3. Primary_Natural_Killer_cells_from_peripheral_blood_gene2gene.mat
: gene regulatory network
This file contains information of gene-to-gene connections in a given regulatory network.
$ md5sum Primary_Natural_Killer_cells_from_peripheral_blood_gene2gene.mat
35ac724b86f7777d87116cc48166caa2 Primary_Natural_Killer_cells_from_peripheral_blood_gene2gene.mat
$ du -sh Primary_Natural_Killer_cells_from_peripheral_blood_gene2gene.mat
1.7M Primary_Natural_Killer_cells_from_peripheral_blood_gene2gene.mat
>> gene2gene = matfile('Primary_Natural_Killer_cells_from_peripheral_blood_gene2gene.mat');
>> gene2gene
matlab.io.MatFile
Properties:
Properties.Source: 'Primary_Natural_Killer_cells_from_peripheral_blood_gene2gene.mat'
Properties.Writable: false
colid: [110733x1 int32]
numgene: [1x1 int32]
rowid: [110733x1 int32]
val: [110733x1 double]
For implementation convenience, this file contains the trivial case where each gene is mapped to itself with val=1
.
>> colid=gene2gene.colid; rowid=gene2gene.rowid; val=gene2gene.val;
>> [gene2gene.numgene sum(colid==rowid) unique(val(colid==rowid))]
18334 18334 1
For a given network, transcription factors (TFs) are stored in rowid
and target genes (TGs) are stored in colid
. In this example there are 3105 TGs and 376 TFs. Among these TFs and TGs, there are 92399 edges. The edge weights range from 0.61 to 1. These TF-to-TG connections and edge weights correspond to \(\{{\bf T}_g,v_{gt}\}\) in the RSS-NET model.
>> [length(unique(colid(colid ~= rowid))) length(unique(rowid(colid ~= rowid)))]
3105 376
>> [length(colid(colid ~= rowid)) length(rowid(colid ~= rowid))]
92399 92399
>> val_tftg = val(colid ~= rowid);
>> [min(val_tftg) quantile(val_tftg, 0.25) median(val_tftg) quantile(val_tftg, 0.75) max(val_tftg)]
0.6138 0.6324 0.6568 0.6949 1.0000