Last updated: 2023-04-02
Checks: 6 1
Knit directory:
Density_and_sexual_selection_2022/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of
the R Markdown file created these results, you’ll want to first commit
it to the Git repo. If you’re still working on the analysis, you can
ignore this warning. When you’re finished, you can run
wflow_publish
to commit the R Markdown file and build the
HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20210613)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 39e340c. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Untracked files:
Untracked: data/Data_Winkler_et_al_2023_Denstiy.csv
Unstaged changes:
Modified: analysis/_site.yml
Modified: analysis/a_start.Rmd
Deleted: analysis/about.Rmd
Modified: analysis/index.Rmd
Modified: analysis/index2.Rmd
Modified: analysis/index3.Rmd
Modified: analysis/index4.Rmd
Modified: analysis/index5.Rmd
Modified: analysis/index6.Rmd
Deleted: data/DB_AllData_V04.CSV
Deleted: data/DB_mass_focals_female.CSV
Deleted: data/DB_mass_focals_males.CSV
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/index2.Rmd
) and HTML
(docs/index2.html
) files. If you’ve configured a remote Git
repository (see ?wflow_git_remote
), click on the hyperlinks
in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 39e340c | LennartWinkler | 2022-08-13 | new |
Rmd | f54f022 | LennartWinkler | 2022-08-13 | wflow_publish(republish = TRUE, all = T) |
html | f54f022 | LennartWinkler | 2022-08-13 | wflow_publish(republish = TRUE, all = T) |
Rmd | f89f7c1 | LennartWinkler | 2022-08-10 | Build site. |
html | f89f7c1 | LennartWinkler | 2022-08-10 | Build site. |
Supplementary material reporting R code for the manuscript ‘Population density affects sexual selection in an insect model’.
Before we started the analyses, we loaded all necessary packages and data.
rm(list = ls()) # Clear work environment
# Load R-packages ####
=cbind('ggeffects','ggplot2','gridExtra','lme4','lmerTest','readr','dplyr','EnvStats','cowplot','gridGraphics','car','RColorBrewer','boot','data.table','base','ICC','knitr')
list_of_packageslapply(list_of_packages, require, character.only = TRUE)
# Load data set ####
=read_delim("./data/Data_Winkler_et_al_2023_Denstiy.csv",";", escape_double = FALSE, trim_ws = TRUE)
D_data
# Set factors and levels for factors
$Week=as.factor(D_data$Week)
D_data$Sex=as.factor(D_data$Sex)
D_data$Gr_size=as.factor(D_data$Gr_size)
D_data$Gr_size <- factor(D_data$Gr_size, levels=c("SG","LG"))
D_data$Arena=as.factor(D_data$Arena)
D_data
## Subset data set ####
### Data according to denstiy ####
.26=D_data[D_data$Treatment=='D = 0.26',]
D_data_0.52=D_data[D_data$Treatment=='D = 0.52',]
D_data_0.67=D_data[D_data$Treatment=='D = 0.67',]
D_data_0.33=D_data[D_data$Treatment=='D = 1.33',]
D_data_1
### Subset data by sex ####
=D_data[D_data$Sex=='M',]
D_data_m=D_data[D_data$Sex=='F',]
D_data_f
### Calculate data relativized within treatment and sex ####
# Small group + large Area
.26=D_data[D_data$Treatment=='D = 0.26',]
D_data_0
.26$rel_m_RS=NA
D_data_0.26$rel_m_prop_RS=NA
D_data_0.26$rel_m_cMS=NA
D_data_0.26$rel_m_InSuc=NA
D_data_0.26$rel_m_feSuc=NA
D_data_0.26$rel_m_pFec=NA
D_data_0.26$rel_m_PS=NA
D_data_0.26$rel_m_pFec_compl=NA
D_data_0
.26$rel_f_RS=NA
D_data_0.26$rel_f_prop_RS=NA
D_data_0.26$rel_f_cMS=NA
D_data_0.26$rel_f_fec_pMate=NA
D_data_0
.26$rel_m_RS=D_data_0.26$m_RS/mean(D_data_0.26$m_RS,na.rm=T)
D_data_0.26$rel_m_prop_RS=D_data_0.26$m_prop_RS/mean(D_data_0.26$m_prop_RS,na.rm=T)
D_data_0.26$rel_m_cMS=D_data_0.26$m_cMS/mean(D_data_0.26$m_cMS,na.rm=T)
D_data_0.26$rel_m_InSuc=D_data_0.26$m_InSuc/mean(D_data_0.26$m_InSuc,na.rm=T)
D_data_0.26$rel_m_feSuc=D_data_0.26$m_feSuc/mean(D_data_0.26$m_feSuc,na.rm=T)
D_data_0.26$rel_m_pFec=D_data_0.26$m_pFec/mean(D_data_0.26$m_pFec,na.rm=T)
D_data_0.26$rel_m_PS=D_data_0.26$m_PS/mean(D_data_0.26$m_PS,na.rm=T)
D_data_0.26$rel_m_pFec_compl=D_data_0.26$m_pFec_compl/mean(D_data_0.26$m_pFec_compl,na.rm=T)
D_data_0
.26$rel_f_RS=D_data_0.26$f_RS/mean(D_data_0.26$f_RS,na.rm=T)
D_data_0.26$rel_f_prop_RS=D_data_0.26$f_prop_RS/mean(D_data_0.26$f_prop_RS,na.rm=T)
D_data_0.26$rel_f_cMS=D_data_0.26$f_cMS/mean(D_data_0.26$f_cMS,na.rm=T)
D_data_0.26$rel_f_fec_pMate=D_data_0.26$f_fec_pMate/mean(D_data_0.26$f_fec_pMate,na.rm=T)
D_data_0
# Large group + large Area
.52=D_data[D_data$Treatment=='D = 0.52',]
D_data_0#Relativize data
.52$rel_m_RS=NA
D_data_0.52$rel_m_prop_RS=NA
D_data_0.52$rel_m_cMS=NA
D_data_0.52$rel_m_InSuc=NA
