha_exp = 0.75) & 
  theme(plot.title = element_text(size = 16))

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25
VlnPlot(combined.srt,
        features = c("S.Score", "G2M.Score")) &
  theme(plot.title = element_text(size=16))

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25

Apply SCTransform pipeline

# normalize and run dimensionality reduction on control dataset
npcs <-  30
metadata = combined.srt@meta.data
rownames(metadata) = colnames(combined.srt)
combined.srt <-
  SCTransform(
    combined.srt,
    vst.flavor = "v2",
    ncells = ncol(combined.srt),
    variable.features.n = 3500,
    vars.to.regress = c("log10GenesPerUMI",
                        "S.Score", "G2M.Score"),
    return.only.var.genes = FALSE,
    seed.use = reseed,
    verbose = FALSE
  ) 
hvg <- VariableFeatures(combined.srt)
var_regex <- '^Hla-|^Ig[hjkl]|^Rna|^mt-|^Rp[sl]|^Hb[^(p)]|^Gm'
hvg <- hvg[str_detect(pattern = var_regex, string = hvg, negate = T)]
combined.srt <- combined.srt %>%
  RunPCA(features = hvg, npcs = npcs, seed.use = reseed, verbose = FALSE)
print(combined.srt[["pca"]], dims = 1:5, nfeatures = 5)
PC_ 1 
Positive:  Ntng1, Tenm2, Cntnap2, Cntn5, Sgcz 
Negative:  Dnah6, Dnah12, Cfap299, Cfap54, Ak9 
PC_ 2 
Positive:  Atp1a2, Lama4, Arhgap31, Arhgap29, Flt1 
Negative:  Cntnap2, Tenm2, Ntng1, Meg3, Snhg11 
PC_ 3 
Positive:  Ptprz1, Slc4a4, Npas3, Luzp2, Wdr17 
Negative:  Ebf1, Myo1b, Hmcn1, Slc38a2, Rapgef5 
PC_ 4 
Positive:  Trpm3, Adam12, Ranbp3l, Slc6a13, Bmp6 
Negative:  Myo10, Ptprb, Ptprm, Egfl7, Slc7a5 
PC_ 5 
Positive:  Lrrc4c, Dpp10, Galnt13, Galntl6, Hs3st4 
Negative:  Ntng1, 6330411D24Rik, Lef1, Rorb, Arpp21 
VizDimLoadings(combined.srt, dims = 1:4, reduction = "pca")

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25
DimHeatmap(combined.srt, dims = 1:15, cells = 500, balanced = TRUE)

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25
ElbowPlot(combined.srt, ndims = npcs)

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25
combined.srt <-
  combined.srt |>
  FindNeighbors(
    dims = seq_along(combined.srt[["pca"]]@stdev),
    k.param = 20,
    annoy.metric = "euclidean",
    n.trees = 100,
    verbose = FALSE) |>
  RunUMAP(
    dims = seq_along(combined.srt[["pca"]]@stdev),
    reduction.name = "umap",
    reduction.key = "UMAP_",
    return.model = TRUE,
    umap.method = "umap-learn",
    densmap = TRUE,
    dens.lambda = 1L,
    dens.frac = 0.1,
    n.epochs = 1000L,
    n.neighbors = 20L,
    min.dist = 0.01,
    spread = 4L,
    metric = "correlation",
    init = "pca",
    seed.use = reseed,
    verbose = FALSE) |>
  FindNeighbors(
    reduction = "umap",
    dims = 1:2,
    force.recalc = TRUE,
    k.param = 20,
    annoy.metric = "euclidean",
    n.trees = 100,
    verbose = FALSE)

Plot by source after clean up

plEmbCombBatch <- DimPlot_scCustom(combined.srt, reduction = "umap",
                          group.by = "orig.ident", pt.size = 3,
                          label = TRUE, repel = TRUE, seed = reseed,
                          ggplot_default_colors = TRUE, color_seed = reseed,
                          shuffle = TRUE) + NoLegend()
plEmbCombBatch

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25
metadata <- combined.srt@meta.data
rownames(metadata) <- colnames(combined.srt)
ref.labels <- metadata$k_tree

resolutions <-
  modularity_event_sampling(
    A = combined.srt@graphs$SCT_snn,
    n.res = 70,
    gamma.min = 0.05,
    gamma.max = 4.000001
  ) # sample based on the similarity matrix

# clustering using Suerat
combined.srt <- combined.srt |> 
  FindClusters(algorithm = 4, method = "igraph",
               resolution = resolutions, random.seed = reseed,
               verbose = FALSE)

# initial cluster tree from Seurat flat clustering
plot_clustree(
  labelmat = combined.srt@meta.data,
  prefix = 'SCT_snn_res.',
  ref.labels = ref.labels,
  plot.ref = FALSE
)

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25
# Adjusted Multiresolution Rand Index (AMRI)
ks.flat <-  apply(
  out$labelmat.flat,
  2,
  FUN = function(x)
    length(unique(x))
)
ks.mrtree <-  apply(
  out$labelmat.mrtree,
  2,
  FUN = function(x)
    length(unique(x))
)
amri.flat <-  sapply(1:ncol(out$labelmat.flat), function(i)
  AMRI(out$labelmat.flat[, i], ref.labels)$amri)
amri.flat <-  aggregate(amri.flat, by = list(k = ks.flat), FUN = mean)
amri.recon <-  sapply(1:ncol(out$labelmat.mrtree), function(i)
  AMRI(out$labelmat.mrtree[, i], ref.labels)$amri)

df <-  rbind(
  data.frame(
    k = amri.flat$k,
    amri = amri.flat$x,
    method = 'Seurat flat'
  ),
  data.frame(k = ks.mrtree, amri = amri.recon, method = 'MRtree')
)
ggplot2::ggplot(data = df, aes(x = k, y = amri, color = method)) + geom_line() + theme_bw()

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25
stab.out <- stability_plot(out)
stab.out$plot

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25
kable_material(
  kable(
    stab.out$df,
    "html"),
  bootstrap_options = c("bordered",
                          "condensed",
                          "responsive",
                          "striped"),
  position = "left",
  font_size = 14
)
resolution ari
12 1.0000000
13 1.0000000
14 0.9950979
15 1.0000000
16 1.0000000
17 1.0000000
18 1.0000000
19 1.0000000
20 1.0000000
21 1.0000000
22 1.0000000
24 0.9772836
25 0.9982121
26 0.9967004
resK <- SelectResolution(stab.out$df)
resK
 [1] 22 21 20 19 18 17 16 15 13 12
kable_material(
  kable(
    table(
      out$labelmat.mrtree[, which.min(
        abs(as.integer(
          str_remove(dimnames(
            out$labelmat.mrtree)[[2]], "K"
          )
        ) - resK)
      )]
    ),
    "html"),
  bootstrap_options = c("bordered",
                          "condensed",
                          "responsive",
                          "striped"),
  position = "left",
  font_size = 14
)
Var1 Freq
1 166
2 163
3 142
4 138
5 110
6 90
7 72
8 70
9 62
10 61
11 58
12 41
13 34
14 30
15 30
16 28
17 21
combined.srt$k_tree <- out$labelmat.mrtree[, which.min(
  abs(as.integer(
    str_remove(dimnames(
      out$labelmat.mrtree)[[2]], "K"
    )
  ) - resK)
)] %>% as.numeric() %>% as.factor()
p1 <- DimPlot_scCustom(combined.srt, label = T, repel = T, pt.size = 2) + ggtitle("Unsupervised overclustering") + NoLegend()
p2 <- DimPlot_scCustom(combined.srt, label = T, repel = T, group.by = "k_tree", pt.size = 2) + ggtitle("MRTree") + NoLegend()

p1 | p2

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25
FeaturePlot_scCustom(combined.srt, "Galr1", pt.size = 2, order = T, colors_use = combined.srt@misc$expr_Colour_Pal, alpha_na_exp = 0.3, alpha_exp = 0.75) + 
  ggtitle("Galr1: ") + theme(plot.title = element_text(size = 24))

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25
FeaturePlot_scCustom(combined.srt, "Gal", pt.size = 2, order = T, colors_use = combined.srt@misc$expr_Colour_Pal, alpha_na_exp = 0.3, alpha_exp = 0.75) + 
  ggtitle("Gal: ") + theme(plot.title = element_text(size = 24))

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25
DotPlot_scCustom(
  seurat_object = combined.srt,
  assay = "SCT",
  features = genes.zh,
  flip_axes = TRUE,
  x_lab_rotate = TRUE,
  colors_use = viridis(n = 30, alpha = .75, direction = -1, option = "G"))

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
DotPlot_scCustom(
  seurat_object = combined.srt,
  assay = "RNA",
  features = genes.zh,
  flip_axes = TRUE,
  x_lab_rotate = TRUE,
  colors_use = viridis(n = 30, alpha = .75, direction = -1, option = "E"))

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02

We see the spread of our targets across derived clusters, which isn’t optimal. Lets see if we will see some significant hits with proper statistical testing.

Idents(combined.srt) <- "k_tree"
combined.srt <- 
  PrepSCTFindMarkers(combined.srt, assay = "SCT")

markers.logreg <- 
  FindAllMarkers(
    combined.srt,
    assay = "SCT",
    verbose = FALSE,
    random.seed = reseed,
    only.pos = TRUE,
    min.pct = 0.2,
    base = 10,
    logfc.threshold = 0.2,
    densify = TRUE,
    test.use = "LR")
write_csv(markers.logreg,
          here(tables_dir,
               'hevesi2023-all-mrk_logreg-sct_combined.csv'))

