Last updated: 2025-04-10

Checks: 6 1

Knit directory: HairCort-Evaluation-Nist2020/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20241016) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version bbb70a9. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/.Rhistory
    Ignored:    data/.DS_Store
    Ignored:    data/Test3/.DS_Store
    Ignored:    data/Test4/.DS_Store

Untracked files:
    Untracked:  analysis/ELISA_Analysis_FinalVals_comparisons_test3_test4.Rmd

Unstaged changes:
    Deleted:    ELISA_Analysis_FinalVals_comparisons_test3_test4.Rmd
    Deleted:    ELISA_Analysis_FinalVals_comparisons_test3_test4.html
    Modified:   analysis/ELISA_Analysis_RawVals_test3.Rmd
    Modified:   analysis/ELISA_Analysis_RawVals_test4.Rmd
    Modified:   analysis/ELISA_Calc_FinalVals_test3.Rmd
    Modified:   analysis/ELISA_Calc_FinalVals_test4.Rmd
    Modified:   analysis/ELISA_QC_test4.Rmd
    Modified:   data/Test4/Data_QC_filtered.csv
    Modified:   data/Test4/Data_QC_flagged.csv
    Modified:   data/Test4/Data_cort_values_methodA.csv
    Modified:   data/Test4/Data_cort_values_methodB.csv
    Modified:   data/Test4/Data_cort_values_methodC.csv
    Modified:   data/Test4/Data_cort_values_methodD.csv
    Modified:   data/Test4/failed_samples.csv
    Deleted:    temp.html

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ELISA_Calc_FinalVals_test4.Rmd) and HTML (docs/ELISA_Calc_FinalVals_test4.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html bbb70a9 Paloma 2025-04-09 comparing methods
Rmd ccad031 Paloma 2025-04-09 new_calc
html ccad031 Paloma 2025-04-09 new_calc
html 77c2ab5 Paloma 2025-04-08 cleaning test3
Rmd ced6eed Paloma 2025-04-03 upd
html ced6eed Paloma 2025-04-03 upd
Rmd ca6c804 Paloma 2025-04-03 new calc final vals
html ca6c804 Paloma 2025-04-03 new calc final vals
Rmd 528855b Paloma 2025-04-03 new_calc
html 528855b Paloma 2025-04-03 new_calc

Summary

Cortisol value calculations

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
A) Standard Method 0.4142 1.9653 7.5533 14.1906 28.0667 50.933 3
B) Spike-Corrected Method -45.870 -31.922 -1.929 -9.444 7.553 30.780 3
C) Standard, but simplified equation 0.4142 1.9653 7.5533 14.1906 28.0667 50.9333 3
D) Spike-Corrected (divided by two) 0.2335 1.5067 6.7184 9.7699 17.3683 32.2815 3

I calculated final cortisol values in pg/mg using the following key variables:

  • Ave_Conc_pg/ml: average ELISA reading per sample in pg/mL

  • Weight_mg: hair weight in mg

  • Buffer_nl: assay buffer volume in nL → we convert to mL

  • Spike: binary indicator (1 = spiked sample)

  • SpikeVol_uL: volume of spike added in µL

  • Dilution: dilution factor (already present)

  • Vol_in_well.tube_uL: total volume in well/tube in µL (for spike correction)

  • std: standard reading value

  • extraction: methanol volume ratio = vol added / vol recovered (1/0.75 ml)

Results:

  • Intra-assay CV: 14.5%

  • Intra-assay CV after removing low quality samples: 10%

  • Inter-assay CV: 21%

(Bindings for 20mg sample diluted in 250 uL, no spike: 64.8% and 48% in test3 and test4, respectively)

Conclusions:

Concerns: Overall quality of the plate is not great, but serial dilusions show clear parallelism and standards have values within the expected

