Last updated: 2022-04-26
Checks: 7 0
Knit directory:
diamantopoulou-ctc-dynamics/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20220425)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version c6ab8b0. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Untracked files:
Untracked: analysis/0_differential_expression_gsea_gsva.md
Untracked: analysis/about.md
Untracked: analysis/br16_dge.md
Untracked: analysis/br16_pca.md
Untracked: analysis/core_gene_sets.md
Untracked: analysis/gsea_across_models.md
Untracked: analysis/index.md
Untracked: analysis/license.md
Untracked: analysis/patients_ctc_counts_distribution.md
Untracked: data/differential_expression/
Untracked: data/patients/
Untracked: data/resources/
Untracked: data/sce/
Unstaged changes:
Modified: analysis/index.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown
(analysis/0_differential_expression_gsea_gsva.Rmd
) and HTML
(docs/0_differential_expression_gsea_gsva.html
) files. If
you’ve configured a remote Git repository (see
?wflow_git_remote
), click on the hyperlinks in the table
below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | a136590 | fcg-bio | 2022-04-26 | Build site. |
html | bfb622b | fcg-bio | 2022-04-26 | Build site. |
html | 1006c84 | fcg-bio | 2022-04-26 | Build site. |
Rmd | 0ded9f5 | fcg-bio | 2022-04-26 | added final code |
Setup environment
::opts_chunk$set(results='asis', echo=TRUE, message=FALSE, warning=FALSE, error=FALSE, fig.align = 'center', fig.width = 3.5, fig.asp = 0.618, dpi = 600, dev = c("png", "pdf"), fig.showtext = TRUE)
knitr
options(stringsAsFactors = FALSE)
Load packages
library(tidyverse)
library(scater)
library(scran)
library(edgeR)
library(clusterProfiler)
library(GSVA)
library(foreach)
Load shared variables
source("./configuration/rmarkdown/shared_variables.R")
Load custom functions
source('./code/R-functions/dge_wrappers.r')
source('./code/R-functions/gse_omnibus.r')
source('./code/R-functions/gse_report.r')
<- function(x) x %>% gsub('REACTOME_', '', .) %>% gsub('WP_', '', .) %>% gsub('BIOCARTA_', '', .) %>% gsub('KEGG_', '', .) %>% gsub('PID_', '', .) %>% gsub('GOBP_', '', .) %>% gsub('_', ' ', .) clean_msigdb_names
Load MSigDB gene sets
<- list(
gmt_files_symbols msigdb.c2.cp = './data/resources/MSigDB/v7.4/c2.cp.v7.4.symbols.gmt',
msigdb.c5.bp = './data/resources/MSigDB/v7.4/c5.go.bp.v7.4.symbols.gmt'
)
<- list(
gmt_files_entrez msigdb.c2.cp = './data/resources/MSigDB/v7.4/c2.cp.v7.4.entrez.gmt',
msigdb.c5.bp = './data/resources/MSigDB/v7.4/c5.go.bp.v7.4.entrez.gmt'
)
# combine MSigDB.C2.CP and GO:BP
<- gsub('c2.cp', 'c2.cp.c5.bp', gmt_files_symbols$msigdb.c2.cp)
new_file <- paste('cat', gmt_files_symbols$msigdb.c5.bp, gmt_files_symbols$msigdb.c2.cp, '>',new_file)
cat_cmd system(cat_cmd)
$msigdb.c2.cp.c5.bp <- new_file
gmt_files_symbols
<- lapply(gmt_files_symbols, function(x) read.gmt(x) %>% collect %>% .[['term']] %>% levels) gmt_sets
Configuration
<- readRDS(file = file.path(params$sce_dir, 'sce_br16.rds'))
use_sce <- './data/differential_expression/br16'
output_dir if(!file.exists(output_dir))
dir.create(output_dir, recursive = TRUE)