markers.logreg %>%
  group_by(cluster) %>%
  slice_max(n = 20, order_by = avg_log10FC) %>%
  kable("html") %>%
  kable_material(
    bootstrap_options = c("bordered",
                          "condensed",
                          "responsive",
                          "striped"),
    position = "left",
    font_size = 14
  )
p_val avg_log10FC pct.1 pct.2 p_val_adj cluster gene
0.0000000 0.6571165 0.988 0.593 0.0000000 1 Tafa1
0.0000000 0.6502581 1.000 0.704 0.0000000 1 Tenm1
0.0000000 0.5972545 1.000 0.678 0.0000000 1 Ntng1
0.0000000 0.5949014 1.000 0.695 0.0000000 1 Rnf220
0.0000000 0.5871276 0.976 0.670 0.0000000 1 Shisa9
0.0000000 0.5609202 0.904 0.420 0.0000000 1 Thsd7b
0.0000000 0.5595962 0.994 0.502 0.0000000 1 Samd5
0.0000000 0.5470635 0.904 0.299 0.0000000 1 Gm48749
0.0000000 0.5171596 0.988 0.621 0.0000000 1 Cntnap5a
0.0000000 0.5032538 0.873 0.258 0.0000000 1 Gm32647
0.0000000 0.4864269 0.994 0.610 0.0000000 1 Tox
0.0000000 0.4645483 0.855 0.285 0.0000000 1 Trhde
0.0000000 0.4464085 0.988 0.695 0.0000000 1 Egfem1
0.0000000 0.4429732 1.000 0.756 0.0000000 1 Cntnap2
0.0000000 0.4409920 1.000 0.878 0.0000000 1 Ptprd
0.0000000 0.4356482 1.000 0.773 0.0000000 1 Grm7
0.0000000 0.4331818 1.000 0.654 0.0000000 1 Arpp21
0.0000000 0.4261508 0.940 0.397 0.0000000 1 Foxp2
0.0000000 0.4191931 0.994 0.868 0.0000000 1 Grik2
0.0000000 0.4147323 0.880 0.437 0.0000000 1 Cdh6
0.0000000 1.2753468 0.785 0.040 0.0000000 2 Cfap299
0.0000000 1.2557930 0.761 0.023 0.0000000 2 Dnah12
0.0000000 1.1597560 0.773 0.104 0.0000000 2 Adamts20
0.0000000 1.0796429 0.755 0.039 0.0000000 2 Dnah6
0.0000000 1.0502595 0.822 0.095 0.0000000 2 Cfap54
0.0000000 1.0298384 0.810 0.118 0.0000000 2 Spag16
0.0000000 1.0196588 0.804 0.072 0.0000000 2 Ccdc162
0.0000000 1.0130810 0.791 0.032 0.0000000 2 Hydin
0.0000000 1.0021477 0.767 0.054 0.0000000 2 Cfap61
0.0000000 1.0017248 0.804 0.056 0.0000000 2 Rgs22
0.0000000 0.9974433 0.791 0.069 0.0000000 2 Cfap44
0.0000000 0.9863835 0.847 0.103 0.0000000 2 Gm973
0.0000000 0.9656747 0.791 0.049 0.0000000 2 Spef2
0.0000000 0.9587074 0.761 0.051 0.0000000 2 Ak7
0.0000000 0.9536831 0.791 0.024 0.0000000 2 Ak9
0.0000000 0.9531191 0.969 0.884 0.0000000 2 Syne1
0.0000000 0.9518822 0.810 0.059 0.0000000 2 Kif6
0.0000000 0.9506150 0.798 0.132 0.0000000 2 Dnah9
0.0000000 0.9440670 0.779 0.037 0.0000000 2 Dnah11
0.0000000 0.9041702 0.761 0.026 0.0000000 2 Cfap65
0.0000000 0.5608464 0.810 0.333 0.0000000 3 Unc5d
0.0000000 0.5580631 0.866 0.520 0.0000000 3 Cdh18
0.0000000 0.4651351 0.866 0.335 0.0000000 3 Tafa2
0.0000000 0.4597091 0.789 0.312 0.0000000 3 Gm15398
0.0000000 0.4452701 0.915 0.682 0.0000000 3 Galntl6
0.0000000 0.4450124 0.873 0.232 0.0000000 3 Dlgap2
0.0000000 0.4358118 0.979 0.741 0.0000000 3 Lrrtm4
0.0000000 0.4260853 0.873 0.363 0.0000000 3 Gm26871
0.0000001 0.4250104 0.535 0.419 0.0010774 3 Adarb2
0.0000000 0.4097539 0.873 0.488 0.0000000 3 Gria1
0.0000000 0.4029539 0.958 0.718 0.0000000 3 Lingo2
0.0000000 0.4002465 0.965 0.801 0.0000000 3 Ralyl
0.0000000 0.3943962 1.000 0.832 0.0000000 3 Ahi1
0.0000000 0.3943376 1.000 0.766 0.0000000 3 Dlg2
0.0000000 0.3921796 0.831 0.318 0.0000000 3 Grin2a
0.0000000 0.3850609 0.810 0.430 0.0000000 3 Grm8
0.0000000 0.3732597 0.979 0.648 0.0000000 3 A230006K03Rik
0.0000000 0.3696774 0.979 0.784 0.0000000 3 Dab1
0.0000000 0.3531083 0.683 0.121 0.0000000 3 B230217J21Rik
0.0000000 0.3444115 0.908 0.638 0.0000000 3 Cntnap5a
0.0000000 0.9047788 0.935 0.311 0.0000000 4 Gm3764
0.0000000 0.8179890 0.971 0.628 0.0000000 4 Ptprz1
0.0000000 0.7988612 0.949 0.429 0.0000000 4 Slc4a4
0.0000000 0.7099902 0.971 0.734 0.0000000 4 Npas3
0.0000000 0.6853820 0.928 0.665 0.0000000 4 Luzp2
0.0000000 0.6719878 0.928 0.408 0.0000000 4 Gm48747
0.0000000 0.6436592 0.790 0.180 0.0000000 4 Slc6a11
0.0000000 0.6110417 0.899 0.374 0.0000000 4 Nhsl1
0.0000000 0.6106302 0.935 0.639 0.0000000 4 Gpc5
0.0000000 0.6049856 0.935 0.553 0.0000000 4 Trim9
0.0000000 0.5907997 1.000 0.733 0.0000000 4 Qk
0.0000000 0.5708835 0.841 0.193 0.0000000 4 Lrig1
0.0000000 0.5577725 0.928 0.508 0.0000000 4 Wdr17
0.0000000 0.5505430 0.957 0.648 0.0000000 4 Grm3
0.0000000 0.5466775 0.971 0.575 0.0000000 4 Ptn
0.0000000 0.5409534 0.906 0.492 0.0000000 4 Slc1a2
0.0000000 0.5363683 0.790 0.168 0.0000000 4 Bmpr1b
0.0000000 0.5356458 0.848 0.261 0.0000000 4 Plpp3
0.0000000 0.5292591 0.877 0.237 0.0000000 4 Apoe
0.0000000 0.5166935 0.717 0.141 0.0000000 4 Pla2g7
0.0000000 0.4387974 0.991 0.896 0.0000000 5 Gm42418
0.0000000 0.3672638 0.909 0.844 0.0000001 5 Gm26917
0.0000000 0.3635542 0.682 0.455 0.0000001 5 Cdh4
0.0000000 0.3596761 0.909 0.556 0.0000000 5 Cmss1
0.0000000 0.3509651 0.836 0.481 0.0000000 5 Rbfox3
0.0000000 0.3420507 0.727 0.390 0.0000000 5 Gm26871
0.0000000 0.3377407 0.845 0.534 0.0000000 5 Nxph1
0.0000000 0.3137945 0.791 0.549 0.0000000 5 Gpi1
0.0000000 0.3093742 0.627 0.271 0.0000000 5 Dlgap2
0.0000000 0.2992671 0.982 0.862 0.0000000 5 Camta1
0.0000000 0.2979735 1.000 0.907 0.0000000 5 Meg3
0.0000000 0.2919796 0.991 0.801 0.0000000 5 Nkain2
0.0000000 0.2909660 0.955 0.695 0.0000000 5 Celf4
0.0000000 0.2830124 0.836 0.580 0.0000000 5 Klhl29
0.0000000 0.2805466 0.955 0.792 0.0000000 5 Dab1
0.0000000 0.2784120 0.873 0.528 0.0000000 5 Cdh18
0.0000000 0.2761471 0.909 0.637 0.0000000 5 Usp29
0.0000000 0.2734255 0.955 0.737 0.0000001 5 Schip1
0.0000048 0.2646295 0.527 0.318 0.0983789 5 Gm32647
0.0000000 0.2646166 0.991 0.825 0.0000000 5 Ptprn2
0.0000000 1.3287492 0.667 0.033 0.0000000 6 Ptgds
0.0000000 1.1001808 0.933 0.048 0.0000000 6 Ranbp3l
0.0000000 1.0231247 0.956 0.883 0.0000000 6 Trpm3
0.0000000 0.9147659 0.933 0.225 0.0000000 6 Adam12
0.0000000 0.8879254 0.867 0.056 0.0000000 6 Slc6a20a
0.0000000 0.8669011 0.844 0.109 0.0000000 6 Adamts12
0.0000000 0.8499882 0.878 0.165 0.0000000 6 Sidt1
0.0000000 0.7909713 0.767 0.144 0.0000000 6 Bmp6
0.0000000 0.7883417 0.956 0.310 0.0000000 6 Atp1a2
0.0000000 0.7644435 0.900 0.016 0.0000000 6 Slc6a13
0.0000000 0.7474819 0.922 0.292 0.0000000 6 Bicc1
0.0000000 0.7271937 0.744 0.183 0.0000000 6 Slc7a11
0.0000000 0.7090860 0.867 0.701 0.0000000 6 Nnat
0.0000000 0.6924188 0.767 0.145 0.0000000 6 Lrmda
0.0000000 0.6884408 0.844 0.109 0.0000000 6 Cped1
0.0000000 0.6758639 0.878 0.146 0.0000000 6 Tmtc4
0.0000000 0.6605440 0.844 0.268 0.0000000 6 Sned1
0.0000000 0.6390464 0.911 0.105 0.0000000 6 Arhgap29
0.0000000 0.6233387 0.878 0.231 0.0000000 6 Pdzrn3
0.0000000 0.5929585 0.822 0.138 0.0000000 6 Colec12
0.0000000 0.9487361 0.958 0.304 0.0000000 7 6330411D24Rik
0.0000000 0.8401545 0.972 0.336 0.0000000 7 Pex5l
0.0000000 0.6446468 0.986 0.511 0.0000000 7 Ryr3
0.0000000 0.6350898 0.986 0.525 0.0000000 7 Spock1
0.0000000 0.6163441 0.917 0.404 0.0000000 7 Adarb1
0.0000000 0.5945646 1.000 0.783 0.0000000 7 Hs6st3
0.0000000 0.5938236 0.861 0.163 0.0000000 7 4930419G24Rik
0.0000000 0.5647983 0.986 0.521 0.0000000 7 Edil3
0.0000000 0.5421220 0.944 0.233 0.0000000 7 Ptpn3
0.0000000 0.5377003 1.000 0.518 0.0000000 7 Zmat4
0.0000000 0.5373895 0.944 0.416 0.0000000 7 Cntn3
0.0000000 0.5326070 1.000 0.696 0.0000000 7 Frmpd4
0.0000000 0.5131547 1.000 0.617 0.0000000 7 Zfp804b
0.0000000 0.5076611 1.000 0.655 0.0000000 7 Unc13c
0.0000000 0.5075011 0.972 0.489 0.0000000 7 Camk4
0.0000000 0.4950522 0.986 0.671 0.0000000 7 Cacnb4
0.0000000 0.4940987 0.972 0.421 0.0000000 7 Epb41l4b
0.0000000 0.4919531 1.000 0.879 0.0000000 7 Prickle2
0.0000000 0.4915512 0.944 0.265 0.0000000 7 Fras1
0.0000000 0.4912050 0.958 0.587 0.0000000 7 Pak7
0.0000000 0.9315875 0.957 0.429 0.0000000 8 Hs3st4
0.0000000 0.8830266 1.000 0.797 0.0000000 8 Lrrc4c
0.0000000 0.8702088 0.814 0.196 0.0000000 8 4930445B16Rik
0.0000000 0.8293413 1.000 0.698 0.0000000 8 Dpp10
0.0000000 0.8184406 1.000 0.691 0.0000000 8 Galntl6
0.0000000 0.7285249 0.914 0.279 0.0000000 8 Kcnmb2
0.0000000 0.6817534 0.929 0.150 0.0000000 8 Gm15155
0.0000000 0.6707176 0.886 0.192 0.0000000 8 Meis2
0.0000000 0.6624833 0.971 0.813 0.0000000 8 Asic2
0.0000000 0.6501771 0.943 0.288 0.0000000 8 Ubash3b
0.0000000 0.6447586 0.971 0.781 0.0000000 8 Nrg1
0.0000000 0.6310500 0.871 0.071 0.0000000 8 Gad1
0.0000000 0.6099125 0.957 0.096 0.0000000 8 Gad2
0.0000000 0.5988190 0.986 0.663 0.0000000 8 Grm3
0.0000000 0.5938922 0.729 0.148 0.0000000 8 Sema3e
0.0000000 0.5905362 0.886 0.132 0.0000000 8 Ptchd1
0.0000000 0.5854086 1.000 0.880 0.0000000 8 Nrxn3
0.0000000 0.5853860 0.971 0.432 0.0000000 8 Fign
0.0000000 0.5767985 0.871 0.336 0.0000000 8 Ak5
0.0000000 0.5755538 0.986 0.610 0.0000000 8 Zfp804a
0.0000000 1.3227119 0.984 0.053 0.0000000 9 Flt1
0.0000000 1.1177770 0.984 0.104 0.0000000 9 Mecom
0.0000000 0.9762405 0.984 0.210 0.0000000 9 Dach1
0.0000000 0.9535095 0.952 0.149 0.0000000 9 Slc7a1
0.0000000 0.9290368 0.935 0.053 0.0000000 9 Ets1
0.0000000 0.9213625 0.887 0.116 0.0000000 9 Slco1c1
0.0000000 0.9055905 0.935 0.069 0.0000000 9 Slc7a5
0.0000000 0.8841938 0.919 0.015 0.0000000 9 Egfl7
0.0000000 0.8678912 0.935 0.030 0.0000000 9 Ptprb
0.0000000 0.8581400 0.919 0.058 0.0000000 9 Fli1
0.0000000 0.8457729 0.968 0.230 0.0000000 9 Ccdc141
0.0000000 0.8305455 0.871 0.191 0.0000000 9 Hmcn1
0.0000000 0.8284534 0.903 0.030 0.0000000 9 Adgrl4
0.0000000 0.8179876 0.968 0.368 0.0000000 9 Slc38a2
0.0000000 0.7916615 1.000 0.311 0.0000000 9 Myo10
0.0000000 0.7810337 0.823 0.055 0.0000000 9 Apcdd1
0.0000000 0.7741358 0.952 0.286 0.0000000 9 Rapgef5
0.0000000 0.7670584 1.000 0.632 0.0000000 9 Ptprm
0.0000000 0.7670278 0.887 0.226 0.0000000 9 Tfrc
0.0000000 0.7660856 0.887 0.109 0.0000000 9 Lama4
0.0000000 0.7966165 0.869 0.163 0.0000000 10 4930588A03Rik
0.0000000 0.7900272 0.918 0.123 0.0000000 10 Gm38505
0.0000000 0.7892775 0.984 0.469 0.0000000 10 Pcdh15
0.0000000 0.7020805 1.000 0.441 0.0000000 10 Sox6
0.0000000 0.6957390 0.984 0.527 0.0000000 10 6030443J06Rik
0.0000000 0.6718450 0.836 0.129 0.0000000 10 Pdgfra
0.0000000 0.6512600 0.984 0.551 0.0000000 10 Sox2ot
0.0000000 0.6372609 0.967 0.471 0.0000000 10 Lhfpl3
0.0000000 0.6270686 0.918 0.247 0.0000000 10 Dscaml1
0.0000000 0.5654791 0.967 0.500 0.0000000 10 Xylt1
0.0000000 0.5652314 0.951 0.514 0.0000000 10 Epn2
0.0000000 0.5536460 0.820 0.083 0.0000000 10 Sox10
0.0000000 0.5288474 0.918 0.309 0.0000000 10 Mir9-3hg
0.0000000 0.5160463 0.984 0.554 0.0000000 10 Pcdh11x
0.0000000 0.4990924 1.000 0.708 0.0000000 10 Sgcd
0.0000000 0.4937250 0.836 0.244 0.0000000 10 Megf11
0.0000000 0.4869009 1.000 0.668 0.0000000 10 Dcc
0.0000000 0.4563497 0.918 0.431 0.0000000 10 Tnr
0.0000000 0.4527685 1.000 0.539 0.0000000 10 Nxph1
0.0000000 0.4519295 0.820 0.224 0.0000000 10 Arhgef3
0.0000000 1.0241256 0.500 0.174 0.0000000 11 Mbp
0.0000000 0.8482169 0.379 0.153 0.0000000 11 9630013A20Rik
0.0000000 0.8172537 0.328 0.092 0.0000000 11 Plp1
0.0000000 0.7469378 0.310 0.055 0.0000000 11 St18
0.0000000 0.7263954 0.517 0.087 0.0000000 11 Npsr1
0.0000000 0.7020544 0.983 0.839 0.0000000 11 Kcnip4
0.0000000 0.6602253 0.707 0.219 0.0000000 11 Pcsk5
0.0000000 0.6549541 0.293 0.123 0.0000000 11 Cnksr3
0.0000000 0.5952941 0.862 0.627 0.0000000 11 Zfp804b
0.0000000 0.5662574 0.259 0.006 0.0000000 11 Mobp
0.0000000 0.5583427 0.690 0.193 0.0000000 11 Prox1
0.0000000 0.5540357 0.741 0.355 0.0000000 11 Cntnap5c
0.0000000 0.5495114 0.828 0.631 0.0000000 11 Nfasc
0.0000000 0.5457659 0.828 0.692 0.0000000 11 Brinp3
0.0000000 0.5030720 0.293 0.020 0.0000000 11 Mag
0.0000005 0.4724393 0.759 0.648 0.0106283 11 Tmeff2
0.0000000 0.4713310 0.948 0.626 0.0000000 11 Gm20754
0.0000000 0.4706809 0.431 0.196 0.0000006 11 Cemip2
0.0000000 0.4487399 0.862 0.672 0.0000000 11 Rgs6
0.0000000 0.4460125 0.741 0.349 0.0000000 11 Prr16
0.0006958 0.4808576 0.463 0.297 1.0000000 12 Nwd2
0.0000000 0.4743175 0.610 0.355 0.0007256 12 Gm15398
0.0000000 0.4619596 0.610 0.304 0.0000169 12 Slit3
0.0000010 0.4598898 0.488 0.267 0.0208247 12 Gm45321
0.0000000 0.4584631 0.683 0.308 0.0000001 12 Stxbp5l
0.0000004 0.4039485 0.610 0.315 0.0092817 12 4930555F03Rik
0.0000000 0.4024779 0.976 0.760 0.0000001 12 Lrrtm4
0.0000224 0.3880570 0.878 0.791 0.4636247 12 Unc5c