D_data_0.52$rel_m_feSuc=NA
D_data_0.52$rel_m_pFec=NA
D_data_0.52$rel_m_PS=NA
D_data_0.52$rel_m_pFec_compl=NA
D_data_0
.52$rel_f_RS=NA
D_data_0.52$rel_f_prop_RS=NA
D_data_0.52$rel_f_cMS=NA
D_data_0.52$rel_f_fec_pMate=NA
D_data_0
.52$rel_m_RS=D_data_0.52$m_RS/mean(D_data_0.52$m_RS,na.rm=T)
D_data_0.52$rel_m_prop_RS=D_data_0.52$m_prop_RS/mean(D_data_0.52$m_prop_RS,na.rm=T)
D_data_0.52$rel_m_cMS=D_data_0.52$m_cMS/mean(D_data_0.52$m_cMS,na.rm=T)
D_data_0.52$rel_m_InSuc=D_data_0.52$m_InSuc/mean(D_data_0.52$m_InSuc,na.rm=T)
D_data_0.52$rel_m_feSuc=D_data_0.52$m_feSuc/mean(D_data_0.52$m_feSuc,na.rm=T)
D_data_0.52$rel_m_pFec=D_data_0.52$m_pFec/mean(D_data_0.52$m_pFec,na.rm=T)
D_data_0.52$rel_m_PS=D_data_0.52$m_PS/mean(D_data_0.52$m_PS,na.rm=T)
D_data_0.52$rel_m_pFec_compl=D_data_0.52$m_pFec_compl/mean(D_data_0.52$m_pFec_compl,na.rm=T)
D_data_0
.52$rel_f_RS=D_data_0.52$f_RS/mean(D_data_0.52$f_RS,na.rm=T)
D_data_0.52$rel_f_prop_RS=D_data_0.52$f_prop_RS/mean(D_data_0.52$f_prop_RS,na.rm=T)
D_data_0.52$rel_f_cMS=D_data_0.52$f_cMS/mean(D_data_0.52$f_cMS,na.rm=T)
D_data_0.52$rel_f_fec_pMate=D_data_0.52$f_fec_pMate/mean(D_data_0.52$f_fec_pMate,na.rm=T)
D_data_0
# Small group + small Area
.67=D_data[D_data$Treatment=='D = 0.67',]
D_data_0#Relativize data
.67$rel_m_RS=NA
D_data_0.67$rel_m_prop_RS=NA
D_data_0.67$rel_m_cMS=NA
D_data_0.67$rel_m_InSuc=NA
D_data_0.67$rel_m_feSuc=NA
D_data_0.67$rel_m_pFec=NA
D_data_0.67$rel_m_PS=NA
D_data_0.67$rel_m_pFec_compl=NA
D_data_0
.67$rel_f_RS=NA
D_data_0.67$rel_f_prop_RS=NA
D_data_0.67$rel_f_cMS=NA
D_data_0.67$rel_f_fec_pMate=NA
D_data_0
.67$rel_m_RS=D_data_0.67$m_RS/mean(D_data_0.67$m_RS,na.rm=T)
D_data_0.67$rel_m_prop_RS=D_data_0.67$m_prop_RS/mean(D_data_0.67$m_prop_RS,na.rm=T)
D_data_0.67$rel_m_cMS=D_data_0.67$m_cMS/mean(D_data_0.67$m_cMS,na.rm=T)
D_data_0.67$rel_m_InSuc=D_data_0.67$m_InSuc/mean(D_data_0.67$m_InSuc,na.rm=T)
D_data_0.67$rel_m_feSuc=D_data_0.67$m_feSuc/mean(D_data_0.67$m_feSuc,na.rm=T)
D_data_0.67$rel_m_pFec=D_data_0.67$m_pFec/mean(D_data_0.67$m_pFec,na.rm=T)
D_data_0.67$rel_m_PS=D_data_0.67$m_PS/mean(D_data_0.67$m_PS,na.rm=T)
D_data_0.67$rel_m_pFec_compl=D_data_0.67$m_pFec_compl/mean(D_data_0.67$m_pFec_compl,na.rm=T)
D_data_0
.67$rel_f_RS=D_data_0.67$f_RS/mean(D_data_0.67$f_RS,na.rm=T)
D_data_0.67$rel_f_prop_RS=D_data_0.67$f_prop_RS/mean(D_data_0.67$f_prop_RS,na.rm=T)
D_data_0.67$rel_f_cMS=D_data_0.67$f_cMS/mean(D_data_0.67$f_cMS,na.rm=T)
D_data_0.67$rel_f_fec_pMate=D_data_0.67$f_fec_pMate/mean(D_data_0.67$f_fec_pMate,na.rm=T)
D_data_0
# Large group + small Area
.33=D_data[D_data$Treatment=='D = 1.33',]
D_data_1#Relativize data
.33$rel_m_RS=NA
D_data_1.33$rel_m_prop_RS=NA
D_data_1.33$rel_m_cMS=NA
D_data_1.33$rel_m_InSuc=NA
D_data_1.33$rel_m_feSuc=NA
D_data_1.33$rel_m_pFec=NA
D_data_1.33$rel_m_PS=NA
D_data_1.33$rel_m_pFec_compl=NA
D_data_1
.33$rel_f_RS=NA
D_data_1.33$rel_f_prop_RS=NA
D_data_1.33$rel_f_cMS=NA
D_data_1.33$rel_f_fec_pMate=NA
D_data_1
.33$rel_m_RS=D_data_1.33$m_RS/mean(D_data_1.33$m_RS,na.rm=T)
D_data_1.33$rel_m_prop_RS=D_data_1.33$m_prop_RS/mean(D_data_1.33$m_prop_RS,na.rm=T)
D_data_1.33$rel_m_cMS=D_data_1.33$m_cMS/mean(D_data_1.33$m_cMS,na.rm=T)
D_data_1.33$rel_m_InSuc=D_data_1.33$m_InSuc/mean(D_data_1.33$m_InSuc,na.rm=T)
D_data_1.33$rel_m_feSuc=D_data_1.33$m_feSuc/mean(D_data_1.33$m_feSuc,na.rm=T)
D_data_1.33$rel_m_pFec=D_data_1.33$m_pFec/mean(D_data_1.33$m_pFec,na.rm=T)
D_data_1.33$rel_m_PS=D_data_1.33$m_PS/mean(D_data_1.33$m_PS,na.rm=T)
D_data_1.33$rel_m_pFec_compl=D_data_1.33$m_pFec_compl/mean(D_data_1.33$m_pFec_compl,na.rm=T)
D_data_1
.33$rel_f_RS=D_data_1.33$f_RS/mean(D_data_1.33$f_RS,na.rm=T)
D_data_1.33$rel_f_prop_RS=D_data_1.33$f_prop_RS/mean(D_data_1.33$f_prop_RS,na.rm=T)
D_data_1.33$rel_f_cMS=D_data_1.33$f_cMS/mean(D_data_1.33$f_cMS,na.rm=T)
D_data_1.33$rel_f_fec_pMate=D_data_1.33$f_fec_pMate/mean(D_data_1.33$f_fec_pMate,na.rm=T)
D_data_1
### Reduce treatments to arena and population size ####
# Arena size
=rbind(D_data_0.26,D_data_0.52)
D_data_Large_arena=rbind(D_data_0.67,D_data_1.33)
D_data_Small_arena
# Population size
=rbind(D_data_0.26,D_data_0.67)
D_data_Small_pop=rbind(D_data_0.52,D_data_1.33)
D_data_Large_pop
## Set figure schemes ####
# Set color-sets for figures
=brewer.pal(4, 'Dark2')
colpal=c("#b2182b","#2166AC")
colpal2=brewer.pal(4, 'Paired')
colpal3
# Set theme for ggplot2 figures
=theme(panel.border = element_blank(),
fig_themeplot.margin = margin(0,2.2,0,0.2,"cm"),
plot.title = element_text(hjust = 0.5),
panel.background = element_blank(),