Cortisol concentration calculations

# set reading value of spike (std1, 0.333 ug/dL), 
# and transforming to ug.dL

std <- (3191+3228)/2
std.r <- (std/10000)
std
[1] 3209.5
std.r
[1] 0.32095
# according to chatgpt, the spike's contribution is
# 1600 pg/mL, which is very similar to half of the reading for std 1 :]

Loading files and transforming units, including low quality data

df <- read.csv(file.path(data_path,"Data_QC_flagged.csv"))
kable(tail(df))
Wells Sample Category Weight_mg Buffer_nl Spike SpikeVol_uL Dilution_sample Dilution_spike Vol_in_well.tube_uL Extraction_ratio Raw.OD Binding.Perc Conc_pg.ml Ave_Conc_pg.ml CV.Perc SD SEM CV_categ Binding.Perc_categ Failed_samples
77 G11 TP3A P 12 220 1 25 1 1 50 1.351351 0.258 23.2 2800 2792 0.391 10.9 7.71 NA NA NA
78 H11 TP3A P 12 220 1 25 1 1 50 1.351351 0.259 NA 2785 NA NA NA NA NA NA NA
79 A12 TP3B P 12 60 1 25 1 1 50 1.333333 0.195 15.5 4084 4210 4.230 178.0 126.00 NA UNDER 20% binding UNDER 20% binding
80 B12 TP3B P 12 60 1 25 1 1 50 1.333333 0.186 NA 4336 NA NA NA NA NA NA NA
81 C12 TP3C P 12 60 1 25 1 1 50 1.333333 0.186 13.9 4336 4661 9.870 460.0 325.00 NA UNDER 20% binding UNDER 20% binding
82 D12 TP3C P 12 60 1 25 1 1 50 1.333333 0.166 NA 4986 NA NA NA NA NA NA NA
# remove outlier
#df<- df[(df$Sample != "TP3A"),]

# Creating variables in indicated units
# dilution (buffer)
df$Buffer_ml <- c(df$Buffer_nl/1000)
df$Failed_samples[is.na(df$Failed_samples)] <- "OK"
table(df$Failed_samples)

        ABOVE 80% binding                   HIGH CV HIGH CV;ABOVE 80% binding 
                        4                         2                         7 
HIGH CV;UNDER 20% binding                        OK         UNDER 20% binding 
                        1                        60                         8 
df$Failed_samples[df$Failed_samples == "ABOVE 80% binding"] <- "Out of curve"
df$Failed_samples[df$Failed_samples == "HIGH CV;ABOVE 80% binding"] <- "High CV & Out of curve"
df$Failed_samples[df$Failed_samples == "HIGH CV;UNDER 20% binding"] <- "High CV & Out of curve"
df$Failed_samples[df$Failed_samples == "HIGH CV"] <- "High CV"
df$Failed_samples[df$Failed_samples == "UNDER 20% binding"] <- "Out of curve"

df$Failed_samples <- factor(
  df$Failed_samples,
  levels = c(
    "OK",
    "Out of curve",
    "High CV",
    "High CV & Out of curve"
  )
)



# remove unnecessary information 
data <- df %>%
    dplyr::select(Wells, Sample, Category, Binding.Perc, Ave_Conc_pg.ml, Weight_mg, Buffer_ml, Spike, SpikeVol_uL, Dilution_sample, Dilution_spike, Extraction_ratio, Vol_in_well.tube_uL, Failed_samples) 