0.0000001 0.3812647 0.390 0.180 0.0010581 12 Gfra1
0.0000067 0.3810508 0.561 0.325 0.1392465 12 Kctd8
0.0000000 0.3777165 0.854 0.560 0.0000002 12 Gpi1
0.0033288 0.3699645 0.756 0.580 1.0000000 12 Cmss1
0.0000000 0.3641411 1.000 0.784 0.0000016 12 Nrg1
0.0000114 0.3494685 1.000 0.892 0.2357880 12 Kcnma1
0.0003471 0.3432635 0.268 0.101 1.0000000 12 Npsr1
0.0000280 0.3364966 0.683 0.409 0.5785582 12 C130073E24Rik
0.0050611 0.3364041 0.976 0.901 1.0000000 12 Gm42418
0.0031680 0.3301619 0.439 0.307 1.0000000 12 Cpne4
0.0000000 0.3288227 0.732 0.411 0.0000709 12 Unc13a
0.0006945 0.3233748 0.902 0.848 1.0000000 12 Gm26917
0.0000000 0.9449937 0.647 0.144 0.0000000 13 Bcas1
0.0000000 0.9409910 0.706 0.447 0.0000000 13 Tnr
0.0000000 0.7218463 0.559 0.059 0.0000000 13 Bcas1os2
0.0000000 0.6971670 0.647 0.215 0.0000000 13 Tns3
0.0000000 0.6352373 0.882 0.746 0.0000000 13 Fyn
0.0000000 0.6340517 0.824 0.172 0.0000000 13 Mbp
0.0000000 0.6121338 0.676 0.300 0.0000000 13 Itpr2
0.0000000 0.5947798 0.647 0.457 0.0000000 13 Epb41l2
0.0000000 0.5885908 0.618 0.034 0.0000000 13 Enpp6
0.0000000 0.5688640 0.882 0.821 0.0008781 13 Opcml
0.0000000 0.5635389 0.824 0.372 0.0000000 13 Ust
0.0000000 0.5545936 0.529 0.054 0.0000001 13 St18
0.0000006 0.5448275 0.559 0.330 0.0127979 13 Gm32647
0.0000000 0.5375124 0.824 0.590 0.0000004 13 9530059O14Rik
0.0000000 0.5357745 1.000 0.651 0.0000000 13 Tmem108
0.0000000 0.5283072 0.882 0.633 0.0000502 13 Nfasc
0.0000000 0.5262521 0.735 0.275 0.0000000 13 Sirt2
0.0000000 0.5146112 0.588 0.360 0.0003282 13 Prr16
0.0000000 0.5041546 0.588 0.244 0.0000000 13 Abtb2
0.0000000 0.4999108 1.000 0.927 0.0001631 13 Frmd4a
0.0000000 1.3744411 1.000 0.080 0.0000000 14 Bnc2
0.0000000 0.9355881 1.000 0.463 0.0000000 14 Fbxl7
0.0000000 0.9272111 0.867 0.059 0.0000000 14 Adamtsl3
0.0000000 0.9157545 0.933 0.158 0.0000000 14 Thsd4
0.0000000 0.9076270 1.000 0.713 0.0000000 14 Foxp1
0.0000000 0.8969509 1.000 0.383 0.0000000 14 Slc38a2
0.0000000 0.8967671 0.933 0.320 0.0000000 14 Nr3c2
0.0000000 0.8908707 0.900 0.546 0.0000000 14 Slc4a10
0.0000000 0.8503342 0.933 0.065 0.0000000 14 Trabd2b
0.0000000 0.8333417 0.833 0.312 0.0000000 14 Col25a1
0.0000000 0.8118453 0.833 0.183 0.0000000 14 Itgbl1
0.0000000 0.7796978 0.933 0.357 0.0000000 14 Gulp1
0.0000000 0.7562549 0.933 0.115 0.0000000 14 Eya2
0.0000000 0.7426407 0.967 0.452 0.0000000 14 Tmtc1
0.0000000 0.7338606 0.867 0.259 0.0000000 14 Sh3pxd2a
0.0000000 0.7283485 1.000 0.645 0.0000000 14 Tmeff2
0.0000000 0.7180718 0.800 0.096 0.0000000 14 Dock5
0.0000000 0.7033469 0.967 0.205 0.0000000 14 Hmcn1
0.0000000 0.7017159 0.967 0.312 0.0000000 14 Nxn
0.0000000 0.6722369 0.567 0.067 0.0000000 14 Crispld1
0.0000000 1.6692281 0.900 0.174 0.0000000 15 Htr2c
0.0000000 1.4475659 1.000 0.079 0.0000000 15 Ttr
0.0000000 0.9520627 1.000 0.542 0.0000000 15 Wdr17
0.0000000 0.9413800 0.800 0.026 0.0000000 15 Gmnc
0.0000000 0.9072979 0.900 0.190 0.0000000 15 Enpp2
0.0000000 0.8979889 0.967 0.065 0.0000000 15 Rbm47
0.0000000 0.8974342 0.900 0.234 0.0000000 15 Vat1l
0.0000000 0.8787920 0.933 0.163 0.0000000 15 Sulf1
0.0000000 0.8685294 0.933 0.192 0.0000000 15 Otx2os1
0.0000000 0.8414672 0.967 0.673 0.0000000 15 Stk39
0.0000000 0.8107865 1.000 0.885 0.0000000 15 Trpm3
0.0000000 0.7751631 0.900 0.330 0.0000000 15 Nhsl2
0.0000000 0.7668973 0.967 0.242 0.0000000 15 C330002G04Rik
0.0000000 0.7504541 0.967 0.383 0.0000000 15 Itpr1
0.0000000 0.7147429 1.000 0.706 0.0000000 15 Frmpd4
0.0000000 0.7066112 0.867 0.175 0.0000000 15 Prdm16
0.0000000 0.7000165 1.000 0.589 0.0000000 15 Rfx3
0.0000000 0.6970875 0.800 0.254 0.0000000 15 Cab39l
0.0000000 0.6945247 0.800 0.225 0.0000000 15 Atp2b3
0.0000000 0.6784167 0.933 0.169 0.0000000 15 Slc16a2
0.0000000 0.6093348 0.964 0.428 0.0000000 16 Pcsk2
0.0000000 0.5823304 0.857 0.248 0.0000000 16 Stxbp6
0.0000000 0.5686065 1.000 0.380 0.0000000 16 Lef1
0.0000000 0.5294625 1.000 0.713 0.0000000 16 Ntng1
0.0000000 0.5060755 0.964 0.434 0.0000000 16 Cntn3
0.0000000 0.5014865 1.000 0.302 0.0000000 16 Cpne7
0.0000000 0.4788813 0.964 0.199 0.0000000 16 Prox1
0.0000000 0.4644870 0.893 0.422 0.0000716 16 Adarb2
0.0000000 0.4626738 1.000 0.527 0.0000000 16 Ryr3
0.0000010 0.4577550 0.643 0.318 0.0213566 16 4930555F03Rik
0.0000000 0.4526475 1.000 0.782 0.0000000 16 Cntnap2
0.0000000 0.4508588 0.964 0.739 0.0000000 16 Lingo2
0.0000000 0.4413095 0.964 0.766 0.0000062 16 Mgat4c
0.0000000 0.4407631 0.964 0.723 0.0000002 16 Sox5
0.0000000 0.4366980 0.893 0.328 0.0000169 16 6330411D24Rik
0.0000000 0.4363868 0.679 0.189 0.0000005 16 Sox5os4
0.0000000 0.4347882 0.750 0.125 0.0000000 16 Rxfp1
0.0000000 0.4340566 1.000 0.534 0.0000002 16 Zmat4
0.0000000 0.4294471 1.000 0.753 0.0000000 16 Syt1
0.0000005 0.4211794 0.750 0.609 0.0097965 16 Rorb
0.0000000 0.8169323 1.000 0.632 0.0000000 17 Zfp804b
0.0000000 0.7913766 1.000 0.608 0.0000000 17 Kcnq5
0.0000000 0.7854327 1.000 0.738 0.0000000 17 Cntn5
0.0000000 0.7255555 1.000 0.842 0.0000000 17 Kcnip4
0.0000000 0.7024320 1.000 0.785 0.0000000 17 Tenm2
0.0000000 0.6813306 0.952 0.767 0.0000006 17 Mgat4c
0.0000000 0.6570441 1.000 0.751 0.0000000 17 Schip1
0.0000000 0.5996349 0.905 0.377 0.0000000 17 Epha3
0.0000000 0.5933017 1.000 0.819 0.0000000 17 Opcml
0.0000000 0.5851687 1.000 0.635 0.0000000 17 Gm20754
0.0000000 0.5699112 0.857 0.304 0.0000003 17 Slit3
0.0000000 0.5638579 0.952 0.764 0.0000009 17 Lrrtm4
0.0000000 0.5532614 0.952 0.868 0.0000000 17 Slc24a3
0.0000000 0.5432472 1.000 0.598 0.0000000 17 Gabra2
0.0000000 0.5378526 0.952 0.434 0.0000017 17 4930509J09Rik
0.0000000 0.5333226 1.000 0.724 0.0000010 17 Sox5
0.0000004 0.5284057 0.524 0.100 0.0075898 17 Npsr1
0.0000000 0.5197057 1.000 0.887 0.0000000 17 Rims2
0.0000000 0.5170743 0.905 0.669 0.0000000 17 Kcnc2
0.0000000 0.5093695 1.000 0.520 0.0000001 17 Cdh8
markers.wilcox <-
  FindAllMarkers(
    combined.srt,
    assay = "SCT",
    verbose = FALSE,
    random.seed = reseed,
    only.pos = TRUE,
    min.pct = 0.2,
    base = 10,
    logfc.threshold = 0.2,
    densify = TRUE,
    test.use = "wilcox")
write_csv(markers.wilcox,
          here(tables_dir,
               'hevesi2023-all-mrk_wilcox-sct_combined.csv'))
markers.wilcox %>%
  group_by(cluster) %>%
  slice_max(n = 20, order_by = avg_log10FC) %>%
  kable("html") %>%
  kable_material(
    bootstrap_options = c("bordered",
                          "condensed",
                          "responsive",
                          "striped"),
    position = "left",
    font_size = 14
  )
p_val avg_log10FC pct.1 pct.2 p_val_adj cluster gene
0.0000000 0.6571165 0.988 0.593 0.0000000 1 Tafa1
0.0000000 0.6502581 1.000 0.704 0.0000000 1 Tenm1
0.0000000 0.5972545 1.000 0.678 0.0000000 1 Ntng1
0.0000000 0.5949014 1.000 0.695 0.0000000 1 Rnf220
0.0000000 0.5871276 0.976 0.670 0.0000000 1 Shisa9
0.0000000 0.5609202 0.904 0.420 0.0000000 1 Thsd7b
0.0000000 0.5595962 0.994 0.502 0.0000000 1 Samd5
0.0000000 0.5470635 0.904 0.299 0.0000000 1 Gm48749
0.0000000 0.5171596 0.988 0.621 0.0000000 1 Cntnap5a
0.0000000 0.5032538 0.873 0.258 0.0000000 1 Gm32647
0.0000000 0.4864269 0.994 0.610 0.0000000 1 Tox
0.0000000 0.4645483 0.855 0.285 0.0000000 1 Trhde
0.0000000 0.4464085 0.988 0.695 0.0000000 1 Egfem1
0.0000000 0.4429732 1.000 0.756 0.0000000 1 Cntnap2
0.0000000 0.4409920 1.000 0.878 0.0000000 1 Ptprd
0.0000000 0.4356482 1.000 0.773 0.0000000 1 Grm7
0.0000000 0.4331818 1.000 0.654 0.0000000 1 Arpp21
0.0000000 0.4261508 0.940 0.397 0.0000000 1 Foxp2
0.0000000 0.4191931 0.994 0.868 0.0000000 1 Grik2
0.0000000 0.4147323 0.880 0.437 0.0000000 1 Cdh6
0.0000000 1.2753468 0.785 0.040 0.0000000 2 Cfap299
0.0000000 1.2557930 0.761 0.023 0.0000000 2 Dnah12
0.0000000 1.1597560 0.773 0.104 0.0000000 2 Adamts20
0.0000000 1.0796429 0.755 0.039 0.0000000 2 Dnah6
0.0000000 1.0502595 0.822 0.095 0.0000000 2 Cfap54
0.0000000 1.0298384 0.810 0.118 0.0000000 2 Spag16
0.0000000 1.0196588 0.804 0.072 0.0000000 2 Ccdc162
0.0000000 1.0130810 0.791 0.032 0.0000000 2 Hydin
0.0000000 1.0021477 0.767 0.054 0.0000000 2 Cfap61
0.0000000 1.0017248 0.804 0.056 0.0000000 2 Rgs22
0.0000000 0.9974433 0.791 0.069 0.0000000 2 Cfap44
0.0000000 0.9863835 0.847 0.103 0.0000000 2 Gm973
0.0000000 0.9656747 0.791 0.049 0.0000000 2 Spef2
0.0000000 0.9587074 0.761 0.051 0.0000000 2 Ak7
0.0000000 0.9536831 0.791 0.024 0.0000000 2 Ak9
0.0000000 0.9531191 0.969 0.884 0.0000000 2 Syne1
0.0000000 0.9518822 0.810 0.059 0.0000000 2 Kif6
0.0000000 0.9506150 0.798 0.132 0.0000000 2 Dnah9
0.0000000 0.9440670 0.779 0.037 0.0000000 2 Dnah11
0.0000000 0.9041702 0.761 0.026 0.0000000 2 Cfap65
0.0000000 0.5608464 0.810 0.333 0.0000000 3 Unc5d
0.0000000 0.5580631 0.866 0.520 0.0000000 3 Cdh18
0.0000000 0.4651351 0.866 0.335 0.0000000 3 Tafa2
0.0000000 0.4597091 0.789 0.312 0.0000000 3 Gm15398
0.0000000 0.4452701 0.915 0.682 0.0000000 3 Galntl6
0.0000000 0.4450124 0.873 0.232 0.0000000 3 Dlgap2
0.0000000 0.4358118 0.979 0.741 0.0000000 3 Lrrtm4
0.0000000 0.4260853 0.873 0.363 0.0000000 3 Gm26871
0.0000480 0.4250104 0.535 0.419 0.9930575 3 Adarb2
0.0000000 0.4097539 0.873 0.488 0.0000000 3 Gria1
0.0000000 0.4029539 0.958 0.718 0.0000000 3 Lingo2
0.0000000 0.4002465 0.965 0.801 0.0000000 3 Ralyl
0.0000000 0.3943962 1.000 0.832 0.0000000 3 Ahi1
0.0000000 0.3943376 1.000 0.766 0.0000000 3 Dlg2
0.0000000 0.3921796 0.831 0.318 0.0000000 3 Grin2a
0.0000000 0.3850609 0.810 0.430 0.0000000 3 Grm8
0.0000000 0.3732597 0.979 0.648 0.0000000 3 A230006K03Rik
0.0000000 0.3696774 0.979 0.784 0.0000000 3 Dab1
0.0000000 0.3531083 0.683 0.121 0.0000000 3 B230217J21Rik
0.0000000 0.3444115 0.908 0.638 0.0000000 3 Cntnap5a
0.0000000 0.9047788 0.935 0.311 0.0000000 4 Gm3764
0.0000000 0.8179890 0.971 0.628 0.0000000 4 Ptprz1
0.0000000 0.7988612 0.949 0.429 0.0000000 4 Slc4a4
0.0000000 0.7099902 0.971 0.734 0.0000000 4 Npas3
0.0000000 0.6853820 0.928 0.665 0.0000000 4 Luzp2
0.0000000 0.6719878 0.928 0.408 0.0000000 4 Gm48747
0.0000000 0.6436592 0.790 0.180 0.0000000 4 Slc6a11
0.0000000 0.6110417 0.899 0.374 0.0000000 4 Nhsl1
0.0000000 0.6106302 0.935 0.639 0.0000000 4 Gpc5
0.0000000 0.6049856 0.935 0.553 0.0000000 4 Trim9
0.0000000 0.5907997 1.000 0.733 0.0000000 4 Qk
0.0000000 0.5708835 0.841 0.193 0.0000000 4 Lrig1
0.0000000 0.5577725 0.928 0.508 0.0000000 4 Wdr17
0.0000000 0.5505430 0.957 0.648 0.0000000 4 Grm3
0.0000000 0.5466775 0.971 0.575 0.0000000 4 Ptn
0.0000000 0.5409534 0.906 0.492 0.0000000 4 Slc1a2
0.0000000 0.5363683 0.790 0.168 0.0000000 4 Bmpr1b
0.0000000 0.5356458 0.848 0.261 0.0000000 4 Plpp3
0.0000000 0.5292591 0.877 0.237 0.0000000 4 Apoe
0.0000000 0.5166935 0.717 0.141 0.0000000 4 Pla2g7
0.0000000 0.4387974 0.991 0.896 0.0000000 5 Gm42418
0.0000012 0.3672638 0.909 0.844 0.0239738 5 Gm26917
0.0000000 0.3635542 0.682 0.455 0.0000481 5 Cdh4
0.0000000 0.3596761 0.909 0.556 0.0000000 5 Cmss1
0.0000000 0.3509651 0.836 0.481 0.0000000 5 Rbfox3
0.0000000 0.3420507 0.727 0.390 0.0000000 5 Gm26871
0.0000000 0.3377407 0.845 0.534 0.0000000 5 Nxph1
0.0000000 0.3137945 0.791 0.549 0.0000000 5 Gpi1
0.0000000 0.3093742 0.627 0.271 0.0000000 5 Dlgap2
0.0000000 0.2992671 0.982 0.862 0.0000000 5 Camta1
0.0000000 0.2979735 1.000 0.907 0.0000000 5 Meg3
0.0000000 0.2919796 0.991 0.801 0.0000000 5 Nkain2
0.0000000 0.2909660 0.955 0.695 0.0000000 5 Celf4
0.0000000 0.2830124 0.836 0.580 0.0000001 5 Klhl29
0.0000000 0.2805466 0.955 0.792 0.0000000 5 Dab1
0.0000000 0.2784120 0.873 0.528 0.0000000 5 Cdh18
0.0000000 0.2761471 0.909 0.637 0.0000000 5 Usp29
0.0000000 0.2734255 0.955 0.737 0.0000002 5 Schip1
0.0000019 0.2646295 0.527 0.318 0.0401717 5 Gm32647
0.0000000 0.2646166 0.991 0.825 0.0000000 5 Ptprn2
0.0000000 1.3287492 0.667 0.033 0.0000000 6 Ptgds
0.0000000 1.1001808 0.933 0.048 0.0000000 6 Ranbp3l
0.0000000 1.0231247 0.956 0.883 0.0000000 6 Trpm3
0.0000000 0.9147659 0.933 0.225 0.0000000 6 Adam12
0.0000000 0.8879254 0.867 0.056 0.0000000 6 Slc6a20a
0.0000000 0.8669011 0.844 0.109 0.0000000 6 Adamts12
0.0000000 0.8499882 0.878 0.165 0.0000000 6 Sidt1