legend.key=element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position = c(1.25, 0.8),
plot.tag.position=c(0.01,0.98),
legend.title = element_blank(),
legend.text = element_text(colour="black", size=10),
axis.line.x = element_line(colour = "black", size = 1),
axis.line.y = element_line(colour = "black", size = 1),
axis.text.x = element_text(face="plain", color="black", size=16, angle=0),
axis.text.y = element_text(face="plain", color="black", size=16, angle=0),
axis.title.x = element_text(size=16,face="plain", margin = margin(r=0,10,0,0)),
axis.title.y = element_text(size=16,face="plain", margin = margin(r=10,0,0,0)),
axis.ticks = element_line(size = 1),
axis.ticks.length = unit(.3, "cm"))
## Create customized functions for analysis ####
# Create function to calculate standard error and upper/lower standard deviation
<- function(x) sd(x,na.rm=T) / sqrt(length(!is.na(x)))
standard_error <- function(x) mean(x,na.rm=T)+(sd(x)/2)
upper_SD <- function(x) mean(x,na.rm=T)-(sd(x)/2) lower_SD
First, we tested for an effect of group and arena size on the number of contacts with potential mating partners.
Calculate means and SE of treatments: Mean number of contacts in small groups (SE) = 116.04 (7.56)
mean(D_data_m$N_contact_WT[D_data_m$Gr_size=='SG'],na.rm=T)
standard_error(D_data_m$N_contact_WT[D_data_m$Gr_size=='SG'])
Mean number of contacts in large groups (SE) = 140.83 (7.23)
mean(D_data_m$N_contact_WT[D_data_m$Gr_size=='LG'],na.rm=T)
standard_error(D_data_m$N_contact_WT[D_data_m$Gr_size=='LG'])
Mean number of contacts in large arena size (SE) = 115.8 (6.06)
mean(D_data_m$N_contact_WT[D_data_m$Arena=='Large'],na.rm=T)
standard_error(D_data_m$N_contact_WT[D_data_m$Arena=='Large'])
Mean number of contacts in small arena size (SE) = 145.65 (8.62)
mean(D_data_m$N_contact_WT[D_data_m$Arena=='Small'],na.rm=T)
standard_error(D_data_m$N_contact_WT[D_data_m$Arena=='Small'])
GLM for the effect of treatment on the number of contacts with potential partners
=glm((as.numeric(N_contact_WT))~Gr_size*Arena,data=D_data_m,family = quasipoisson) # GLM for treatment effect on contact rates of males
mod1summary(mod1)
Call:
glm(formula = (as.numeric(N_contact_WT)) ~ Gr_size * Arena, family = quasipoisson,
data = D_data_m)
Deviance Residuals:
Min 1Q Median 3Q Max
-9.0513 -3.8054 -0.1636 3.2374 9.2217
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.5207 0.1025 44.121 < 2e-16 ***
Gr_sizeLG 0.3426 0.1215 2.821 0.00578 **
ArenaSmall 0.3817 0.1265 3.017 0.00324 **
Gr_sizeLG:ArenaSmall -0.1817 0.1599 -1.136 0.25873
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasipoisson family taken to be 19.29616)
Null deviance: 2401.2 on 103 degrees of freedom
Residual deviance: 2017.0 on 100 degrees of freedom
AIC: NA
Number of Fisher Scoring iterations: 4
Anova(mod1,type=2) # Compute p-values via type 2 ANOVA
Analysis of Deviance Table (Type II tests)
Response: (as.numeric(N_contact_WT))
LR Chisq Df Pr(>Chisq)
Gr_size 9.4143 1 0.0021530 **
Arena 12.2650 1 0.0004615 ***
Gr_size:Arena 1.3004 1 0.2541364
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
FDR corrected p-values = 0.003, 0.001, 0.254
p.adjust(c(0.0021530,0.0004615,0.2541364), method = 'fdr')
Calculate means and SE of treatments: Mean number of contacts in small groups (SE) = 87.52 (4.7)
mean(D_data_f$N_contact_WT[D_data_f$Gr_size=='SG'],na.rm=T)
standard_error(D_data_f$N_contact_WT[D_data_f$Gr_size=='SG'])
Mean number of contacts in large groups (SE) = 147.27 (9.79)
mean(D_data_f$N_contact_WT[D_data_f$Gr_size=='LG'],na.rm=T)
standard_error(D_data_f$N_contact_WT[D_data_f$Gr_size=='LG'])
Mean number of contacts in large arena size (SE) = 89.76 (4.85)
mean(D_data_f$N_contact_WT[D_data_f$Arena=='Large'],na.rm=T)
standard_error(D_data_f$N_contact_WT[D_data_f$Arena=='Large'])
Mean number of contacts in small arena size (SE) = 141.15 (9.77)
mean(D_data_f$N_contact_WT[D_data_f$Arena=='Small'],na.rm=T)
standard_error(D_data_f$N_contact_WT[D_data_f$Arena=='Small'])
GLM for the effect of treatment on the number of contacts with potential partners
=glm((as.numeric(N_contact_WT))~Gr_size*Arena,data=D_data_f,family = quasipoisson) # GLM for treatment effect on contact rates of females
mod2summary(mod2)
Call:
glm(formula = (as.numeric(N_contact_WT)) ~ Gr_size * Arena, family = quasipoisson,
data = D_data_f)
Deviance Residuals:
Min 1Q Median 3Q Max
-11.168 -2.868 -0.245 2.183 10.666
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.35871 0.07999 54.489 < 2e-16 ***