# remove duplicates
data <- data[!is.na(data$Binding.Perc), ]

kable(tail(data, 10))
Wells Sample Category Binding.Perc Ave_Conc_pg.ml Weight_mg Buffer_ml Spike SpikeVol_uL Dilution_sample Dilution_spike Extraction_ratio Vol_in_well.tube_uL Failed_samples
63 A10 TD7 D 99.0 86.73 20 0.11 1 110 64 64 1.333333 220 Out of curve
65 C10 TP1A P 21.8 2986.00 6 0.06 1 25 1 1 1.333333 50 OK
67 E10 TP1B P 18.1 3820.00 6 0.06 1 25 1 1 1.333333 50 High CV & Out of curve
69 G10 TP1C*FAIL P 27.8 2242.00 6 0.06 1 25 1 1 1.851852 50 OK
71 A11 TP2A P 17.3 3793.00 9 0.06 1 25 1 1 1.333333 50 Out of curve
73 C11 TP2B P 21.1 3101.00 9 0.06 1 25 1 1 1.333333 50 OK
75 E11 TP2C P 18.1 3634.00 9 0.06 1 25 1 1 1.333333 50 Out of curve
77 G11 TP3A P 23.2 2792.00 12 0.22 1 25 1 1 1.351351 50 OK
79 A12 TP3B P 15.5 4210.00 12 0.06 1 25 1 1 1.333333 50 Out of curve
81 C12 TP3C P 13.9 4661.00 12 0.06 1 25 1 1 1.333333 50 Out of curve
dim(data)
[1] 41 14

(A) Standard Calculation

Formula:

((A/B) * (C/D) * E * 10,000) = F

  • A = μg/dl from assay output;
  • B = weight (in mg) of hair subjected to extraction;
  • C = vol. (in ml) of methanol added to the powdered hair;
  • D = vol. (in ml) of methanol recovered from the extract and subsequently dried down;
  • E = vol. (in ml) of assay buffer used to reconstitute the dried extract;
  • F = final value of hair CORT Concentration in pg/mg.
##################################
##### Calculate final values #####
##################################

# Transform to μg/dl from assay output
data$Ave_Conc_ug.dL <- c(data$Ave_Conc_pg.ml/10000)

data$Final_conc_pg.mg <- c(
    ((data$Ave_Conc_ug.dL) / data$Weight_mg) * # A/B *
      data$Extraction_ratio *                                  # C/D  *     
      data$Buffer_ml * 10000 * data$Dilution_sample)                 # E * 10000
data <- data[order(data$Sample),]
write.csv(data, file.path(data_path, "Data_cort_values_methodA.csv"), row.names = F)

# summary for all samples
summary(data$Final_conc_pg.mg)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  17.13   29.01   32.27   35.28   39.47   82.94       4 
kable(tail(data, 7))
Wells Sample Category Binding.Perc Ave_Conc_pg.ml Weight_mg Buffer_ml Spike SpikeVol_uL Dilution_sample Dilution_spike Extraction_ratio Vol_in_well.tube_uL Failed_samples Ave_Conc_ug.dL Final_conc_pg.mg
69 G10 TP1C*FAIL P 27.8 2242 6 0.06 1 25 1 1 1.851852 50 OK 0.2242 41.51852
71 A11 TP2A P 17.3 3793 9 0.06 1 25 1 1 1.333333 50 Out of curve 0.3793 33.71556
73 C11 TP2B P 21.1 3101 9 0.06 1 25 1 1 1.333333 50 OK 0.3101 27.56444
75 E11 TP2C P 18.1 3634 9 0.06 1 25 1 1 1.333333 50 Out of curve 0.3634 32.30222
77 G11 TP3A P 23.2 2792 12 0.22 1 25 1 1 1.351351 50 OK 0.2792 69.17117
79 A12 TP3B P 15.5 4210 12 0.06 1 25 1 1 1.333333 50 Out of curve 0.4210 28.06667
81 C12 TP3C P 13.9 4661 12 0.06 1 25 1 1 1.333333 50 Out of curve 0.4661 31.07333
dim(data)
[1] 41 16

(B) Accounting for Spike

We followed the procedure described in Nist et al. 2020:

“Thus, after pipetting 25μL of standards and samples into the appropriate wells of the 96-well assay plate, we added 25μL of the 0.333ug/dL standard to all samples, resulting in a 1:2 dilution of samples. The remainder of the manufacturer’s protocol was unchanged. We analyzed the assay plate in a Powerwave plate reader (BioTek, Winooski, VT) at 450nm and subtracted background values from all assay wells. In the calculations, we subtracted the 0.333ug/dL standard reading from the sample readings. Samples that resulted in a negative number were considered nondetectable. We converted cortisol levels from ug/dL, as measured by the assay, to pg/mg—based on the mass of hair collected and analyzed using the following formula:

A/B * C/D * E * 10,000 * 2 = F

where - A = μg/dl from assay output; - B = weight (in mg) of collected hair; - C = vol. (in ml) of methanol added to the powdered hair; - D = vol. (in ml) of methanol recovered from the extract and subsequently dried down; - E = vol. (in ml) of assay buffer used to reconstitute the dried extract; 10,000 accounts for changes in metrics; 2 accounts for the dilution factor after addition of the spike; and - F = final value of hair cortisol concentration in pg/mg”

dSpike <- data

##################################
##### Calculate final values #####
##################################

dSpike$Final_conc_pg.mg <- 
  ifelse(
    dSpike$Spike == 1,    ## Only spiked samples
      ((dSpike$Ave_Conc_ug.dL - (std.r)) / # (A-spike) / B
        dSpike$Weight_mg) 
        * data$Extraction_ratio *                  # C / D
        dSpike$Buffer_ml * 10000 * 2 * dSpike$Dilution_sample,    # E * 10000 * 2
        dSpike$Final_conc_pg.mg  
    )


write.csv(dSpike, file.path(data_path, "Data_cort_values_methodB.csv"), row.names = F)

# summary for all samples
summary(dSpike$Final_conc_pg.mg)
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.     NA's 
-2931.24  -127.69    -5.96  -285.62    23.11    50.96        4 
dSpikeSub <- data[c(data$Spike == 0), ]
summary(dSpikeSub$Final_conc_pg.mg)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  17.13   27.81   34.65   34.67   40.17   50.96       4 
kable(tail(dSpike, 10))
Wells Sample Category Binding.Perc Ave_Conc_pg.ml Weight_mg Buffer_ml Spike SpikeVol_uL Dilution_sample Dilution_spike Extraction_ratio Vol_in_well.tube_uL Failed_samples Ave_Conc_ug.dL Final_conc_pg.mg
63 A10 TD7 D 99.0 86.73 20 0.11 1 110 64 64 1.333333 220 Out of curve 0.008673 -2931.240106
65 C10 TP1A P 21.8 2986.00 6 0.06 1 25 1 1 1.333333 50 OK 0.298600 -5.960000
67 E10 TP1B P 18.1 3820.00 6 0.06 1 25 1 1 1.333333 50 High CV & Out of curve 0.382000 16.280000
69 G10 TP1C*FAIL P 27.8 2242.00 6 0.06 1 25 1 1 1.851852 50 OK 0.224200 -35.833333
71 A11 TP2A P 17.3 3793.00 9 0.06 1 25 1 1 1.333333 50 Out of curve 0.379300 10.373333
73 C11 TP2B P 21.1 3101.00 9 0.06 1 25 1 1 1.333333 50 OK 0.310100 -1.928889
75 E11 TP2C P 18.1 3634.00 9 0.06 1 25 1 1 1.333333 50 Out of curve 0.363400 7.546667
77 G11 TP3A P 23.2 2792.00 12 0.22 1 25 1 1 1.351351 50 OK 0.279200 -20.686937
79 A12 TP3B P 15.5 4210.00 12 0.06 1 25 1 1 1.333333 50 Out of curve 0.421000 13.340000
81 C12 TP3C P 13.9 4661.00 12 0.06 1 25 1 1 1.333333 50 Out of curve 0.466100 19.353333

(C) Skip unit transformation

##################################
##### Calculate final values #####
################################## 
datac <- data
datac$Final_conc_pg.mg <- c(
    (datac$Ave_Conc_pg.ml / datac$Weight_mg) * # A/B *
     data$Extraction_ratio *                                  # C/D  *     
      datac$Buffer_ml * datac$Dilution_sample)                 # E 
datac <- datac[order(datac$Sample),]
write.csv(datac, file.path(data_path, "Data_cort_values_methodC.csv"), row.names = F)

# summary for all samples
summary(datac$Final_conc_pg.mg)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  17.13   29.01   32.27   35.28   39.47   82.94       4 

(D) Account for Spike contribution (uses vol. of spike, conc. of spike, and total reconstit. vol.)