0.0000000 0.7909713 0.767 0.144 0.0000000 6 Bmp6
0.0000000 0.7883417 0.956 0.310 0.0000000 6 Atp1a2
0.0000000 0.7644435 0.900 0.016 0.0000000 6 Slc6a13
0.0000000 0.7474819 0.922 0.292 0.0000000 6 Bicc1
0.0000000 0.7271937 0.744 0.183 0.0000000 6 Slc7a11
0.0000000 0.7090860 0.867 0.701 0.0000000 6 Nnat
0.0000000 0.6924188 0.767 0.145 0.0000000 6 Lrmda
0.0000000 0.6884408 0.844 0.109 0.0000000 6 Cped1
0.0000000 0.6758639 0.878 0.146 0.0000000 6 Tmtc4
0.0000000 0.6605440 0.844 0.268 0.0000000 6 Sned1
0.0000000 0.6390464 0.911 0.105 0.0000000 6 Arhgap29
0.0000000 0.6233387 0.878 0.231 0.0000000 6 Pdzrn3
0.0000000 0.5929585 0.822 0.138 0.0000000 6 Colec12
0.0000000 0.9487361 0.958 0.304 0.0000000 7 6330411D24Rik
0.0000000 0.8401545 0.972 0.336 0.0000000 7 Pex5l
0.0000000 0.6446468 0.986 0.511 0.0000000 7 Ryr3
0.0000000 0.6350898 0.986 0.525 0.0000000 7 Spock1
0.0000000 0.6163441 0.917 0.404 0.0000000 7 Adarb1
0.0000000 0.5945646 1.000 0.783 0.0000000 7 Hs6st3
0.0000000 0.5938236 0.861 0.163 0.0000000 7 4930419G24Rik
0.0000000 0.5647983 0.986 0.521 0.0000000 7 Edil3
0.0000000 0.5421220 0.944 0.233 0.0000000 7 Ptpn3
0.0000000 0.5377003 1.000 0.518 0.0000000 7 Zmat4
0.0000000 0.5373895 0.944 0.416 0.0000000 7 Cntn3
0.0000000 0.5326070 1.000 0.696 0.0000000 7 Frmpd4
0.0000000 0.5131547 1.000 0.617 0.0000000 7 Zfp804b
0.0000000 0.5076611 1.000 0.655 0.0000000 7 Unc13c
0.0000000 0.5075011 0.972 0.489 0.0000000 7 Camk4
0.0000000 0.4950522 0.986 0.671 0.0000000 7 Cacnb4
0.0000000 0.4940987 0.972 0.421 0.0000000 7 Epb41l4b
0.0000000 0.4919531 1.000 0.879 0.0000000 7 Prickle2
0.0000000 0.4915512 0.944 0.265 0.0000000 7 Fras1
0.0000000 0.4912050 0.958 0.587 0.0000000 7 Pak7
0.0000000 0.9315875 0.957 0.429 0.0000000 8 Hs3st4
0.0000000 0.8830266 1.000 0.797 0.0000000 8 Lrrc4c
0.0000000 0.8702088 0.814 0.196 0.0000000 8 4930445B16Rik
0.0000000 0.8293413 1.000 0.698 0.0000000 8 Dpp10
0.0000000 0.8184406 1.000 0.691 0.0000000 8 Galntl6
0.0000000 0.7285249 0.914 0.279 0.0000000 8 Kcnmb2
0.0000000 0.6817534 0.929 0.150 0.0000000 8 Gm15155
0.0000000 0.6707176 0.886 0.192 0.0000000 8 Meis2
0.0000000 0.6624833 0.971 0.813 0.0000000 8 Asic2
0.0000000 0.6501771 0.943 0.288 0.0000000 8 Ubash3b
0.0000000 0.6447586 0.971 0.781 0.0000000 8 Nrg1
0.0000000 0.6310500 0.871 0.071 0.0000000 8 Gad1
0.0000000 0.6099125 0.957 0.096 0.0000000 8 Gad2
0.0000000 0.5988190 0.986 0.663 0.0000000 8 Grm3
0.0000000 0.5938922 0.729 0.148 0.0000000 8 Sema3e
0.0000000 0.5905362 0.886 0.132 0.0000000 8 Ptchd1
0.0000000 0.5854086 1.000 0.880 0.0000000 8 Nrxn3
0.0000000 0.5853860 0.971 0.432 0.0000000 8 Fign
0.0000000 0.5767985 0.871 0.336 0.0000000 8 Ak5
0.0000000 0.5755538 0.986 0.610 0.0000000 8 Zfp804a
0.0000000 1.3227119 0.984 0.053 0.0000000 9 Flt1
0.0000000 1.1177770 0.984 0.104 0.0000000 9 Mecom
0.0000000 0.9762405 0.984 0.210 0.0000000 9 Dach1
0.0000000 0.9535095 0.952 0.149 0.0000000 9 Slc7a1
0.0000000 0.9290368 0.935 0.053 0.0000000 9 Ets1
0.0000000 0.9213625 0.887 0.116 0.0000000 9 Slco1c1
0.0000000 0.9055905 0.935 0.069 0.0000000 9 Slc7a5
0.0000000 0.8841938 0.919 0.015 0.0000000 9 Egfl7
0.0000000 0.8678912 0.935 0.030 0.0000000 9 Ptprb
0.0000000 0.8581400 0.919 0.058 0.0000000 9 Fli1
0.0000000 0.8457729 0.968 0.230 0.0000000 9 Ccdc141
0.0000000 0.8305455 0.871 0.191 0.0000000 9 Hmcn1
0.0000000 0.8284534 0.903 0.030 0.0000000 9 Adgrl4
0.0000000 0.8179876 0.968 0.368 0.0000000 9 Slc38a2
0.0000000 0.7916615 1.000 0.311 0.0000000 9 Myo10
0.0000000 0.7810337 0.823 0.055 0.0000000 9 Apcdd1
0.0000000 0.7741358 0.952 0.286 0.0000000 9 Rapgef5
0.0000000 0.7670584 1.000 0.632 0.0000000 9 Ptprm
0.0000000 0.7670278 0.887 0.226 0.0000000 9 Tfrc
0.0000000 0.7660856 0.887 0.109 0.0000000 9 Lama4
0.0000000 0.7966165 0.869 0.163 0.0000000 10 4930588A03Rik
0.0000000 0.7900272 0.918 0.123 0.0000000 10 Gm38505
0.0000000 0.7892775 0.984 0.469 0.0000000 10 Pcdh15
0.0000000 0.7020805 1.000 0.441 0.0000000 10 Sox6
0.0000000 0.6957390 0.984 0.527 0.0000000 10 6030443J06Rik
0.0000000 0.6718450 0.836 0.129 0.0000000 10 Pdgfra
0.0000000 0.6512600 0.984 0.551 0.0000000 10 Sox2ot
0.0000000 0.6372609 0.967 0.471 0.0000000 10 Lhfpl3
0.0000000 0.6270686 0.918 0.247 0.0000000 10 Dscaml1
0.0000000 0.5654791 0.967 0.500 0.0000000 10 Xylt1
0.0000000 0.5652314 0.951 0.514 0.0000000 10 Epn2
0.0000000 0.5536460 0.820 0.083 0.0000000 10 Sox10
0.0000000 0.5288474 0.918 0.309 0.0000000 10 Mir9-3hg
0.0000000 0.5160463 0.984 0.554 0.0000000 10 Pcdh11x
0.0000000 0.4990924 1.000 0.708 0.0000000 10 Sgcd
0.0000000 0.4937250 0.836 0.244 0.0000000 10 Megf11
0.0000000 0.4869009 1.000 0.668 0.0000000 10 Dcc
0.0000000 0.4563497 0.918 0.431 0.0000000 10 Tnr
0.0000000 0.4527685 1.000 0.539 0.0000000 10 Nxph1
0.0000000 0.4519295 0.820 0.224 0.0000000 10 Arhgef3
0.0000000 1.0241256 0.500 0.174 0.0000000 11 Mbp
0.0000002 0.8482169 0.379 0.153 0.0048912 11 9630013A20Rik
0.0000000 0.8172537 0.328 0.092 0.0000033 11 Plp1
0.0000000 0.7469378 0.310 0.055 0.0000000 11 St18
0.0000000 0.7263954 0.517 0.087 0.0000000 11 Npsr1
0.0000000 0.7020544 0.983 0.839 0.0000000 11 Kcnip4
0.0000000 0.6602253 0.707 0.219 0.0000000 11 Pcsk5
0.0000126 0.6549541 0.293 0.123 0.2607246 11 Cnksr3
0.0000000 0.5952941 0.862 0.627 0.0000002 11 Zfp804b
0.0000000 0.5662574 0.259 0.006 0.0000000 11 Mobp
0.0000000 0.5583427 0.690 0.193 0.0000000 11 Prox1
0.0000000 0.5540357 0.741 0.355 0.0000000 11 Cntnap5c
0.0000004 0.5495114 0.828 0.631 0.0088573 11 Nfasc
0.0000000 0.5457659 0.828 0.692 0.0001353 11 Brinp3
0.0000000 0.5030720 0.293 0.020 0.0000000 11 Mag
0.0003653 0.4724393 0.759 0.648 1.0000000 11 Tmeff2
0.0000000 0.4713310 0.948 0.626 0.0000000 11 Gm20754
0.0000010 0.4706809 0.431 0.196 0.0199178 11 Cemip2
0.0000000 0.4487399 0.862 0.672 0.0000024 11 Rgs6
0.0000000 0.4460125 0.741 0.349 0.0000000 11 Prr16
0.0000041 0.4743175 0.610 0.355 0.0839666 12 Gm15398
0.0000000 0.4619596 0.610 0.304 0.0010143 12 Slit3
0.0000979 0.4598898 0.488 0.267 1.0000000 12 Gm45321
0.0000000 0.4584631 0.683 0.308 0.0000188 12 Stxbp5l
0.0000015 0.4039485 0.610 0.315 0.0300932 12 4930555F03Rik
0.0000000 0.4024779 0.976 0.760 0.0000028 12 Lrrtm4
0.0021607 0.3880570 0.878 0.791 1.0000000 12 Unc5c
0.0000293 0.3812647 0.390 0.180 0.6059771 12 Gfra1
0.0001393 0.3810508 0.561 0.325 1.0000000 12 Kctd8
0.0000000 0.3777165 0.854 0.560 0.0005099 12 Gpi1
0.0000000 0.3641411 1.000 0.784 0.0000130 12 Nrg1
0.0009473 0.3494685 1.000 0.892 1.0000000 12 Kcnma1
0.0002867 0.3432635 0.268 0.101 1.0000000 12 Npsr1
0.0000532 0.3364966 0.683 0.409 1.0000000 12 C130073E24Rik
0.0000004 0.3288227 0.732 0.411 0.0073581 12 Unc13a
0.0000026 0.3222958 0.488 0.224 0.0548183 12 Gm2516
0.0000006 0.3211624 0.829 0.518 0.0128026 12 Cdh8
0.0000000 0.3122612 0.732 0.362 0.0009475 12 Grin2a
0.0000000 0.3033823 0.659 0.289 0.0002781 12 Cntnap4
0.0000000 0.3031174 0.415 0.128 0.0002314 12 Nefm
0.0000000 0.9449937 0.647 0.144 0.0000000 13 Bcas1
0.0000000 0.9409910 0.706 0.447 0.0002074 13 Tnr
0.0000000 0.7218463 0.559 0.059 0.0000000 13 Bcas1os2
0.0000000 0.6971670 0.647 0.215 0.0000000 13 Tns3
0.0000000 0.6352373 0.882 0.746 0.0010193 13 Fyn
0.0000000 0.6340517 0.824 0.172 0.0000000 13 Mbp
0.0000000 0.6121338 0.676 0.300 0.0000082 13 Itpr2
0.0000045 0.5947798 0.647 0.457 0.0934544 13 Epb41l2
0.0000000 0.5885908 0.618 0.034 0.0000000 13 Enpp6
0.0000087 0.5688640 0.882 0.821 0.1789699 13 Opcml
0.0000000 0.5635389 0.824 0.372 0.0000001 13 Ust
0.0000000 0.5545936 0.529 0.054 0.0000000 13 St18
0.0000618 0.5448275 0.559 0.330 1.0000000 13 Gm32647
0.0000002 0.5375124 0.824 0.590 0.0040599 13 9530059O14Rik
0.0000000 0.5357745 1.000 0.651 0.0000001 13 Tmem108
0.0000063 0.5283072 0.882 0.633 0.1306024 13 Nfasc
0.0000000 0.5262521 0.735 0.275 0.0000000 13 Sirt2
0.0000371 0.5146112 0.588 0.360 0.7666722 13 Prr16
0.0000000 0.5041546 0.588 0.244 0.0002005 13 Abtb2
0.0000030 0.4999108 1.000 0.927 0.0617428 13 Frmd4a
0.0000000 1.3744411 1.000 0.080 0.0000000 14 Bnc2
0.0000000 0.9355881 1.000 0.463 0.0000000 14 Fbxl7
0.0000000 0.9272111 0.867 0.059 0.0000000 14 Adamtsl3
0.0000000 0.9157545 0.933 0.158 0.0000000 14 Thsd4
0.0000000 0.9076270 1.000 0.713 0.0000000 14 Foxp1
0.0000000 0.8969509 1.000 0.383 0.0000000 14 Slc38a2
0.0000000 0.8967671 0.933 0.320 0.0000000 14 Nr3c2
0.0000000 0.8908707 0.900 0.546 0.0000000 14 Slc4a10
0.0000000 0.8503342 0.933 0.065 0.0000000 14 Trabd2b
0.0000000 0.8333417 0.833 0.312 0.0000000 14 Col25a1
0.0000000 0.8118453 0.833 0.183 0.0000000 14 Itgbl1
0.0000000 0.7796978 0.933 0.357 0.0000000 14 Gulp1
0.0000000 0.7562549 0.933 0.115 0.0000000 14 Eya2
0.0000000 0.7426407 0.967 0.452 0.0000000 14 Tmtc1
0.0000000 0.7338606 0.867 0.259 0.0000000 14 Sh3pxd2a
0.0000000 0.7283485 1.000 0.645 0.0000000 14 Tmeff2
0.0000000 0.7180718 0.800 0.096 0.0000000 14 Dock5
0.0000000 0.7033469 0.967 0.205 0.0000000 14 Hmcn1
0.0000000 0.7017159 0.967 0.312 0.0000000 14 Nxn
0.0000000 0.6722369 0.567 0.067 0.0000000 14 Crispld1
0.0000000 1.6692281 0.900 0.174 0.0000000 15 Htr2c
0.0000000 1.4475659 1.000 0.079 0.0000000 15 Ttr
0.0000000 0.9520627 1.000 0.542 0.0000000 15 Wdr17
0.0000000 0.9413800 0.800 0.026 0.0000000 15 Gmnc
0.0000000 0.9072979 0.900 0.190 0.0000000 15 Enpp2
0.0000000 0.8979889 0.967 0.065 0.0000000 15 Rbm47
0.0000000 0.8974342 0.900 0.234 0.0000000 15 Vat1l
0.0000000 0.8787920 0.933 0.163 0.0000000 15 Sulf1
0.0000000 0.8685294 0.933 0.192 0.0000000 15 Otx2os1
0.0000000 0.8414672 0.967 0.673 0.0000000 15 Stk39
0.0000000 0.8107865 1.000 0.885 0.0000000 15 Trpm3
0.0000000 0.7751631 0.900 0.330 0.0000000 15 Nhsl2
0.0000000 0.7668973 0.967 0.242 0.0000000 15 C330002G04Rik
0.0000000 0.7504541 0.967 0.383 0.0000000 15 Itpr1
0.0000000 0.7147429 1.000 0.706 0.0000000 15 Frmpd4
0.0000000 0.7066112 0.867 0.175 0.0000000 15 Prdm16
0.0000000 0.7000165 1.000 0.589 0.0000000 15 Rfx3
0.0000000 0.6970875 0.800 0.254 0.0000000 15 Cab39l
0.0000000 0.6945247 0.800 0.225 0.0000000 15 Atp2b3
0.0000000 0.6784167 0.933 0.169 0.0000000 15 Slc16a2
0.0000000 0.6093348 0.964 0.428 0.0000000 16 Pcsk2
0.0000000 0.5823304 0.857 0.248 0.0000000 16 Stxbp6
0.0000000 0.5686065 1.000 0.380 0.0000000 16 Lef1
0.0000000 0.5294625 1.000 0.713 0.0000000 16 Ntng1
0.0000000 0.5060755 0.964 0.434 0.0000000 16 Cntn3
0.0000000 0.5014865 1.000 0.302 0.0000000 16 Cpne7
0.0000000 0.4788813 0.964 0.199 0.0000000 16 Prox1
0.0000000 0.4644870 0.893 0.422 0.0000100 16 Adarb2
0.0000000 0.4626738 1.000 0.527 0.0000000 16 Ryr3
0.0000037 0.4577550 0.643 0.318 0.0757812 16 4930555F03Rik
0.0000000 0.4526475 1.000 0.782 0.0000000 16 Cntnap2
0.0000000 0.4508588 0.964 0.739 0.0000034 16 Lingo2
0.0000000 0.4413095 0.964 0.766 0.0000730 16 Mgat4c
0.0000000 0.4407631 0.964 0.723 0.0000254 16 Sox5
0.0000000 0.4366980 0.893 0.328 0.0000000 16 6330411D24Rik
0.0000000 0.4363868 0.679 0.189 0.0000000 16 Sox5os4
0.0000000 0.4347882 0.750 0.125 0.0000000 16 Rxfp1
0.0000000 0.4340566 1.000 0.534 0.0000009 16 Zmat4
0.0000000 0.4294471 1.000 0.753 0.0000001 16 Syt1
0.0000208 0.4211794 0.750 0.609 0.4296014 16 Rorb
0.0000000 0.8169323 1.000 0.632 0.0000000 17 Zfp804b
0.0000000 0.7913766 1.000 0.608 0.0000000 17 Kcnq5
0.0000000 0.7854327 1.000 0.738 0.0000002 17 Cntn5
0.0000000 0.7255555 1.000 0.842 0.0000001 17 Kcnip4
0.0000000 0.7024320 1.000 0.785 0.0000000 17 Tenm2
0.0000001 0.6813306 0.952 0.767 0.0017939 17 Mgat4c
0.0000000 0.6570441 1.000 0.751 0.0000010 17 Schip1
0.0000000 0.5996349 0.905 0.377 0.0000001 17 Epha3
0.0000000 0.5933017 1.000 0.819 0.0000023 17 Opcml
0.0000000 0.5851687 1.000 0.635 0.0000007 17 Gm20754
0.0000000 0.5699112 0.857 0.304 0.0000004 17 Slit3
0.0000000 0.5638579 0.952 0.764 0.0001885 17 Lrrtm4
0.0000000 0.5532614 0.952 0.868 0.0000636 17 Slc24a3
0.0000000 0.5432472 1.000 0.598 0.0000004 17 Gabra2
0.0000000 0.5378526 0.952 0.434 0.0000181 17 4930509J09Rik
0.0000001 0.5333226 1.000 0.724 0.0014001 17 Sox5
0.0000000 0.5284057 0.524 0.100 0.0000015 17 Npsr1
0.0000000 0.5197057 1.000 0.887 0.0000022 17 Rims2
0.0000000 0.5170743 0.905 0.669 0.0000508 17 Kcnc2
0.0000000 0.5093695 1.000 0.520 0.0000015 17 Cdh8