Gr_sizeLG 0.33553 0.11876 2.825 0.00576 **
ArenaSmall 0.25776 0.11658 2.211 0.02944 *
Gr_sizeLG:ArenaSmall 0.21279 0.15752 1.351 0.17996
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasipoisson family taken to be 16.00349)
Null deviance: 2705.7 on 98 degrees of freedom
Residual deviance: 1535.2 on 95 degrees of freedom
AIC: NA
Number of Fisher Scoring iterations: 4
Anova(mod2,type=2) # Compute p-values via type 2 ANOVA
Analysis of Deviance Table (Type II tests)
Response: (as.numeric(N_contact_WT))
LR Chisq Df Pr(>Chisq)
Gr_size 35.593 1 2.432e-09 ***
Arena 23.774 1 1.084e-06 ***
Gr_size:Arena 1.836 1 0.1754
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
FDR corrected p-values = 0, 0, 0.175
p.adjust(c(2.432e-09, 1.084e-06,0.1754), method = 'fdr') # Compute FDR corrected p-values
## Plot contact rates (Figure S1) ####
# Create factor for treatment categories
$TreatCgroup <- factor(paste(D_data$Sex,D_data$Gr_size, sep=" "), levels = c("F SG", "F LG", "M SG",'M LG'))
D_data
=ggplot(D_data, aes(x=Sex, y=as.numeric(N_contact_WT),fill=TreatCgroup, col=TreatCgroup,alpha=TreatCgroup)) +
p1geom_point(position=position_jitterdodge(jitter.width=0.6,jitter.height = 0,dodge.width=0.9),shape=19, size = 2)+
stat_summary(fun.min =lower_SD ,
fun.max = upper_SD ,
fun = mean,position=position_dodge(.9), size = 0.6,col='grey30',alpha=1,show.legend = F)+
scale_color_manual(values=c(colpal2[1],colpal2[1],colpal2[2],colpal2[2]),name = "Treatment", labels = c('Females: Small group','Females: Large group','Males: Small group','Males: Large group'))+
scale_fill_manual(values=c(colpal2[1],colpal2[1],colpal2[2],colpal2[2]),name = "Treatment", labels = c('Females: Small group','Females: Large group','Males: Small group','Males: Large group'))+
scale_alpha_manual(values=c(0.5,0.75,0.5,0.75),name = "Treatment", labels = c('Females: Small group','Females: Large group','Males: Small group','Males: Large group'))+
xlab('Sex')+ylab("Contacts with mating partners")+ggtitle('')+ theme(plot.title = element_text(hjust = 0.5))+
scale_x_discrete(labels = c('Female','Male'),drop=FALSE)+ylim(0,400)+labs(tag = "A")+
annotate("text",label='n =',x=0.55,y=400,size=4)+
annotate("text",label='54',x=0.78,y=400,size=4)+
annotate("text",label='45',x=1.23,y=400,size=4)+
annotate("text",label='46',x=1.78,y=400,size=4)+
annotate("text",label='58',x=2.23,y=400,size=4)+
guides(colour = guide_legend(override.aes = list(size=4)))+
fig_theme
# Create factor for treatment categories
$TreatCarena <- factor(paste(D_data$Sex,D_data$Arena, sep=" "), levels = c("F Large", "F Small", "M Large",'M Small'))
D_data
=ggplot(D_data, aes(x=Sex, y=as.numeric(N_contact_WT),fill=TreatCarena, col=TreatCarena,alpha=TreatCarena)) +
p2geom_point(position=position_jitterdodge(jitter.width=0.6,jitter.height = 0,dodge.width=0.9),shape=19, size = 2)+
stat_summary(fun.min =lower_SD ,
fun.max = upper_SD ,
fun = mean,position=position_dodge(.9), size = 0.6,col='grey30',alpha=1,show.legend = F)+
scale_color_manual(values=c(colpal2[1],colpal2[1],colpal2[2],colpal2[2]),name = "Treatment", labels = c('Females: Large arena','Females: Small arena','Males: Large arena','Males: Small arena'))+
scale_fill_manual(values=c(colpal2[1],colpal2[1],colpal2[2],colpal2[2]),name = "Treatment", labels = c('Females: Large arena','Females: Small arena','Males: Large arena','Males: Small arena'))+
scale_alpha_manual(values=c(0.5,0.75,0.5,0.75),name = "Treatment", labels = c('Females: Large arena','Females: Small arena','Males: Large arena','Males: Small arena'))+
xlab('Sex')+ylab("Contacts with mating partners")+ggtitle('')+ theme(plot.title = element_text(hjust = 0.5))+
scale_x_discrete(labels = c('Female','Male'),drop=FALSE)+ylim(0,400)+labs(tag = "B")+
annotate("text",label='n =',x=0.55,y=400,size=4)+
annotate("text",label='51',x=0.78,y=400,size=4)+
annotate("text",label='48',x=1.23,y=400,size=4)+
annotate("text",label='55',x=1.78,y=400,size=4)+
annotate("text",label='49',x=2.23,y=400,size=4)+
guides(colour = guide_legend(override.aes = list(size=4)))+
fig_theme
# Arrange figures
<-grid.arrange(grobs = list(p1+theme(plot.margin = unit(c(0.2,4,0,0.3), "cm")),p2+theme(plot.margin = unit(c(0.2,4,0,0.3), "cm"))), nrow = 1,ncol=2, widths=c(2.3, 2.3)) Figure_S1
Figure S1: Total number of contacts with potential mating partners for males and females under low and high density manipulation via group (left) and arena size (right). Grey bars indicate means and standard deviations.