Spike contribution (pg/mL) = (Vol. spike (mL) x Conc. spike (pg/mL) ) / Vol. reconstitution (mL) or total vol. in well (50uL) (depending on where the spike was added)

# Calculate contribution of spike according to the different volumes in which it was added
# Consider that contribution of spike in serial dilutions gets smaller 

# Vol. of spike transformed to mL
data$SpikeVol_ml <- data$SpikeVol_uL/1000
# Concentration of the spike:
std
[1] 3209.5
# Vol. reconstitution (mL) is the total volume in tube or well (sample + spike), after adding spike.
# transform to mL
data$Vol_in_well.tube_ml <- data$Vol_in_well.tube_uL/1000


  ##( Spike vol. x Spike Conc.)
  ## ------------------------  / dilution = Spike contribution
  ##      Total vol. 
  
# Cortisol added by spike in wells: 0.0025 mL x 3200 pg/mL = 80 pg
# Calculate cort contribution of spike to each sample
data$Spike.cont_pg.mL <- ((data$SpikeVol_ml * std  / # Volume of spike * Spike concentration
                            data$Vol_in_well.tube_ml) / # divided by the total volume (spike + sample)
                              data$Dilution_spike) # resulting number changes depending on the dilution

dSpiked <- data
                          
##################################
##### Calculate final values #####
##################################


dSpiked$Final_conc_pg.mg <- 
     (((dSpiked$Ave_Conc_pg.ml - dSpiked$Spike.cont_pg.mL)) / # (A - spike) / B
      dSpiked$Weight_mg) *
     dSpiked$Extraction_ratio *      # C / D
      dSpiked$Buffer_ml * dSpiked$Dilution_sample    # E * 



write.csv(dSpiked, file.path(data_path, "Data_cort_values_methodD.csv"), row.names = F)

# summary for all samples
summary(dSpiked$Final_conc_pg.mg)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  7.472  18.533  24.559  27.009  31.196  80.804       4 
kable(head(dSpiked[!is.na(dSpiked$Final_conc_pg.mg) , c("Sample", "Final_conc_pg.mg", "Ave_Conc_pg.ml", "Spike.cont_pg.mL", "Binding.Perc", "Weight_mg", "Buffer_ml", "SpikeVol_uL", "Dilution_sample", "Dilution_spike", "Vol_in_well.tube_uL", "Extraction_ratio")],10))
Sample Final_conc_pg.mg Ave_Conc_pg.ml Spike.cont_pg.mL Binding.Perc Weight_mg Buffer_ml SpikeVol_uL Dilution_sample Dilution_spike Vol_in_well.tube_uL Extraction_ratio
9 TA1 31.19595 4617.00 0.0000 14.0 50 0.25 0 1 1 50 1.351351
11 TA2 39.47297 2921.00 0.0000 22.4 50 0.25 0 2 1 50 1.351351
13 TA3 30.62162 1133.00 0.0000 44.3 50 0.25 0 4 1 50 1.351351
15 TA4 40.40000 747.40 0.0000 55.2 50 0.25 0 8 1 50 1.351351
17 TA5 38.09730 352.40 0.0000 74.1 50 0.25 0 16 1 50 1.351351
19 TA6 48.86486 226.00 0.0000 84.2 50 0.25 0 32 1 50 1.351351
21 TA7 26.86703 62.13 0.0000 103.0 50 0.25 0 64 1 50 1.351351
23 TB1 32.28152 5134.00 291.7727 12.3 50 0.25 25 1 1 275 1.333333
25 TB2 31.23367 2503.00 160.4750 25.5 50 0.25 25 2 2 250 1.333333
27 TB3 26.87367 1088.00 80.2375 45.3 50 0.25 25 4 4 250 1.333333