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
markers.logreg %>%
    group_by(cluster) %>%
    top_n(n = 10, wt = avg_log10FC) -> top10
DoHeatmap(combined.srt, features = top10$gene) + NoLegend()

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25

It seems that we should split datasets despite the fact that they’re derived from the same experiment. It should help us to get better embeddings and clusters.

Separate analysis

DefaultAssay(combined.srt) <- "RNA"
combined.srt$comb_clstr2 <- Idents(combined.srt)
combined.srt@meta.data <-
  combined.srt@meta.data %>%
  select(nCount_RNA,
         nFeature_RNA,
         log10GenesPerUMI,
         percent_mito,
         percent_ribo,
         percent_hb,
         var_regex,
         S.Score,
         G2M.Score,
         log_prob_doublet,
         orig.ident,
         comb_clstr1,
         comb_clstr2,
         QC,
         cell_name)
srt.list <- SplitObject(combined.srt,
                        split.by = "orig.ident")
THP7  <- srt.list[["THP7"]]
Pr5P7 <- srt.list[["Pr5P7"]]

Ventrobasal thalamus

plan("sequential")
invisible(gc())
plan("multisession", workers = 4)
n_cores <- 4
options(future.globals.maxSize = 8000 * 1024^2)

n_pcs <- 100
c(THP7, THP7.markers.logreg, THP7.markers.mast)  %<-% DeriveKTree(THP7)

  |                                                                            
  |======================================================================| 100%
  |                                                                            
  |==                                                                    |   3%
  |                                                                            
  |====                                                                  |   5%
  |                                                                            
  |=====                                                                 |   8%
  |                                                                            
  |=======                                                               |  10%
  |                                                                            
  |=========                                                             |  13%
  |                                                                            
  |===========                                                           |  15%
  |                                                                            
  |==============                                                        |  21%
  |                                                                            
  |==================                                                    |  26%
  |                                                                            
  |====================                                                  |  28%
  |                                                                            
  |=======================                                               |  33%
  |                                                                            
  |=========================                                             |  36%
  |                                                                            
  |===========================                                           |  38%
  |                                                                            
  |=============================                                         |  41%
  |                                                                            
  |================================                                      |  46%
  |                                                                            
  |==================================                                    |  49%
  |                                                                            
  |====================================                                  |  51%
  |                                                                            
  |======================================                                |  54%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |=========================================                             |  59%
  |                                                                            
  |===========================================                           |  62%
  |                                                                            
  |=============================================                         |  64%
  |                                                                            
  |===============================================                       |  67%
  |                                                                            
  |================================================                      |  69%
  |                                                                            
  |==================================================                    |  72%
  |                                                                            
  |====================================================                  |  74%
  |                                                                            
  |========================================================              |  79%
  |                                                                            
  |=========================================================             |  82%
  |                                                                            
  |===========================================================           |  85%
  |                                                                            
  |===============================================================       |  90%
  |                                                                            
  |=================================================================     |  92%
  |                                                                            
  |==================================================================    |  95%
  |                                                                            
  |====================================================================  |  97%
  |                                                                            
  |======================================================================| 100%
Idents(THP7) <- "k_tree"
THP7$sep_clstr <- Idents(THP7)

THP7.markers.logreg %>%
  group_by(cluster) %>%
  slice_max(n = 20, order_by = avg_log10FC) %>%
  kable("html") %>%
  kable_material(
    bootstrap_options = c("bordered",
                          "condensed",
                          "responsive",
                          "striped"),
    position = "left",
    font_size = 14
  )
p_val avg_log10FC pct.1 pct.2 p_val_adj cluster gene
0 0.7640263 0.950 0.664 0 1 Kcnip4
0 0.7242854 0.940 0.440 0 1 Tenm2
0 0.6964606 0.855 0.418 0 1 Brinp3
0 0.6258743 0.840 0.433 0 1 Cntn5
0 0.6240539 0.840 0.312 0 1 Gm20754
0 0.6158324 0.810 0.401 0 1 Kcnq5
0 0.6118205 0.890 0.444 0 1 Lrrtm4
0 0.5953479 0.730 0.291 0 1 Pcdh15
0 0.5813549 0.365 0.069 0 1 Npsr1
0 0.5753793 0.730 0.222 0 1 Tafa2
0 0.5498454 0.805 0.446 0 1 Dcc
0 0.5455645 0.945 0.556 0 1 Opcml
0 0.5315668 0.805 0.532 0 1 Zfp804b
0 0.5139852 0.865 0.347 0 1 Khdrbs2
0 0.5019838 0.795 0.388 0 1 Gria1
0 0.5018060 0.915 0.461 0 1 Sntg1
0 0.4986099 0.625 0.356 0 1 Nxph1
0 0.4919916 0.670 0.244 0 1 4930509J09Rik
0 0.4905154 0.795 0.263 0 1 Pcsk2
0 0.4835379 0.700 0.321 0 1 Prr16
0 1.4353259 0.959 0.107 0 2 Cfap299
0 1.4343721 0.959 0.055 0 2 Dnah12
0 1.3442395 0.951 0.253 0 2 Adamts20
0 1.2221474 0.951 0.124 0 2 Dnah6
0 1.2009083 0.951 0.137 0 2 Rgs22
0 1.1988035 0.951 0.103 0 2 Hydin
0 1.1947244 0.959 0.164 0 2 Cfap61
0 1.1822099 0.959 0.098 0 2 Ak7
0 1.1679765 0.967 0.234 0 2 Cfap54
0 1.1573976 0.934 0.138 0 2 Cfap44
0 1.1542253 0.959 0.214 0 2 Ccdc162
0 1.1378544 0.959 0.085 0 2 Ak9
0 1.1361903 0.967 0.162 0 2 Kif6
0 1.1337913 0.959 0.148 0 2 Spef2
0 1.1293963 0.959 0.232 0 2 Gm973
0 1.1273505 0.959 0.234 0 2 Dnah9
0 1.1142377 0.951 0.292 0 2 Spag16
0 1.1087591 0.967 0.077 0 2 Cfap65
0 1.1018309 0.918 0.054 0 2 Spag17
0 1.1011970 0.951 0.111 0 2 Dnah11
0 1.1422599 0.916 0.163 0 3 6330411D24Rik
0 0.7427098 0.935 0.309 0 3 Pex5l
0 0.7227560 0.963 0.438 0 3 Ntng1
0 0.6957097 0.963 0.418 0 3 Arpp21
0 0.6897156 0.944 0.397 0 3 Ryr3
0 0.6812756 0.888 0.336 0 3 Spock1
0 0.6269982 0.907 0.381 0 3 Edil3
0 0.6125840 0.935 0.382 0 3 Camk4
0 0.5941741 0.953 0.659 0 3 Hs6st3
0 0.5767449 0.832 0.275 0 3 Adarb2
0 0.5651408 0.953 0.539 0 3 Lrrc7
0 0.5642189 0.944 0.400 0 3 Zmat4
0 0.5489119 0.935 0.408 0 3 Hs3st5
0 0.5474077 0.963 0.515 0 3 Syt1
0 0.5442789 0.841 0.160 0 3 4930419G24Rik
0 0.5364514 0.888 0.348 0 3 Cntn3
0 0.5343979 0.907 0.481 0 3 Adarb1
0 0.5270442 0.935 0.332 0 3 Nell1
0 0.5266853 0.963 0.508 0 3 Cntnap2
0 0.5239474 0.832 0.233 0 3 Gm48749
0 1.0601642 0.974 0.323 0 4 Gm3764
0 1.0035949 0.974 0.491 0 4 Slc4a4
0 0.8680456 0.987 0.653 0 4 Ptprz1
0 0.8458438 0.921 0.464 0 4 Gm48747
0 0.8097657 0.921 0.170 0 4 Bmpr1b
0 0.7941314 0.803 0.197 0 4 Slc6a11
0 0.7930614 0.934 0.313 0 4 Apoe
0 0.7570380 0.868 0.558 0 4 Luzp2
0 0.7566663 0.987 0.315 0 4 Plpp3
0 0.7471816 0.803 0.473 0 4 Gpc5
0 0.7341970 0.908 0.264 0 4 Lrig1
0 0.7309734 0.842 0.216 0 4 Pla2g7
0 0.7302177 0.921 0.614 0 4 Trim9
0 0.7299330 0.711 0.162 0 4 Tnc
0 0.7265035 0.974 0.594 0 4 Ptn
0 0.7001316 0.829 0.158 0 4 Egfr
0 0.6932982 0.987 0.650 0 4 Gpm6b
0 0.6907836 1.000 0.726 0 4 Npas3
0 0.6835288 0.855 0.228 0 4 Cdh20
0 0.6759784 1.000 0.774 0 4 Qk
0 1.2233431 0.585 0.070 0 5 Flt1
0 1.1530867 0.938 0.437 0 5 Dlc1
0 1.1040712 0.831 0.132 0 5 Ebf1
0 0.9695445 0.385 0.080 0 5 Atp13a5
0 0.9447831 0.646 0.050 0 5 Itga1
0 0.9233525 0.723 0.115 0 5 Cped1
0 0.9164770 0.692 0.052 0 5 Ets1
0 0.9156116 0.538 0.139 0 5 Adamts12
0 0.9017114 0.492 0.187 0 5 Mecom
0 0.8743776 0.708 0.262 0 5 Dach1
0 0.8571195 0.615 0.262 0 5 Adam12
0 0.8482186 0.738 0.077 0 5 Lama4
0 0.8392114 0.600 0.242 0 5 Slc7a1
0 0.8326942 0.646 0.384 0 5 Rapgef5
0 0.8221493 0.523 0.025 0 5 Rgs5
0 0.8115852 0.615 0.062 0 5 Fli1
0 0.7913175 0.462 0.027 0 5 Egfl7
0 0.7888761 0.569 0.247 0 5 Hmcn1
0 0.7753925 0.677 0.526 0 5 Slc38a2
0 0.7750763 0.538 0.033 0 5 Morrbid
0 1.0385184 0.940 0.312 0 6 Hs3st4
0 0.9788616 0.970 0.531 0 6 Dpp10
0 0.9569103 1.000 0.668 0 6 Lrrc4c
0 0.9222581 0.985 0.503 0 6 Galntl6
0 0.9116642 0.821 0.198 0 6 4930445B16Rik
0 0.8126178 0.970 0.606 0 6 Nrg1
0 0.7723695 0.910 0.183 0 6 Gm15155
0 0.7621331 0.970 0.737 0 6 Asic2
0 0.7432652 0.881 0.315 0 6 Kcnmb2
0 0.7145113 1.000 0.467 0 6 Sgcz
0 0.7131163 0.925 0.338 0 6 Ubash3b
0 0.7086752 0.940 0.377 0 6 Fign
0 0.6962755 0.866 0.243 0 6 Meis2
0 0.6839052 0.940 0.420 0 6 Galnt13
0 0.6736126 0.806 0.164 0 6 D030068K23Rik
0 0.6671779 1.000 0.757 0 6 Nrxn3
0 0.6667063 0.955 0.451 0 6 Zfp804a
0 0.6661510 0.940 0.104 0 6 Gad2
0 0.6614709 0.881 0.104 0 6 Gad1
0 0.6524320 0.881 0.367 0 6 Ak5
0 1.9640315 1.000 0.140 0 7 Htr2c
0 1.4597121 1.000 0.177 0 7 Ttr
0 1.2423272 0.926 0.052 0 7 Gmnc
0 1.1559174 1.000 0.253 0 7 Vat1l
0 1.1478074 1.000 0.769 0 7 Trpm3
0 1.1352757 1.000 0.143 0 7 Sulf1
0 1.1263682 1.000 0.089 0 7 Rbm47
0 1.0851914 0.963 0.253 0 7 Enpp2
0 1.0289727 1.000 0.322 0 7 Otx2os1
0 1.0243521 0.963 0.656 0 7 Stk39
0 1.0196880 1.000 0.336 0 7 C330002G04Rik
0 1.0076501 0.963 0.378 0 7 Nhsl2
0 0.9995940 1.000 0.630 0 7 Wdr17
0 0.9747735 0.926 0.317 0 7 Atp2b3
0 0.9328334 0.815 0.046 0 7 Col8a1
0 0.9033041 0.963 0.188 0 7 Slc16a2
0 0.8731274 0.889 0.556 0 7 Slc4a10
0 0.8715270 0.778 0.198 0 7 Gm28376
0 0.8700451 0.852 0.435 0 7 Cab39l
0 0.8429674 0.926 0.297 0 7 Prdm16
THP7.markers.mast %>%
  group_by(cluster) %>%
  slice_max(n = 20, order_by = avg_log10FC) %>%
  kable("html") %>%
  kable_material(
    bootstrap_options = c("bordered",
                          "condensed",
                          "responsive",
                          "striped"),
    position = "left",
    font_size = 14
  )
p_val avg_log10FC pct.1 pct.2 p_val_adj cluster gene
0 0.7640263 0.950 0.664 0 1 Kcnip4
0 0.7242854 0.940 0.440 0 1 Tenm2
0 0.6964606 0.855 0.418 0 1 Brinp3
0 0.6258743 0.840 0.433 0 1 Cntn5
0 0.6240539 0.840 0.312 0 1 Gm20754
0 0.6158324 0.810 0.401 0 1 Kcnq5
0 0.6118205 0.890 0.444 0 1 Lrrtm4
0 0.5953479 0.730 0.291 0 1 Pcdh15
0 0.5813549 0.365 0.069 0 1 Npsr1
0 0.5753793 0.730 0.222 0 1 Tafa2
0 0.5498454 0.805 0.446 0 1 Dcc
0 0.5455645 0.945 0.556 0 1 Opcml
0 0.5315668 0.805 0.532 0 1 Zfp804b
0 0.5139852 0.865 0.347 0 1 Khdrbs2
0 0.5019838 0.795 0.388 0 1 Gria1
0 0.5018060 0.915 0.461 0 1 Sntg1
0 0.4986099 0.625 0.356 0 1 Nxph1
0 0.4919916 0.670 0.244 0 1 4930509J09Rik
0 0.4905154 0.795 0.263 0 1 Pcsk2
0 0.4835379 0.700 0.321 0 1 Prr16
0 1.4353259 0.959 0.107 0 2 Cfap299
0 1.4343721 0.959 0.055 0 2 Dnah12
0 1.3442395 0.951 0.253 0 2 Adamts20
0 1.2221474 0.951 0.124 0 2 Dnah6
0 1.2009083 0.951 0.137 0 2 Rgs22
0 1.1988035 0.951 0.103 0 2 Hydin
0 1.1947244 0.959 0.164 0 2 Cfap61
0 1.1822099 0.959 0.098 0 2 Ak7
0 1.1679765 0.967 0.234 0 2 Cfap54
0 1.1573976 0.934 0.138 0 2 Cfap44
0 1.1542253 0.959 0.214 0 2 Ccdc162
0 1.1378544 0.959 0.085 0 2 Ak9
0 1.1361903 0.967 0.162 0 2 Kif6
0 1.1337913 0.959 0.148 0 2 Spef2
0 1.1293963 0.959 0.232 0 2 Gm973
0 1.1273505 0.959 0.234 0 2 Dnah9
0 1.1142377 0.951 0.292 0 2 Spag16
0 1.1087591 0.967 0.077 0 2 Cfap65
0 1.1018309 0.918 0.054 0 2 Spag17
0 1.1011970 0.951 0.111 0 2 Dnah11
0 1.1422599 0.916 0.163 0 3 6330411D24Rik
0 0.7427098 0.935 0.309 0 3 Pex5l
0 0.7227560 0.963 0.438 0 3 Ntng1
0 0.6957097 0.963 0.418 0 3 Arpp21
0 0.6897156 0.944 0.397 0 3 Ryr3
0 0.6812756 0.888 0.336 0 3 Spock1
0 0.6269982 0.907 0.381 0 3 Edil3
0 0.6125840 0.935 0.382 0 3 Camk4
0 0.5941741 0.953 0.659 0 3 Hs6st3
0 0.5767449 0.832 0.275 0 3 Adarb2
0 0.5651408 0.953 0.539 0 3 Lrrc7
0 0.5642189 0.944 0.400 0 3 Zmat4
0 0.5489119 0.935 0.408 0 3 Hs3st5
0 0.5474077 0.963 0.515 0 3 Syt1
0 0.5442789 0.841 0.160 0 3 4930419G24Rik
0 0.5364514 0.888 0.348 0 3 Cntn3
0 0.5343979 0.907 0.481 0 3 Adarb1
0 0.5270442 0.935 0.332 0 3 Nell1
0 0.5266853 0.963 0.508 0 3 Cntnap2
0 0.5239474 0.832 0.233 0 3 Gm48749
0 1.0601642 0.974 0.323 0 4 Gm3764
0 1.0035949 0.974 0.491 0 4 Slc4a4
0 0.8680456 0.987 0.653 0 4 Ptprz1
0 0.8458438 0.921 0.464 0 4 Gm48747
0 0.8097657 0.921 0.170 0 4 Bmpr1b
0 0.7941314 0.803 0.197 0 4 Slc6a11
0 0.7930614 0.934 0.313 0 4 Apoe
0 0.7570380 0.868 0.558 0 4 Luzp2
0 0.7566663 0.987 0.315 0 4 Plpp3
0 0.7471816 0.803 0.473 0 4 Gpc5
0 0.7341970 0.908 0.264 0 4 Lrig1
0 0.7309734 0.842 0.216 0 4 Pla2g7
0 0.7302177 0.921 0.614 0 4 Trim9
0 0.7299330 0.711 0.162 0 4 Tnc
0 0.7265035 0.974 0.594 0 4 Ptn
0 0.7001316 0.829 0.158 0 4 Egfr
0 0.6932982 0.987 0.650 0 4 Gpm6b
0 0.6907836 1.000 0.726 0 4 Npas3
0 0.6835288 0.855 0.228 0 4 Cdh20
0 0.6759784 1.000 0.774 0 4 Qk
0 1.2233431 0.585 0.070 0 5 Flt1
0 1.1530867 0.938 0.437 0 5 Dlc1
0 1.1040712 0.831 0.132 0 5 Ebf1
0 0.9695445 0.385 0.080 0 5 Atp13a5
0 0.9447831 0.646 0.050 0 5 Itga1
0 0.9233525 0.723 0.115 0 5 Cped1
0 0.9164770 0.692 0.052 0 5 Ets1
0 0.9156116 0.538 0.139 0 5 Adamts12
0 0.9017114 0.492 0.187 0 5 Mecom
0 0.8743776 0.708 0.262 0 5 Dach1
0 0.8571195 0.615 0.262 0 5 Adam12
0 0.8482186 0.738 0.077 0 5 Lama4
0 0.8392114 0.600 0.242 0 5 Slc7a1
0 0.8326942 0.646 0.384 0 5 Rapgef5
0 0.8221493 0.523 0.025 0 5 Rgs5
0 0.8115852 0.615 0.062 0 5 Fli1
0 0.7913175 0.462 0.027 0 5 Egfl7
0 0.7888761 0.569 0.247 0 5 Hmcn1
0 0.7753925 0.677 0.526 0 5 Slc38a2
0 0.7750763 0.538 0.033 0 5 Morrbid
0 1.0385184 0.940 0.312 0 6 Hs3st4
0 0.9788616 0.970 0.531 0 6 Dpp10
0 0.9569103 1.000 0.668 0 6 Lrrc4c
0 0.9222581 0.985 0.503 0 6 Galntl6
0 0.9116642 0.821 0.198 0 6 4930445B16Rik
0 0.8126178 0.970 0.606 0 6 Nrg1
0 0.7723695 0.910 0.183 0 6 Gm15155
0 0.7621331 0.970 0.737 0 6 Asic2
0 0.7432652 0.881 0.315 0 6 Kcnmb2
0 0.7145113 1.000 0.467 0 6 Sgcz
0 0.7131163 0.925 0.338 0 6 Ubash3b
0 0.7086752 0.940 0.377 0 6 Fign
0 0.6962755 0.866 0.243 0 6 Meis2
0 0.6839052 0.940 0.420 0 6 Galnt13
0 0.6736126 0.806 0.164 0 6 D030068K23Rik
0 0.6671779 1.000 0.757 0 6 Nrxn3
0 0.6667063 0.955 0.451 0 6 Zfp804a
0 0.6661510 0.940 0.104 0 6 Gad2
0 0.6614709 0.881 0.104 0 6 Gad1
0 0.6524320 0.881 0.367 0 6 Ak5
0 1.9640315 1.000 0.140 0 7 Htr2c
0 1.4597121 1.000 0.177 0 7 Ttr
0 1.2423272 0.926 0.052 0 7 Gmnc
0 1.1559174 1.000 0.253 0 7 Vat1l
0 1.1478074 1.000 0.769 0 7 Trpm3
0 1.1352757 1.000 0.143 0 7 Sulf1
0 1.1263682 1.000 0.089 0 7 Rbm47
0 1.0851914 0.963 0.253 0 7 Enpp2
0 1.0289727 1.000 0.322 0 7 Otx2os1
0 1.0243521 0.963 0.656 0 7 Stk39
0 1.0196880 1.000 0.336 0 7 C330002G04Rik
0 1.0076501 0.963 0.378 0 7 Nhsl2
0 0.9995940 1.000 0.630 0 7 Wdr17
0 0.9747735 0.926 0.317 0 7 Atp2b3
0 0.9328334 0.815 0.046 0 7 Col8a1
0 0.9033041 0.963 0.188 0 7 Slc16a2
0 0.8731274 0.889 0.556 0 7 Slc4a10
0 0.8715270 0.778 0.198 0 7 Gm28376
0 0.8700451 0.852 0.435 0 7 Cab39l
0 0.8429674 0.926 0.297 0 7 Prdm16
THP7.markers.mast %>%
    group_by(cluster) %>%
    top_n(n = 10, wt = avg_log10FC) -> top10
DoHeatmap(THP7, features = top10$gene) + NoLegend()