<-plot_grid(Figure_S1, ncol=1, rel_heights=c(0.1, 1)) Figure_S1
## Bootstrapping the variance in contact rates ####
# Male
# Large group size
<-as.vector(D_data_Large_pop$N_contact_WT[D_data_Large_pop$Sex=='M'])
D_data_Large_pop_M_Contact_n <- function(d, i){
c <- d[i]
d2 return(sd(d2, na.rm=TRUE)/mean(d2, na.rm=TRUE))
}<- boot(D_data_Large_pop_M_Contact_n, c, R=10000)
Large_pop_M_Contact_bootvar
# Small group size
<-as.vector(D_data_Small_pop$N_contact_WT[D_data_Large_pop$Sex=='M'])
D_data_Small_pop_M_Contact_n
<- boot(D_data_Small_pop_M_Contact_n, c, R=10000)
Small_pop_M_Contact_bootvar
# Large arena
<-as.vector(D_data_Large_arena$N_contact_WT[D_data_Large_pop$Sex=='M'])
D_data_Large_arena_M_Contact_n
<- boot(D_data_Large_arena_M_Contact_n, c, R=10000)
Large_arena_M_Contact_bootvar
# Small arena
<-as.vector(D_data_Small_arena$N_contact_WT[D_data_Large_pop$Sex=='M'])
D_data_Small_arena_M_Contact_n
<- boot(D_data_Small_arena_M_Contact_n, c, R=10000)
Small_arena_M_Contact_bootvar
# Female
# Large group size
<-as.vector(D_data_Large_pop$N_contact_WT[D_data_Large_pop$Sex=='F'])
D_data_Large_pop_F_Contact_n
<- boot(D_data_Large_pop_F_Contact_n, c, R=10000)
Large_pop_F_Contact_bootvar
# Small group size
<-as.vector(D_data_Small_pop$N_contact_WT[D_data_Large_pop$Sex=='F'])
D_data_Small_pop_F_Contact_n
<- boot(D_data_Small_pop_F_Contact_n, c, R=10000)
Small_pop_F_Contact_bootvar
# Large arena
<-as.vector(D_data_Large_arena$N_contact_WT[D_data_Large_pop$Sex=='F'])
D_data_Large_arena_F_Contact_n
<- boot(D_data_Large_arena_F_Contact_n, c, R=10000)
Large_arena_F_Contact_bootvar
# Small arena
<-as.vector(D_data_Small_arena$N_contact_WT[D_data_Large_pop$Sex=='F'])
D_data_Small_arena_F_Contact_n
<- boot(D_data_Small_arena_F_Contact_n, c, R=10000)
Small_arena_F_Contact_bootvar
# Extract data and write results table
<- as.data.frame(cbind("Male", "Small population size", "Contacts with pot. partners", as.numeric(mean(Small_pop_M_Contact_bootvar$t)), quantile(Small_pop_M_Contact_bootvar$t,.025, names = FALSE), quantile(Small_pop_M_Contact_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Small_pop_Contact <- as.data.frame(cbind("Male", "Large population size", "Contacts with pot. partners", as.numeric(mean(Large_pop_M_Contact_bootvar$t)), quantile(Large_pop_M_Contact_bootvar$t,.025, names = FALSE), quantile(Large_pop_M_Contact_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Large_pop_Contact <- as.data.frame(cbind("Female", "Small population size", "Contacts with pot. partners", as.numeric(mean(Small_pop_F_Contact_bootvar$t)), quantile(Small_pop_F_Contact_bootvar$t,.025, names = FALSE), quantile(Small_pop_F_Contact_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Female_Small_pop_Contact <- as.data.frame(cbind("Female", "Large population size", "Contacts with pot. partners", as.numeric(mean(Large_pop_F_Contact_bootvar$t)), quantile(Large_pop_F_Contact_bootvar$t,.025, names = FALSE), quantile(Large_pop_F_Contact_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Female_Large_pop_Contact <- as.data.frame(cbind("Male", "Small arena size", "Contacts with pot. partners", as.numeric(mean(Small_arena_M_Contact_bootvar$t)), quantile(Small_arena_M_Contact_bootvar$t,.025, names = FALSE), quantile(Small_arena_M_Contact_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Small_arena_Contact <- as.data.frame(cbind("Male", "Large arena size", "Contacts with pot. partners", as.numeric(mean(Large_arena_M_Contact_bootvar$t)), quantile(Large_arena_M_Contact_bootvar$t,.025, names = FALSE), quantile(Large_arena_M_Contact_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Large_arena_Contact <- as.data.frame(cbind("Female", "Small arena size", "Contacts with pot. partners", as.numeric(mean(Small_arena_F_Contact_bootvar$t)), quantile(Small_arena_F_Contact_bootvar$t,.025, names = FALSE), quantile(Small_arena_F_Contact_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Female_Small_arena_Contact <- as.data.frame(cbind("Female", "Large arena size", "Contacts with pot. partners", as.numeric(mean(Large_arena_F_Contact_bootvar$t)), quantile(Large_arena_F_Contact_bootvar$t,.025, names = FALSE), quantile(Large_arena_F_Contact_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Female_Large_arena_Contact