Plots

(A) Standard Calculation

Version Author Date
ccad031 Paloma 2025-04-09
ced6eed Paloma 2025-04-03

(B) Accounting for Spike

Version Author Date
ccad031 Paloma 2025-04-09
ced6eed Paloma 2025-04-03

(C) Simplified Standard Calculation

Version Author Date
ccad031 Paloma 2025-04-09
ced6eed Paloma 2025-04-03

(D) New calculation (substract half of the spike from A)

Version Author Date
ccad031 Paloma 2025-04-09
ced6eed Paloma 2025-04-03

Evaluation

Since all spiked samples produce negative values, we will continue our analyses using only non-spiked samples.

ggplot(dSpiked, aes(y = Final_conc_pg.mg, 
                  x = Spike.cont_pg.mL, 
                  color = (Failed_samples))) + 
                 # fill = factor(Spike.cont_pg.mL))) +
  geom_point(size = 2.5) +  
  geom_text(label = c(dSpiked$Sample), nudge_y = 0.95, nudge_x = -1.2) +
 # geom_hline(yintercept = mean(data$Final_conc_pg.mg), 
  #           color = "gray80",
   #          linetype = "dashed") +
  theme_minimal() +  
  labs(
    title = "Final Cort Concentration and Contribution of spike",
    y = "Final Concentration (pg/mg)",
    x = "Contribution of spike (pg/ml)"  
  ) +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16, face = "bold"),  
    axis.title = element_text(size = 14),  
    axis.text = element_text(size = 12) 
  ) 

Version Author Date
ccad031 Paloma 2025-04-09
ced6eed Paloma 2025-04-03
528855b Paloma 2025-04-03

sessionInfo()
R version 4.4.3 (2025-02-28)
Platform: aarch64-apple-darwin20
Running under: macOS Sequoia 15.4

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/Detroit
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] dplyr_1.1.4     paletteer_1.6.0 broom_1.0.7     ggplot2_3.5.1  
[5] knitr_1.49     

loaded via a namespace (and not attached):
 [1] sass_0.4.9        utf8_1.2.4        generics_0.1.3    tidyr_1.3.1      
 [5] prismatic_1.1.2   stringi_1.8.4     digest_0.6.37     magrittr_2.0.3   
 [9] evaluate_1.0.1    grid_4.4.3        fastmap_1.2.0     rprojroot_2.0.4  
[13] workflowr_1.7.1   jsonlite_1.8.9    whisker_0.4.1     backports_1.5.0  
[17] rematch2_2.1.2    promises_1.3.0    purrr_1.0.2       fansi_1.0.6      
[21] scales_1.3.0      jquerylib_0.1.4   cli_3.6.3         rlang_1.1.4      
[25] munsell_0.5.1     withr_3.0.2       cachem_1.1.0      yaml_2.3.10      
[29] tools_4.4.3       colorspace_2.1-1  httpuv_1.6.15     vctrs_0.6.5      
[33] R6_2.5.1          lifecycle_1.0.4   git2r_0.35.0      stringr_1.5.1    
[37] fs_1.6.5          pkgconfig_2.0.3   pillar_1.9.0      bslib_0.8.0      
[41] later_1.3.2       gtable_0.3.6      glue_1.8.0        Rcpp_1.0.13-1    
[45] xfun_0.49         tibble_3.2.1      tidyselect_1.2.1  rstudioapi_0.17.1
[49] farver_2.1.2      htmltools_0.5.8.1 rmarkdown_2.29    labeling_0.4.3   
[53] compiler_4.4.3