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
FeaturePlot_scCustom(THP7, "Galr1", pt.size = 3, order = T, colors_use = combined.srt@misc$expr_Colour_Pal) + 
  ggtitle("Galr1: ") + theme(plot.title = element_text(size = 24))

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25
FeaturePlot_scCustom(THP7, "Gal", pt.size = 3, order = T, colors_use = combined.srt@misc$expr_Colour_Pal) + 
  ggtitle("Gal: ") + theme(plot.title = element_text(size = 24))

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
SaveH5Seurat(THP7, 
             filename = here(data_dir,
                             "THP7_clusters.h5Seurat"),
             overwrite = TRUE)
Convert(here(data_dir,
             "THP7_clusters.h5Seurat"), 
        dest = "h5ad",
        overwrite = TRUE)

Principal sensory trigeminal nucleus

plan("sequential")
invisible(gc())
plan("multisession", workers = 4)
n_cores <- 4
options(future.globals.maxSize = 8000 * 1024^2)

n_pcs <- 100
c(Pr5P7, Pr5P7.markers.logreg, Pr5P7.markers.mast)  %<-% DeriveKTree(Pr5P7)

  |                                                                            
  |======================================================================| 100%
  |                                                                            
  |=                                                                     |   2%
  |                                                                            
  |==                                                                    |   3%
  |                                                                            
  |===                                                                   |   5%
  |                                                                            
  |====                                                                  |   6%
  |                                                                            
  |======                                                                |   8%
  |                                                                            
  |========                                                              |  11%
  |                                                                            
  |=========                                                             |  13%
  |                                                                            
  |==========                                                            |  14%
  |                                                                            
  |===========                                                           |  16%
  |                                                                            
  |=============                                                         |  19%
  |                                                                            
  |==============                                                        |  21%
  |                                                                            
  |================                                                      |  22%
  |                                                                            
  |=====================                                                 |  30%
  |                                                                            
  |=======================                                               |  33%
  |                                                                            
  |========================                                              |  35%
  |                                                                            
  |==========================                                            |  37%
  |                                                                            
  |===========================                                           |  38%
  |                                                                            
  |============================                                          |  40%
  |                                                                            
  |=============================                                         |  41%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |================================                                      |  46%
  |                                                                            
  |==================================                                    |  49%
  |                                                                            
  |====================================                                  |  51%
  |                                                                            
  |=====================================                                 |  52%
  |                                                                            
  |======================================                                |  54%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |========================================                              |  57%
  |                                                                            
  |=========================================                             |  59%
  |                                                                            
  |==========================================                            |  60%
  |                                                                            
  |===========================================                           |  62%
  |                                                                            
  |============================================                          |  63%
  |                                                                            
  |==============================================                        |  65%
  |                                                                            
  |================================================                      |  68%
  |                                                                            
  |==================================================                    |  71%
  |                                                                            
  |===================================================                   |  73%
  |                                                                            
  |=====================================================                 |  76%
  |                                                                            
  |======================================================                |  78%
  |                                                                            
  |========================================================              |  79%
  |                                                                            
  |===========================================================           |  84%
  |                                                                            
  |============================================================          |  86%
  |                                                                            
  |==============================================================        |  89%
  |                                                                            
  |===============================================================       |  90%
  |                                                                            
  |================================================================      |  92%
  |                                                                            
  |==================================================================    |  94%
  |                                                                            
  |===================================================================   |  95%
  |                                                                            
  |====================================================================  |  97%
  |                                                                            
  |===================================================================== |  98%
  |                                                                            
  |======================================================================| 100%
Idents(Pr5P7) <- "k_tree"
Pr5P7$sep_clstr <- Idents(Pr5P7)