<- as.data.frame(as.matrix(rbind(PhenVarBoot_Table_Male_Small_pop_Contact,PhenVarBoot_Table_Male_Large_pop_Contact,
Table_VarCont
PhenVarBoot_Table_Female_Small_pop_Contact,PhenVarBoot_Table_Female_Large_pop_Contact,
PhenVarBoot_Table_Male_Small_arena_Contact,PhenVarBoot_Table_Male_Large_arena_Contact,digits=3)
PhenVarBoot_Table_Female_Small_arena_Contact,PhenVarBoot_Table_Female_Large_arena_Contact)),
is.table(Table_VarCont)
colnames(Table_VarCont)[1] <- "Sex"
colnames(Table_VarCont)[2] <- "Treatment"
colnames(Table_VarCont)[3] <- "Trait"
colnames(Table_VarCont)[4] <- "Variance"
colnames(Table_VarCont)[5] <- "l95_CI"
colnames(Table_VarCont)[6] <- "u95_CI"
4]=as.numeric(Table_VarCont[,4])
Table_VarCont[,5]=as.numeric(Table_VarCont[,5])
Table_VarCont[,6]=as.numeric(Table_VarCont[,6])
Table_VarCont[,
rm(c) # Remove bootstrapping function
kable(head(Table_VarCont))
Sex | Treatment | Trait | Variance | l95_CI | u95_CI |
---|---|---|---|---|---|
Male | Small population size | Contacts with pot. partners | 0.4354201 | 0.3745551 | 0.4960761 |
Male | Large population size | Contacts with pot. partners | 0.3872321 | 0.3227348 | 0.4534341 |
Female | Small population size | Contacts with pot. partners | 0.4437505 | 0.3577724 | 0.5337895 |
Female | Large population size | Contacts with pot. partners | 0.4377419 | 0.3519710 | 0.5237236 |
Male | Small arena size | Contacts with pot. partners | 0.5089506 | 0.4279041 | 0.5888735 |
Male | Large arena size | Contacts with pot. partners | 0.4100654 | 0.3532523 | 0.4681418 |
## Permutation test for treatment comparison of contact rates ####
# Male
# Group size
=c(Large_pop_M_Contact_bootvar$t)-c(Small_pop_M_Contact_bootvar$t)
Treat_diff_Male_pop_Contact
=mean(Treat_diff_Male_pop_Contact,na.rm=TRUE)
t_Treat_diff_Male_pop_Contact=quantile(Treat_diff_Male_pop_Contact,.025,na.rm=TRUE)
t_Treat_diff_Male_pop_Contact_lower=quantile(Treat_diff_Male_pop_Contact,.975,na.rm=TRUE)
t_Treat_diff_Male_pop_Contact_upper
#Permutation test to calculate p value
=c(D_data_Large_pop$N_contact_WT[D_data_Large_pop$Sex=='M'],D_data_Small_pop$N_contact_WT[D_data_Small_pop$Sex=='M'])
comb_data
= sd(na.omit((D_data_Large_pop$N_contact_WT[D_data_Large_pop$Sex=='M'])))/mean(na.omit((D_data_Large_pop$N_contact_WT[D_data_Large_pop$Sex=='M'])))-sd(na.omit((D_data_Small_pop$N_contact_WT[D_data_Small_pop$Sex=='M'])))/mean(na.omit((D_data_Small_pop$N_contact_WT[D_data_Small_pop$Sex=='M'])))
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined data set
= sample (na.omit(comb_data), length(c(D_data_Large_pop$N_contact_WT[D_data_Large_pop$Sex=='M'])), TRUE)
a.random = sample (na.omit(comb_data), length(c(D_data_Small_pop$N_contact_WT[D_data_Small_pop$Sex=='M'])), TRUE)
b.random
# Null (permuated) difference
= sd(na.omit(a.random))/mean(na.omit(a.random))-sd(na.omit(b.random))/mean(na.omit(b.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Male_pop_Contact_p
# Arena
=c(Small_arena_M_Contact_bootvar$t)-c(Large_arena_M_Contact_bootvar$t)
Treat_diff_Male_arena_Contact
=mean(Treat_diff_Male_arena_Contact,na.rm=TRUE)
t_Treat_diff_Male_arena_Contact=quantile(Treat_diff_Male_arena_Contact,.025,na.rm=TRUE)
t_Treat_diff_Male_arena_Contact_lower=quantile(Treat_diff_Male_arena_Contact,.975,na.rm=TRUE)
t_Treat_diff_Male_arena_Contact_upper
#Permutation test to calculate p value
=c(D_data_Large_arena$N_contact_WT[D_data_Large_arena$Sex=='M'],D_data_Small_arena$N_contact_WT[D_data_Small_arena$Sex=='M'])
comb_data
= sd(na.omit((D_data_Small_arena$N_contact_WT[D_data_Small_arena$Sex=='M'])))/mean(na.omit((D_data_Small_arena$N_contact_WT[D_data_Small_arena$Sex=='M'])))-sd(na.omit((D_data_Large_arena$N_contact_WT[D_data_Large_arena$Sex=='M'])))/mean(na.omit((D_data_Large_arena$N_contact_WT[D_data_Large_arena$Sex=='M'])))
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined data set
= sample (na.omit(comb_data), length(c(D_data_Large_arena$N_contact_WT[D_data_Large_arena$Sex=='M'])), TRUE)