Pr5P7.markers.logreg %>%
  group_by(cluster) %>%
  slice_max(n = 20, order_by = avg_log10FC) %>%
  kable("html") %>%
  kable_material(
    bootstrap_options = c("bordered",
                          "condensed",
                          "responsive",
                          "striped"),
    position = "left",
    font_size = 14
  )
p_val avg_log10FC pct.1 pct.2 p_val_adj cluster gene
0.0000000 0.7682727 0.994 0.522 0.0000000 1 Ntng1
0.0000000 0.6587305 0.987 0.528 0.0000000 1 Tenm1
0.0000000 0.6417097 0.994 0.472 0.0000000 1 Rnf220
0.0000000 0.6295557 0.987 0.399 0.0000000 1 Samd5
0.0000000 0.6142961 0.962 0.548 0.0000000 1 Shisa9
0.0000000 0.6052970 0.885 0.300 0.0000000 1 Gm48749
0.0000000 0.6023628 0.974 0.492 0.0000000 1 Tafa1
0.0000000 0.5527608 0.827 0.317 0.0000000 1 Zmat4
0.0000000 0.5396341 0.808 0.286 0.0000000 1 6330411D24Rik
0.0000000 0.5392844 0.885 0.349 0.0000000 1 Cdh6
0.0000000 0.5356545 0.897 0.417 0.0000000 1 Thsd7b
0.0000000 0.5311141 0.962 0.516 0.0000000 1 Egfem1
0.0000000 0.5296590 0.936 0.389 0.0000000 1 Nell1
0.0000000 0.5153773 0.994 0.536 0.0000000 1 Syt1
0.0000000 0.4994833 0.929 0.407 0.0000000 1 Nell2
0.0000000 0.4905964 0.968 0.512 0.0000000 1 Tox
0.0000000 0.4753295 0.635 0.196 0.0000000 1 Lef1
0.0000000 0.4737435 0.974 0.585 0.0000000 1 Rims1
0.0000000 0.4729598 0.878 0.310 0.0000000 1 Kcnh8
0.0000000 0.4711861 0.987 0.812 0.0000000 1 Ptprd
0.0000000 0.5694511 0.814 0.335 0.0000000 2 Unc5d
0.0000000 0.5683756 0.831 0.536 0.0000000 2 Galntl6
0.0000000 0.5150861 0.780 0.367 0.0000000 2 Gm15398
0.0000000 0.5064937 0.856 0.313 0.0000000 2 Tafa2
0.0000000 0.4883352 0.958 0.534 0.0000000 2 Dpp10
0.0000000 0.4771407 0.780 0.382 0.0000000 2 Zfp804b
0.0000000 0.4499682 0.839 0.301 0.0000000 2 Grin2a
0.0000000 0.4485589 0.992 0.627 0.0000000 2 Nrg1
0.0000000 0.4462044 0.720 0.167 0.0000000 2 B230217J21Rik
0.0000000 0.4445790 0.907 0.532 0.0000000 2 Cdh18
0.0000000 0.4296846 0.814 0.386 0.0000000 2 Rmst
0.0000000 0.4176821 0.856 0.301 0.0000000 2 Dlgap2
0.0000000 0.4149623 0.873 0.337 0.0000000 2 Kif26b
0.0000000 0.3945519 0.839 0.468 0.0000000 2 Galnt13
0.0000241 0.3940254 0.297 0.178 0.5111098 2 Meis2
0.0000000 0.3916516 0.992 0.655 0.0000000 2 Ahi1
0.0000000 0.3846131 0.898 0.605 0.0000000 2 Asic2
0.0000000 0.3834957 0.805 0.391 0.0000000 2 Esrrg
0.0000000 0.3797631 0.500 0.187 0.0000000 2 Klhl1
0.0000000 0.3796274 0.788 0.470 0.0000000 2 Grm8
0.0000000 0.8745001 0.378 0.043 0.0000000 3 Flt1
0.0000000 0.7594669 0.378 0.045 0.0000000 3 Mecom
0.0000000 0.7378892 0.694 0.195 0.0000000 3 Dach1
0.0000000 0.6856541 0.418 0.063 0.0000000 3 Slc7a5
0.0000000 0.6395670 0.439 0.043 0.0000000 3 Fli1
0.0000000 0.5893545 0.531 0.164 0.0000000 3 Slc7a1
0.0000000 0.5835394 0.551 0.125 0.0000000 3 Ccdc141
0.0000000 0.5390925 0.347 0.042 0.0000000 3 Slco1c1
0.0000000 0.5380678 0.347 0.060 0.0000000 3 Ets1
0.0000000 0.5341887 0.286 0.016 0.0000000 3 Egfl7
0.0000000 0.5124712 0.337 0.027 0.0000000 3 Adgrl4
0.0000000 0.5078686 0.796 0.307 0.0000000 3 Rapgef5
0.0000000 0.4877063 0.837 0.377 0.0000000 3 Dlc1
0.0000000 0.4856556 0.347 0.023 0.0000000 3 Ptprb
0.0000000 0.4692441 0.296 0.013 0.0000000 3 Rassf9
0.0000000 0.4623950 0.337 0.063 0.0000000 3 Itga1
0.0000000 0.4617441 0.296 0.027 0.0000000 3 Cyyr1
0.0000000 0.4599659 0.796 0.309 0.0000000 3 Mef2c
0.0000000 0.4437452 0.592 0.227 0.0000000 3 Tfrc
0.0000000 0.4402024 0.898 0.578 0.0000000 3 Igf1r
0.0000000 0.5455166 0.912 0.832 0.0000299 4 Gm42418
0.0000000 0.4732368 0.647 0.493 0.0000055 4 Cdh4
0.0000000 0.4105305 0.750 0.543 0.0000013 4 Rbfox3
0.0000000 0.4041384 0.735 0.509 0.0000000 4 Gm26871
0.0000000 0.4007033 0.809 0.423 0.0000000 4 Rmst
0.0000000 0.3995068 0.618 0.435 0.0000717 4 Zfp804b
0.0000000 0.3977313 0.735 0.536 0.0000002 4 Klhl29
0.0000014 0.3971734 0.485 0.397 0.0297113 4 Gm30382
0.0000006 0.3781426 0.618 0.467 0.0133712 4 Gria1
0.0000043 0.3733441 0.426 0.348 0.0905385 4 Matk
0.0000000 0.3706291 0.691 0.368 0.0000001 4 Dlgap2
0.0000005 0.3619140 0.559 0.442 0.0106278 4 Olfm2
0.0000003 0.3617732 0.529 0.418 0.0058702 4 Sorcs1
0.0000000 0.3608576 0.735 0.538 0.0000000 4 Nxph1
0.0000000 0.3543118 0.794 0.586 0.0000000 4 Grik1
0.0000002 0.3509807 0.706 0.551 0.0034683 4 Gpi1
0.0000000 0.3468623 0.662 0.481 0.0000950 4 Camk2b
0.0000000 0.3441086 0.721 0.502 0.0000002 4 Ephb2
0.0000000 0.3312443 0.515 0.339 0.0008383 4 Cpne7
0.0000000 0.3201622 0.559 0.413 0.0002159 4 Pdzrn4
0.0000000 1.0964172 0.971 0.310 0.0000000 5 Gm3764
0.0000000 1.0318885 0.926 0.433 0.0000000 5 Wdr17
0.0000000 0.9875801 0.985 0.402 0.0000000 5 Slc4a4
0.0000000 0.9368011 1.000 0.622 0.0000000 5 Npas3
0.0000000 0.8908786 0.985 0.529 0.0000000 5 Ptprz1
0.0000000 0.8719069 0.632 0.118 0.0000000 5 Tnc
0.0000000 0.8546109 0.971 0.437 0.0000000 5 Gm48747
0.0000000 0.8507387 0.779 0.245 0.0000000 5 Slc6a11
0.0000000 0.8316447 0.882 0.322 0.0000000 5 Nhsl1
0.0000000 0.8060870 0.853 0.243 0.0000000 5 Sparcl1
0.0000000 0.8015543 0.985 0.620 0.0000000 5 Luzp2
0.0000000 0.7850233 0.868 0.209 0.0000000 5 Lrig1
0.0000000 0.7839993 0.809 0.212 0.0000000 5 Bmpr1b
0.0000000 0.7433248 0.853 0.432 0.0000000 5 Slc1a2
0.0000000 0.7171399 0.676 0.173 0.0000000 5 Tnfaip8
0.0000000 0.7138261 0.779 0.378 0.0000000 5 Sfxn5
0.0000000 0.7008990 0.912 0.341 0.0000000 5 Mir9-3hg
0.0000000 0.6985497 0.632 0.092 0.0000000 5 Slc39a12
0.0000000 0.6907878 0.897 0.500 0.0000000 5 Trim9
0.0000000 0.6816227 0.662 0.125 0.0000000 5 Pla2g7
0.0000000 1.0605910 0.449 0.209 0.0000000 6 Mbp
0.0000000 1.0156204 0.592 0.100 0.0000000 6 Bcas1
0.0000000 1.0120110 0.878 0.285 0.0000000 6 Sox6
0.0000000 0.9753918 0.694 0.138 0.0000000 6 Gm38505
0.0000000 0.9180520 0.714 0.090 0.0000000 6 Sox10
0.0000000 0.9156013 0.837 0.420 0.0000000 6 Tnr
0.0000000 0.9155389 0.286 0.080 0.0000000 6 Plp1
0.0000000 0.8841322 0.714 0.235 0.0000000 6 4930588A03Rik
0.0000000 0.8707625 0.449 0.182 0.0000000 6 9630013A20Rik
0.0000000 0.8562393 0.918 0.401 0.0000000 6 Sox2ot
0.0000000 0.8056588 0.653 0.368 0.0000000 6 Pacrg
0.0000000 0.7909532 0.265 0.065 0.0000000 6 St18
0.0000000 0.7803360 0.653 0.192 0.0000000 6 Tns3
0.0000000 0.7175360 0.449 0.045 0.0000000 6 Bcas1os2
0.0000000 0.6976459 0.143 0.015 0.0000294 6 Mobp
0.0000000 0.6891951 0.714 0.078 0.0000000 6 Prkcq
0.0000000 0.6870148 0.571 0.161 0.0000000 6 Pdgfra
0.0000000 0.6845440 0.857 0.313 0.0000000 6 Dscaml1
0.0000000 0.6835054 0.796 0.496 0.0000000 6 Pcdh15
0.0000001 0.6520577 0.245 0.090 0.0014227 6 Cnksr3
0.0000000 1.5543447 0.729 0.079 0.0000000 7 Ptgds
0.0000000 1.3853127 1.000 0.084 0.0000000 7 Ranbp3l
0.0000000 1.2886189 0.938 0.076 0.0000000 7 Slc6a20a
0.0000000 1.1765734 0.875 0.833 0.0000000 7 Trpm3
0.0000000 1.1306027 0.917 0.257 0.0000000 7 Sidt1
0.0000000 1.0809888 0.938 0.331 0.0000000 7 Adam12
0.0000000 1.0798617 0.938 0.051 0.0000000 7 Slc6a13
0.0000000 1.0558545 0.833 0.114 0.0000000 7 Bmp6
0.0000000 1.0432585 0.979 0.321 0.0000000 7 Atp1a2
0.0000000 1.0375787 0.938 0.255 0.0000000 7 Bicc1
0.0000000 1.0160532 0.812 0.169 0.0000000 7 Adamts12
0.0000000 1.0154212 0.833 0.192 0.0000000 7 Lrmda
0.0000000 1.0065613 0.771 0.656 0.0000000 7 Nnat
0.0000000 1.0044631 0.792 0.195 0.0000000 7 Slc7a11
0.0000000 0.9952095 0.875 0.248 0.0000000 7 Sned1
0.0000000 0.9610983 0.896 0.248 0.0000000 7 Tmtc4
0.0000000 0.9392163 0.958 0.131 0.0000000 7 Arhgap29
0.0000000 0.8767605 0.896 0.240 0.0000000 7 Pdzrn3
0.0000000 0.8741322 0.792 0.111 0.0000000 7 Eya1
0.0000000 0.8643599 0.854 0.131 0.0000000 7 Colec12
0.0000000 1.5180739 1.000 0.125 0.0000000 8 Bnc2
0.0000000 1.2317607 0.897 0.104 0.0000000 8 Adamtsl3
0.0000000 1.1389751 0.931 0.177 0.0000000 8 Thsd4
0.0000000 1.1196392 0.931 0.061 0.0000000 8 Trabd2b
0.0000000 1.1169845 0.931 0.525 0.0000000 8 Slc4a10
0.0000000 1.1058182 1.000 0.413 0.0000000 8 Slc38a2
0.0000000 1.0887117 0.828 0.343 0.0000000 8 Col25a1
0.0000000 1.0463921 1.000 0.474 0.0000000 8 Fbxl7
0.0000000 1.0442771 1.000 0.605 0.0000000 8 Foxp1
0.0000000 1.0199695 0.759 0.002 0.0000000 8 Slc47a1
0.0000000 1.0069592 0.862 0.265 0.0000000 8 Itgbl1
0.0000000 0.9757935 0.793 0.088 0.0000000 8 Dock5
0.0000000 0.9689388 0.966 0.213 0.0000000 8 Hmcn1
0.0000000 0.9624254 0.931 0.388 0.0000000 8 Nr3c2
0.0000000 0.9498822 0.931 0.368 0.0000000 8 Gulp1
0.0000000 0.9328857 0.586 0.111 0.0000000 8 Crispld1
0.0000000 0.9293280 0.862 0.324 0.0000000 8 Sh3pxd2a
0.0000000 0.9111383 0.931 0.165 0.0000000 8 Eya2
0.0000000 0.8943753 0.828 0.294 0.0000000 8 Slit2
0.0000000 0.8872551 0.931 0.490 0.0000000 8 Tmtc1
0.0000000 0.7973422 0.833 0.375 0.0000000 9 Stxbp5l
0.0000000 0.7943548 0.500 0.052 0.0000062 9 Gm42397
0.0000000 0.7756423 0.944 0.699 0.0000000 9 Unc5c
0.0000000 0.7623770 0.444 0.036 0.0000076 9 Lmx1a
0.0000009 0.7539547 0.556 0.218 0.0184195 9 Reln
0.0000004 0.7345614 0.333 0.044 0.0091203 9 Gm27016
0.0000052 0.7092636 0.667 0.333 0.1092290 9 Chn2
0.0000000 0.7032384 0.500 0.188 0.0000886 9 Adamts18
0.0000001 0.6979407 0.722 0.205 0.0025532 9 Ror1
0.0000000 0.6910469 0.667 0.131 0.0000210 9 Tll1
0.0000000 0.6586472 0.722 0.379 0.0002766 9 Cntnap4
0.0000000 0.6332334 0.500 0.058 0.0000007 9 Gm2694
0.0000000 0.6099621 0.556 0.076 0.0000139 9 Tmem178
0.0000000 0.6086758 1.000 0.658 0.0000000 9 Arpp21
0.0000147 0.6040286 0.556 0.213 0.3114939 9 Ano3
0.0000001 0.6038905 0.778 0.620 0.0019772 9 Mgat5
0.0000000 0.5908940 0.833 0.243 0.0009734 9 Meis1
0.0000231 0.5869130 0.722 0.566 0.4897056 9 Zfp804a
0.0000003 0.5791601 0.500 0.238 0.0061775 9 Vegfc
0.0021706 0.5738713 0.500 0.424 1.0000000 9 Gm45321
Pr5P7.markers.mast %>%
  group_by(cluster) %>%
  slice_max(n = 20, order_by = avg_log10FC) %>%
  kable("html") %>%
  kable_material(
    bootstrap_options = c("bordered",
                          "condensed",
                          "responsive",
                          "striped"),
    position = "left",
    font_size = 14
  )
p_val avg_log10FC pct.1 pct.2 p_val_adj cluster gene
0.0000000 0.7682727 0.994 0.522 0.0000000 1 Ntng1
0.0000000 0.6587305 0.987 0.528 0.0000000 1 Tenm1
0.0000000 0.6417097 0.994 0.472 0.0000000 1 Rnf220
0.0000000 0.6295557 0.987 0.399 0.0000000 1 Samd5
0.0000000 0.6142961 0.962 0.548 0.0000000 1 Shisa9
0.0000000 0.6052970 0.885 0.300 0.0000000 1 Gm48749
0.0000000 0.6023628 0.974 0.492 0.0000000 1 Tafa1
0.0000000 0.5527608 0.827 0.317 0.0000000 1 Zmat4
0.0000000 0.5396341 0.808 0.286 0.0000000 1 6330411D24Rik
0.0000000 0.5392844 0.885 0.349 0.0000000 1 Cdh6
0.0000000 0.5356545 0.897 0.417 0.0000000 1 Thsd7b
0.0000000 0.5311141 0.962 0.516 0.0000000 1 Egfem1
0.0000000 0.5296590 0.936 0.389 0.0000000 1 Nell1
0.0000000 0.5153773 0.994 0.536 0.0000000 1 Syt1
0.0000000 0.4994833 0.929 0.407 0.0000000 1 Nell2
0.0000000 0.4905964 0.968 0.512 0.0000000 1 Tox
0.0000000 0.4753295 0.635 0.196 0.0000000 1 Lef1
0.0000000 0.4737435 0.974 0.585 0.0000000 1 Rims1
0.0000000 0.4729598 0.878 0.310 0.0000000 1 Kcnh8
0.0000000 0.4711861 0.987 0.812 0.0000000 1 Ptprd
0.0000000 0.5694511 0.814 0.335 0.0000000 2 Unc5d
0.0000000 0.5683756 0.831 0.536 0.0000000 2 Galntl6
0.0000000 0.5150861 0.780 0.367 0.0000000 2 Gm15398
0.0000000 0.5064937 0.856 0.313 0.0000000 2 Tafa2
0.0000000 0.4883352 0.958 0.534 0.0000000 2 Dpp10
0.0000000 0.4771407 0.780 0.382 0.0000000 2 Zfp804b
0.0000000 0.4499682 0.839 0.301 0.0000000 2 Grin2a
0.0000000 0.4485589 0.992 0.627 0.0000000 2 Nrg1
0.0000000 0.4462044 0.720 0.167 0.0000000 2 B230217J21Rik
0.0000000 0.4445790 0.907 0.532 0.0000000 2 Cdh18
0.0000000 0.4296846 0.814 0.386 0.0000000 2 Rmst
0.0000000 0.4176821 0.856 0.301 0.0000000 2 Dlgap2
0.0000000 0.4149623 0.873 0.337 0.0000000 2 Kif26b
0.0000000 0.3945519 0.839 0.468 0.0000000 2 Galnt13
0.0000001 0.3940254 0.297 0.178 0.0014188 2 Meis2
0.0000000 0.3916516 0.992 0.655 0.0000000 2 Ahi1
0.0000000 0.3846131 0.898 0.605 0.0000000 2 Asic2
0.0000000 0.3834957 0.805 0.391 0.0000000 2 Esrrg
0.0000000 0.3797631 0.500 0.187 0.0000000 2 Klhl1
0.0000000 0.3796274 0.788 0.470 0.0000255 2 Grm8
0.0000000 0.8745001 0.378 0.043 0.0000000 3 Flt1
0.0000000 0.7594669 0.378 0.045 0.0000000 3 Mecom
0.0000000 0.7378892 0.694 0.195 0.0000000 3 Dach1
0.0000000 0.6856541 0.418 0.063 0.0000000 3 Slc7a5
0.0000000 0.6395670 0.439 0.043 0.0000000 3 Fli1
0.0000000 0.5893545 0.531 0.164 0.0000000 3 Slc7a1
0.0000000 0.5835394 0.551 0.125 0.0000000 3 Ccdc141
0.0000000 0.5390925 0.347 0.042 0.0000000 3 Slco1c1
0.0000000 0.5380678 0.347 0.060 0.0000000 3 Ets1
0.0000000 0.5341887 0.286 0.016 0.0000000 3 Egfl7
0.0000000 0.5124712 0.337 0.027 0.0000000 3 Adgrl4
0.0000000 0.5078686 0.796 0.307 0.0000000 3 Rapgef5
0.0000000 0.4877063 0.837 0.377 0.0000000 3 Dlc1
0.0000000 0.4856556 0.347 0.023 0.0000000 3 Ptprb
0.0000000 0.4692441 0.296 0.013 0.0000000 3 Rassf9
0.0000000 0.4623950 0.337 0.063 0.0000000 3 Itga1
0.0000000 0.4617441 0.296 0.027 0.0000000 3 Cyyr1
0.0000000 0.4599659 0.796 0.309 0.0000000 3 Mef2c
0.0000000 0.4437452 0.592 0.227 0.0000004 3 Tfrc
0.0000000 0.4402024 0.898 0.578 0.0000000 3 Igf1r
0.0000000 0.5455166 0.912 0.832 0.0000002 4 Gm42418
0.0000000 0.4732368 0.647 0.493 0.0000024 4 Cdh4
0.0000000 0.4105305 0.750 0.543 0.0000000 4 Rbfox3
0.0008440 0.4085170 0.721 0.729 1.0000000 4 Gm26917
0.0000000 0.4041384 0.735 0.509 0.0000000 4 Gm26871
0.0000000 0.4007033 0.809 0.423 0.0000000 4 Rmst
0.0000000 0.3995068 0.618 0.435 0.0003662 4 Zfp804b
0.0000000 0.3977313 0.735 0.536 0.0000000 4 Klhl29
0.0000069 0.3971734 0.485 0.397 0.1461315 4 Gm30382
0.0000011 0.3781426 0.618 0.467 0.0234642 4 Gria1
0.0000054 0.3733441 0.426 0.348 0.1140371 4 Matk
0.0000000 0.3706291 0.691 0.368 0.0000000 4 Dlgap2
0.0000003 0.3619140 0.559 0.442 0.0058549 4 Olfm2
0.0000007 0.3617732 0.529 0.418 0.0155928 4 Sorcs1
0.0000000 0.3608576 0.735 0.538 0.0000001 4 Nxph1
0.0000000 0.3543118 0.794 0.586 0.0000000 4 Grik1
0.0000001 0.3509807 0.706 0.551 0.0026335 4 Gpi1
0.0000000 0.3468623 0.662 0.481 0.0000871 4 Camk2b
0.0000000 0.3441086 0.721 0.502 0.0000000 4 Ephb2
0.0000002 0.3312443 0.515 0.339 0.0041291 4 Cpne7
0.0000000 1.0964172 0.971 0.310 0.0000000 5 Gm3764
0.0000000 1.0318885 0.926 0.433 0.0000000 5 Wdr17
0.0000000 0.9875801 0.985 0.402 0.0000000 5 Slc4a4
0.0000000 0.9368011 1.000 0.622 0.0000000 5 Npas3
0.0000000 0.8908786 0.985 0.529 0.0000000 5 Ptprz1
0.0000000 0.8719069 0.632 0.118 0.0000000 5 Tnc
0.0000000 0.8546109 0.971 0.437 0.0000000 5 Gm48747
0.0000000 0.8507387 0.779 0.245 0.0000000 5 Slc6a11
0.0000000 0.8316447 0.882 0.322 0.0000000 5 Nhsl1
0.0000000 0.8060870 0.853 0.243 0.0000000 5 Sparcl1
0.0000000 0.8015543 0.985 0.620 0.0000000 5 Luzp2
0.0000000 0.7850233 0.868 0.209 0.0000000 5 Lrig1
0.0000000 0.7839993 0.809 0.212 0.0000000 5 Bmpr1b
0.0000000 0.7433248 0.853 0.432 0.0000000 5 Slc1a2
0.0000000 0.7171399 0.676 0.173 0.0000000 5 Tnfaip8
0.0000000 0.7138261 0.779 0.378 0.0000000 5 Sfxn5
0.0000000 0.7008990 0.912 0.341 0.0000000 5 Mir9-3hg
0.0000000 0.6985497 0.632 0.092 0.0000000 5 Slc39a12
0.0000000 0.6907878 0.897 0.500 0.0000000 5 Trim9
0.0000000 0.6816227 0.662 0.125 0.0000000 5 Pla2g7
0.0000000 1.0605910 0.449 0.209 0.0000000 6 Mbp
0.0000000 1.0156204 0.592 0.100 0.0000000 6 Bcas1
0.0000000 1.0120110 0.878 0.285 0.0000000 6 Sox6
0.0000000 0.9753918 0.694 0.138 0.0000000 6 Gm38505
0.0000000 0.9180520 0.714 0.090 0.0000000 6 Sox10
0.0000000 0.9156013 0.837 0.420 0.0000000 6 Tnr
0.0000000 0.9155389 0.286 0.080 0.0000000 6 Plp1
0.0000000 0.8841322 0.714 0.235 0.0000000 6 4930588A03Rik
0.0000000 0.8707625 0.449 0.182 0.0000000 6 9630013A20Rik
0.0000000 0.8562393 0.918 0.401 0.0000000 6 Sox2ot
0.0000000 0.8056588 0.653 0.368 0.0000000 6 Pacrg
0.0000000 0.7909532 0.265 0.065 0.0000000 6 St18
0.0000000 0.7803360 0.653 0.192 0.0000000 6 Tns3
0.0000000 0.7175360 0.449 0.045 0.0000000 6 Bcas1os2
0.0000000 0.6976459 0.143 0.015 0.0000287 6 Mobp
0.0000000 0.6891951 0.714 0.078 0.0000000 6 Prkcq
0.0000000 0.6870148 0.571 0.161 0.0000000 6 Pdgfra
0.0000000 0.6845440 0.857 0.313 0.0000000 6 Dscaml1
0.0000000 0.6835054 0.796 0.496 0.0000000 6 Pcdh15
0.0000000 0.6520577 0.245 0.090 0.0000804 6 Cnksr3
0.0000000 1.5543447 0.729 0.079 0.0000000 7 Ptgds
0.0000000 1.3853127 1.000 0.084 0.0000000 7 Ranbp3l
0.0000000 1.2886189 0.938 0.076 0.0000000 7 Slc6a20a
0.0000000 1.1765734 0.875 0.833 0.0000000 7 Trpm3
0.0000000 1.1306027 0.917 0.257 0.0000000 7 Sidt1
0.0000000 1.0809888 0.938 0.331 0.0000000 7 Adam12
0.0000000 1.0798617 0.938 0.051 0.0000000 7 Slc6a13
0.0000000 1.0558545 0.833 0.114 0.0000000 7 Bmp6
0.0000000 1.0432585 0.979 0.321 0.0000000 7 Atp1a2
0.0000000 1.0375787 0.938 0.255 0.0000000 7 Bicc1
0.0000000 1.0160532 0.812 0.169 0.0000000 7 Adamts12
0.0000000 1.0154212 0.833 0.192 0.0000000 7 Lrmda
0.0000000 1.0065613 0.771 0.656 0.0000000 7 Nnat
0.0000000 1.0044631 0.792 0.195 0.0000000 7 Slc7a11
0.0000000 0.9952095 0.875 0.248 0.0000000 7 Sned1
0.0000000 0.9610983 0.896 0.248 0.0000000 7 Tmtc4
0.0000000 0.9392163 0.958 0.131 0.0000000 7 Arhgap29
0.0000000 0.8767605 0.896 0.240 0.0000000 7 Pdzrn3
0.0000000 0.8741322 0.792 0.111 0.0000000 7 Eya1
0.0000000 0.8643599 0.854 0.131 0.0000000 7 Colec12
0.0000000 1.5180739 1.000 0.125 0.0000000 8 Bnc2
0.0000000 1.2317607 0.897 0.104 0.0000000 8 Adamtsl3
0.0000000 1.1389751 0.931 0.177 0.0000000 8 Thsd4
0.0000000 1.1196392 0.931 0.061 0.0000000 8 Trabd2b
0.0000000 1.1169845 0.931 0.525 0.0000000 8 Slc4a10
0.0000000 1.1058182 1.000 0.413 0.0000000 8 Slc38a2
0.0000000 1.0887117 0.828 0.343 0.0000000 8 Col25a1
0.0000000 1.0463921 1.000 0.474 0.0000000 8 Fbxl7
0.0000000 1.0442771 1.000 0.605 0.0000000 8 Foxp1
0.0000000 1.0199695 0.759 0.002 0.0000000 8 Slc47a1
0.0000000 1.0069592 0.862 0.265 0.0000000 8 Itgbl1
0.0000000 0.9757935 0.793 0.088 0.0000000 8 Dock5
0.0000000 0.9689388 0.966 0.213 0.0000000 8 Hmcn1
0.0000000 0.9624254 0.931 0.388 0.0000000 8 Nr3c2
0.0000000 0.9498822 0.931 0.368 0.0000000 8 Gulp1
0.0000000 0.9328857 0.586 0.111 0.0000000 8 Crispld1
0.0000000 0.9293280 0.862 0.324 0.0000000 8 Sh3pxd2a
0.0000000 0.9111383 0.931 0.165 0.0000000 8 Eya2
0.0000000 0.8943753 0.828 0.294 0.0000000 8 Slit2
0.0000000 0.8872551 0.931 0.490 0.0000000 8 Tmtc1
0.0000000 0.7973422 0.833 0.375 0.0000000 9 Stxbp5l
0.0000000 0.7943548 0.500 0.052 0.0000693 9 Gm42397
0.0000000 0.7756423 0.944 0.699 0.0000000 9 Unc5c
0.0000000 0.7623770 0.444 0.036 0.0003760 9 Lmx1a
0.0000006 0.7539547 0.556 0.218 0.0128781 9 Reln
0.0000012 0.7345614 0.333 0.044 0.0257720 9 Gm27016
0.0000001 0.7092636 0.667 0.333 0.0018579 9 Chn2
0.0000000 0.7032384 0.500 0.188 0.0000002 9 Adamts18
0.0000003 0.6979407 0.722 0.205 0.0062991 9 Ror1
0.0000000 0.6910469 0.667 0.131 0.0000111 9 Tll1
0.0000000 0.6586472 0.722 0.379 0.0000169 9 Cntnap4
0.0000000 0.6332334 0.500 0.058 0.0001458 9 Gm2694
0.0000000 0.6099621 0.556 0.076 0.0000234 9 Tmem178
0.0000000 0.6086758 1.000 0.658 0.0000000 9 Arpp21
0.0000081 0.6040286 0.556 0.213 0.1715667 9 Ano3
0.0000000 0.6038905 0.778 0.620 0.0000007 9 Mgat5
0.0000002 0.5908940 0.833 0.243 0.0048746 9 Meis1
0.0000018 0.5869130 0.722 0.566 0.0389649 9 Zfp804a
0.0000000 0.5791601 0.500 0.238 0.0000748 9 Vegfc
0.0023235 0.5738713 0.500 0.424 1.0000000 9 Gm45321
Pr5P7.markers.mast %>%
    group_by(cluster) %>%
    top_n(n = 10, wt = avg_log10FC) -> top10
DoHeatmap(Pr5P7, features = top10$gene) + NoLegend()