b.random = sample (na.omit(comb_data), length(c(D_data_Small_arena$N_contact_WT[D_data_Small_arena$Sex=='M'])), TRUE)
a.random
# Null (permuated) difference
= sd(na.omit(a.random))/mean(na.omit(a.random))-sd(na.omit(b.random))/mean(na.omit(b.random))
diff.random[i]
}
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Male_arena_Contact_p
# Female
# Group size
=c(Large_pop_F_Contact_bootvar$t)-c(Small_pop_F_Contact_bootvar$t)
Treat_diff_Female_pop_Contact
=mean(Treat_diff_Female_pop_Contact,na.rm=TRUE)
t_Treat_diff_Female_pop_Contact=quantile(Treat_diff_Female_pop_Contact,.025,na.rm=TRUE)
t_Treat_diff_Female_pop_Contact_lower=quantile(Treat_diff_Female_pop_Contact,.975,na.rm=TRUE)
t_Treat_diff_Female_pop_Contact_upper
#Permutation test to calculate p value
=c(D_data_Large_pop$N_contact_WT[D_data_Large_pop$Sex=='F'],D_data_Small_pop$N_contact_WT[D_data_Small_pop$Sex=='F'])
comb_data
= sd(na.omit((D_data_Large_pop$N_contact_WT[D_data_Large_pop$Sex=='F'])))/mean(na.omit((D_data_Large_pop$N_contact_WT[D_data_Large_pop$Sex=='F'])))- sd(na.omit((D_data_Small_pop$N_contact_WT[D_data_Small_pop$Sex=='F'])))/mean(na.omit((D_data_Small_pop$N_contact_WT[D_data_Small_pop$Sex=='F'])))
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined data set
= sample (na.omit(comb_data), length(c(D_data_Large_pop$N_contact_WT[D_data_Large_pop$Sex=='F'])), TRUE)
a.random = sample (na.omit(comb_data), length(c(D_data_Small_pop$N_contact_WT[D_data_Small_pop$Sex=='F'])), TRUE)
b.random
# Null (permuated) difference
= sd(na.omit(a.random))/mean(na.omit(a.random))-sd(na.omit(b.random))/mean(na.omit(b.random))
diff.random[i]
}
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Female_pop_Contact_p
# Arena
=c(Small_arena_F_Contact_bootvar$t)-c(Large_arena_F_Contact_bootvar$t)
Treat_diff_Female_arena_Contact
=mean(Treat_diff_Female_arena_Contact,na.rm=TRUE)
t_Treat_diff_Female_arena_Contact=quantile(Treat_diff_Female_arena_Contact,.025,na.rm=TRUE)
t_Treat_diff_Female_arena_Contact_lower=quantile(Treat_diff_Female_arena_Contact,.975,na.rm=TRUE)
t_Treat_diff_Female_arena_Contact_upper
#Permutation test to calculate p value
=c(D_data_Large_arena$N_contact_WT[D_data_Large_arena$Sex=='F'],D_data_Small_arena$N_contact_WT[D_data_Small_arena$Sex=='F'])
comb_data
= sd(na.omit((D_data_Small_arena$N_contact_WT[D_data_Small_arena$Sex=='F'])))/mean(na.omit((D_data_Small_arena$N_contact_WT[D_data_Small_arena$Sex=='F'])))-sd(na.omit((D_data_Large_arena$N_contact_WT[D_data_Large_arena$Sex=='F'])))/mean(na.omit((D_data_Large_arena$N_contact_WT[D_data_Large_arena$Sex=='F'])))
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined data set
= sample (na.omit(comb_data), length(c(D_data_Large_arena$N_contact_WT[D_data_Large_arena$Sex=='F'])), TRUE)
b.random = sample (na.omit(comb_data), length(c(D_data_Small_arena$N_contact_WT[D_data_Small_arena$Sex=='F'])), TRUE)
a.random
# Null (permuated) difference
= sd(na.omit(a.random))/mean(na.omit(a.random))-sd(na.omit(b.random))/mean(na.omit(b.random))
diff.random[i]
}
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Female_arena_Contact_p
# Extract data and write data table
<- as.data.frame(cbind("Male", "Group size", "Contacts with pot. partners", t_Treat_diff_Male_pop_Contact, t_Treat_diff_Male_pop_Contact_lower, t_Treat_diff_Male_pop_Contact_upper, t_Treat_diff_Male_pop_Contact_p))
CompTreat_Table_Male_pop_Contact names(CompTreat_Table_Male_pop_Contact)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Female", "Group size", "Contacts with pot. partners", t_Treat_diff_Female_pop_Contact, t_Treat_diff_Female_pop_Contact_lower, t_Treat_diff_Female_pop_Contact_upper, t_Treat_diff_Female_pop_Contact_p))
CompTreat_Table_Female_pop_Contact names(CompTreat_Table_Female_pop_Contact)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Male", "Arena size", "Contacts with pot. partners", t_Treat_diff_Male_arena_Contact, t_Treat_diff_Male_arena_Contact_lower, t_Treat_diff_Male_arena_Contact_upper, t_Treat_diff_Male_arena_Contact_p))
CompTreat_Table_Male_arena_Contact names(CompTreat_Table_Male_arena_Contact)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Female", "Arena size", "Contacts with pot. partners", t_Treat_diff_Female_arena_Contact, t_Treat_diff_Female_arena_Contact_lower, t_Treat_diff_Female_arena_Contact_upper, t_Treat_diff_Female_arena_Contact_p))
CompTreat_Table_Female_arena_Contact names(CompTreat_Table_Female_arena_Contact)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(as.matrix(rbind(CompTreat_Table_Male_pop_Contact,CompTreat_Table_Female_pop_Contact,
Table_varCont_TreatComp
CompTreat_Table_Male_arena_Contact,CompTreat_Table_Female_arena_Contact)))
4]=as.numeric(Table_varCont_TreatComp[,4])
Table_varCont_TreatComp[,5]=as.numeric(Table_varCont_TreatComp[,5])
Table_varCont_TreatComp[,6]=as.numeric(Table_varCont_TreatComp[,6])
Table_varCont_TreatComp[,7]=as.numeric(Table_varCont_TreatComp[,7])
Table_varCont_TreatComp[,
colnames(Table_varCont_TreatComp)[1] <- "Sex"
colnames(Table_varCont_TreatComp)[2] <- "Treatment"
colnames(Table_varCont_TreatComp)[3] <- "Trait"
colnames(Table_varCont_TreatComp)[4] <- "Variance"
colnames(Table_varCont_TreatComp)[5] <- "l95_CI"
colnames(Table_varCont_TreatComp)[6] <- "u95_CI"
colnames(Table_varCont_TreatComp)[7] <- "Adj. p-value"
7]=c(round(p.adjust(c(0.32852 ,0.61279 ), method = 'fdr'),digit=3),round(p.adjust(c(0.52590 ,0.24217 ), method = 'fdr'),digit=3))
Table_varCont_TreatComp[,
4]=round(as.numeric(Table_varCont_TreatComp[,4]),digits=2)
Table_varCont_TreatComp[,5]=round(as.numeric(Table_varCont_TreatComp[,5]),digits=2)
Table_varCont_TreatComp[,6]=round(as.numeric(Table_varCont_TreatComp[,6]),digits=2)
Table_varCont_TreatComp[,7]=as.numeric(Table_varCont_TreatComp[,7])
Table_varCont_TreatComp[,rownames(Table_varCont_TreatComp) <- c()
round(p.adjust(c(0.32852 ,0.61279 ), method = 'fdr'),digit=3) # Calculate FDR adjusted p-values for males
round(p.adjust(c(0.52590 ,0.24217 ), method = 'fdr'),digit=3) # Calculate FDR adjusted p-values for females
#Table_varCont_TreatComp=as.table(Table_varCont_TreatComp,row.names=FALSE)
kable(head(Table_varCont_TreatComp))
Sex | Treatment | Trait | Variance | l95_CI | u95_CI | Adj. p-value |
---|---|---|---|---|---|---|
Male | Group size | Contacts with pot. partners | -0.05 | -0.14 | 0.04 | 0.613 |
Female | Group size | Contacts with pot. partners | -0.01 | -0.13 | 0.12 | 0.613 |
Male | Arena size | Contacts with pot. partners | 0.10 | 0.00 | 0.20 | 0.526 |
Female | Arena size | Contacts with pot. partners | -0.06 | -0.16 | 0.04 | 0.484 |
sessionInfo()
R version 4.2.0 (2022-04-22 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19045)
Matrix products: default
locale:
[1] LC_COLLATE=German_Germany.utf8 LC_CTYPE=German_Germany.utf8
[3] LC_MONETARY=German_Germany.utf8 LC_NUMERIC=C
[5] LC_TIME=German_Germany.utf8
attached base packages:
[1] grid stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] knitr_1.42 ICC_2.4.0 data.table_1.14.8 boot_1.3-28
[5] RColorBrewer_1.1-3 car_3.1-1 carData_3.0-5 gridGraphics_0.5-1
[9] cowplot_1.1.1 EnvStats_2.7.0 dplyr_1.1.0 readr_2.1.4
[13] lmerTest_3.1-3 lme4_1.1-31 Matrix_1.5-3 gridExtra_2.3
[17] ggplot2_3.4.1 ggeffects_1.2.0
loaded via a namespace (and not attached):
[1] Rcpp_1.0.10 lattice_0.20-45 rprojroot_2.0.3
[4] digest_0.6.31 utf8_1.2.3 R6_2.5.1
[7] evaluate_0.20 highr_0.10 pillar_1.8.1
[10] rlang_1.0.6 rstudioapi_0.14 minqa_1.2.5
[13] whisker_0.4.1 jquerylib_0.1.4 nloptr_2.0.3
[16] rmarkdown_2.20 labeling_0.4.2 splines_4.2.0
[19] stringr_1.5.0 bit_4.0.5 munsell_0.5.0
[22] compiler_4.2.0 numDeriv_2016.8-1.1 httpuv_1.6.9
[25] xfun_0.37 pkgconfig_2.0.3 htmltools_0.5.4
[28] tidyselect_1.2.0 tibble_3.2.0 workflowr_1.7.0
[31] fansi_1.0.4 crayon_1.5.2 tzdb_0.3.0
[34] withr_2.5.0 later_1.3.0 MASS_7.3-56
[37] nlme_3.1-157 jsonlite_1.8.4 gtable_0.3.1
[40] lifecycle_1.0.3 git2r_0.31.0 magrittr_2.0.3
[43] scales_1.2.1 vroom_1.6.1 cli_3.6.1
[46] stringi_1.7.12 cachem_1.0.7 farver_2.1.1
[49] fs_1.6.1 promises_1.2.0.1 bslib_0.4.2
[52] ellipsis_0.3.2 generics_0.1.3 vctrs_0.5.2
[55] tools_4.2.0 bit64_4.0.5 glue_1.6.2
[58] hms_1.1.2 parallel_4.2.0 abind_1.4-5
[61] fastmap_1.1.1 yaml_2.3.7 colorspace_2.1-0
[64] sass_0.4.5