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
FeaturePlot_scCustom(Pr5P7, "Galr1", pt.size = 3, order = T, colors_use = combined.srt@misc$expr_Colour_Pal) + 
  ggtitle("Galr1: ") + theme(plot.title = element_text(size = 24))

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
c82f5c0 Evgenii O. Tretiakov 2023-01-25
FeaturePlot_scCustom(Pr5P7, "Gal", pt.size = 3, order = T, colors_use = combined.srt@misc$expr_Colour_Pal) + 
  ggtitle("Gal: ") + theme(plot.title = element_text(size = 24))

Version Author Date
3b19c24 Evgenii O. Tretiakov 2023-02-02
SaveH5Seurat(Pr5P7, 
             filename = here(data_dir,
                             "Pr5P7_clusters.h5Seurat"),
             overwrite = TRUE)
Convert(here(data_dir,
             "Pr5P7_clusters.h5Seurat"), 
        dest = "h5ad",
        overwrite = TRUE)

sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.1 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ggraph_2.1.0.9000     gprofiler2_0.2.1      mrtree_0.0.0.9000    
 [4] Nebulosa_1.8.0        scCustomize_1.1.1     Scillus_0.5.0        
 [7] qs_0.25.4             patchwork_1.1.2.9000  glmGamPoi_1.10.2     
[10] sctransform_0.3.5     SeuratDisk_0.0.0.9020 SeuratWrappers_0.3.1 
[13] SeuratObject_4.1.3    Seurat_4.3.0          reticulate_1.28      
[16] kableExtra_1.3.4      zeallot_0.1.0         future_1.31.0        
[19] skimr_2.1.5           magrittr_2.0.3        lubridate_1.9.0      
[22] timechange_0.1.1      forcats_0.5.2         stringr_1.5.0        
[25] dplyr_1.1.0           purrr_1.0.1           readr_2.1.3          
[28] tidyr_1.3.0           tibble_3.1.8          ggplot2_3.4.1        
[31] tidyverse_1.3.2.9000  viridis_0.6.2         viridisLite_0.4.1    
[34] RColorBrewer_1.1-3    here_1.0.1            workflowr_1.7.0      

loaded via a namespace (and not attached):
  [1] rsvd_1.0.5                  ica_1.0-3                  
  [3] svglite_2.1.0               ps_1.7.2                   
  [5] foreach_1.5.2               lmtest_0.9-40              
  [7] rprojroot_2.0.3             crayon_1.5.2               
  [9] MASS_7.3-58.1               MAST_1.24.1                
 [11] nlme_3.1-161                backports_1.4.1            
 [13] rlang_1.0.6                 XVector_0.38.0             
 [15] ROCR_1.0-11                 irlba_2.3.5.1              
 [17] callr_3.7.3                 limma_3.54.1               
 [19] stringfish_0.15.7           data.tree_1.0.0            
 [21] rjson_0.2.21                bit64_4.0.5                
 [23] glue_1.6.2                  parallel_4.2.2             
 [25] processx_3.8.0              vipor_0.4.5                
 [27] spatstat.sparse_3.0-0       BiocGenerics_0.44.0        
 [29] spatstat.geom_3.0-6         tidyselect_1.2.0           
 [31] SummarizedExperiment_1.28.0 fitdistrplus_1.1-8         
 [33] zoo_1.8-11                  xtable_1.8-4               
 [35] formattable_0.2.1           evaluate_0.20              
 [37] cli_3.6.0                   zlibbioc_1.44.0            
 [39] rstudioapi_0.14             miniUI_0.1.1.1             
 [41] sp_1.6-0                    whisker_0.4.1              
 [43] bslib_0.4.2                 fastmatch_1.1-3            
 [45] treeio_1.23.0               maps_3.4.1                 
 [47] shiny_1.7.4                 xfun_0.37                  
 [49] clue_0.3-63                 cluster_2.1.4              
 [51] tidygraph_1.2.2             clusterGeneration_1.3.7    
 [53] expm_0.999-6                SymSim_0.0.0.9000          
 [55] ggrepel_0.9.2.9999          ape_5.6-2                  
 [57] listenv_0.9.0               dendextend_1.16.0          
 [59] png_0.1-8                   withr_2.5.0                
 [61] bitops_1.0-7                ggforce_0.4.1.9000         
 [63] plyr_1.8.8                  pracma_2.4.2               
 [65] coda_0.19-4                 pillar_1.8.1               
 [67] RcppParallel_5.1.5          GlobalOptions_0.1.2        
 [69] cachem_1.0.6                fs_1.6.1                   
 [71] scatterplot3d_0.3-42        hdf5r_1.3.7                
 [73] GetoptLong_1.0.5            paletteer_1.5.0            
 [75] vctrs_0.5.2                 ellipsis_0.3.2             
 [77] generics_0.1.3              RApiSerialize_0.1.2        
 [79] tools_4.2.2                 beeswarm_0.4.0             
 [81] munsell_0.5.0               tweenr_2.0.2               
 [83] DelayedArray_0.24.0         fastmap_1.1.0              
 [85] compiler_4.2.2              abind_1.4-5                
 [87] httpuv_1.6.9                ggimage_0.3.1              
 [89] plotly_4.10.1               GenomeInfoDbData_1.2.9     
 [91] gridExtra_2.3               lattice_0.20-45            
 [93] deldir_1.0-6                utf8_1.2.3                 
 [95] later_1.3.0                 prismatic_1.1.1            
 [97] jsonlite_1.8.4              scales_1.2.1               
 [99] tidytree_0.4.2              pbapply_1.7-0              
[101] lazyeval_0.2.2              promises_1.2.0.1           
[103] doParallel_1.0.17           R.utils_2.12.2             
[105] goftest_1.2-3               spatstat.utils_3.0-1       
[107] checkmate_2.1.0             rmarkdown_2.20             
[109] cowplot_1.1.1               webshot_0.5.4              
[111] Rtsne_0.16                  Biobase_2.58.0             
[113] uwot_0.1.14                 igraph_1.3.5               
[115] survival_3.4-0              numDeriv_2016.8-1.1        
[117] yaml_2.3.7                  plotrix_3.8-2              
[119] systemfonts_1.0.4           htmltools_0.5.4            
[121] graphlayouts_0.8.4          IRanges_2.32.0             
[123] quadprog_1.5-8              digest_0.6.31              
[125] mime_0.12                   repr_1.1.4                 
[127] yulab.utils_0.0.6           future.apply_1.10.0        
[129] ggmin_0.0.0.9000            remotes_2.4.2              
[131] data.table_1.14.8           S4Vectors_0.36.1           
[133] R.oo_1.25.0                 splines_4.2.2              
[135] labeling_0.4.2              rematch2_2.1.2             
[137] Cairo_1.6-0                 RCurl_1.98-1.9             
[139] ks_1.14.0                   hms_1.1.2                  
[141] colorspace_2.1-0            base64enc_0.1-3            
[143] BiocManager_1.30.19         mnormt_2.1.1               
[145] ggbeeswarm_0.7.1.9000       GenomicRanges_1.50.2       
[147] shape_1.4.6                 aplot_0.1.9                
[149] ggrastr_1.0.1               sass_0.4.5                 
[151] Rcpp_1.0.10                 mclust_6.0.0               
[153] RANN_2.6.1                  mvtnorm_1.1-3              
[155] circlize_0.4.15             fansi_1.0.4                
[157] tzdb_0.3.0                  parallelly_1.34.0          
[159] R6_2.5.1                    grid_4.2.2                 
[161] ggridges_0.5.4              lifecycle_1.0.3            
[163] phytools_1.2-0              leiden_0.4.3               
[165] phangorn_2.10.0             jquerylib_0.1.4            
[167] snakecase_0.11.0            Matrix_1.5-3               
[169] RcppAnnoy_0.0.20            iterators_1.0.14           
[171] spatstat.explore_3.0-6      htmlwidgets_1.6.1          
[173] polyclip_1.10-4             gridGraphics_0.5-1         
[175] optimParallel_1.0-2         rvest_1.0.3                
[177] ComplexHeatmap_2.14.0       globals_0.16.2             
[179] spatstat.random_3.1-3       progressr_0.13.0           
[181] codetools_0.2-18            matrixStats_0.63.0         
[183] prettyunits_1.1.1           getPass_0.2-2              
[185] SingleCellExperiment_1.20.0 RSpectra_0.16-1            
[187] R.methodsS3_1.8.2           GenomeInfoDb_1.34.9        
[189] DBI_1.1.3                   gtable_0.3.1               
[191] git2r_0.30.1                stats4_4.2.2               
[193] ggfun_0.0.9                 tensor_1.5                 
[195] httr_1.4.4                  highr_0.10                 
[197] KernSmooth_2.23-20          progress_1.2.2             
[199] stringi_1.7.12              vroom_1.6.0                
[201] reshape2_1.4.4              farver_2.1.1               
[203] magick_2.7.3                ggtree_3.7.1.002           
[205] xml2_1.3.3                  combinat_0.0-8             
[207] ggplotify_0.1.0             scattermore_0.8            
[209] bit_4.0.5                   clustree_0.5.0             
[211] MatrixGenerics_1.10.0       spatstat.data_3.0-0        
[213] janitor_2.2.0.9000          pkgconfig_2.0.3            
[215] ggprism_1.0.4               knitr_1.42