Run DGE analysis
<- edgeR_dge(
dge
use_sce,# Desing configuration for differential expression
group_var = 'timepoint',
group_sample = 'resting',
group_ref = 'active',
numeric_covar = NULL,
batch_vars = NULL,
design_formula = "~ 0 + timepoint",
coef = 'last',
# Conversion from SingleCellExperiment to DGEList
spike_normalization = FALSE,
assay_to_DGEList = 'counts',
assay_to_row_filter = "counts",
use_colData = NULL,
use_rowData = NULL,
# Feature filtering parameters
use_filterByExpr = TRUE,
min_counts = params$min_counts,
min_present_prop = params$min_present_prop,
# EdgeR workflow configuration
run_calcNormFactors = 'TMM',
estimateDisp_robust = FALSE,
estimateDisp_trend.method = "locfit",
glmQLFit_robust = TRUE,
glm_approach = "QLF",
# Output configuration
adjust_method = 'BH',
assays_from_SingleCellExperiment = NULL
)
# Add gene description
::set_config(httr::config(ssl_verifypeer = FALSE))
httr<- biomaRt::useEnsembl(biomart="ensembl", dataset="hsapiens_gene_ensembl")
ensembl <- biomaRt::getBM(attributes=c('external_gene_name','description'), filters = 'external_gene_name', values = dge$results$gene_name, mart =ensembl) %>%
gene_desc ::rename('gene_name' = 'external_gene_name')
dplyr<- dge$results %>% left_join(., gene_desc)
use_res $results <- use_res %>%
dgefilter(!duplicated(feature)) %>%
mutate(rownames = feature) %>%
column_to_rownames('rownames')
detach("package:biomaRt", unload=TRUE)
saveRDS(dge, file = file.path(output_dir, 'dge_edgeR_QLF_robust.rds'))
Run GSEA
<- readRDS(file.path(output_dir, 'dge_edgeR_QLF_robust.rds'))
dge <- gse_omnibus(
res_gse feature_names = dge$results$gene_name,
p = dge$results$FDR,
fc = dge$results$logFC,
gmt_files = gmt_files_symbols,
save_intermediates = file.path(output_dir, 'gse_omnibus'),
run_all_ora = FALSE,
run_all_gsea = FALSE,
run_GSEA = TRUE,
run_gseGO = FALSE,
args_gse = list(minGSSize = 10, maxGSSize = 500, pvalueCutoff = 1),
)saveRDS(res_gse, file = file.path(output_dir, 'gse_gsea.rds'))
Clean data
rm(use_sce)
rm(dge)
rm(res_gse)
Configuration
<- use_sce[,use_sce$sample_type_g == 'ctc_cluster']
use_sce <- './data/differential_expression/br16-ctc_cluster_and_wbc'
output_dir if(!file.exists(output_dir))
dir.create(output_dir, recursive = TRUE)
Run DGE analysis
<- edgeR_dge(
dge
use_sce,# Desing configuration for differential expression
group_var = 'timepoint',
group_sample = 'resting',
group_ref = 'active',
numeric_covar = NULL,
batch_vars = NULL,
design_formula = "~ 0 + timepoint",
coef = 'last',
# Conversion from SingleCellExperiment to DGEList
spike_normalization = FALSE,
assay_to_DGEList = 'counts',
assay_to_row_filter = "counts",
use_colData = NULL,
use_rowData = NULL,
# Feature filtering parameters
use_filterByExpr = TRUE,
min_counts = params$min_counts,
min_present_prop = params$min_present_prop,
# EdgeR workflow configuration
run_calcNormFactors = 'TMM',
estimateDisp_robust = FALSE,
estimateDisp_trend.method = "locfit",
glmQLFit_robust = TRUE,
glm_approach = "QLF",
# Output configuration
adjust_method = 'BH',
assays_from_SingleCellExperiment = NULL
)
# Add gene description
::set_config(httr::config(ssl_verifypeer = FALSE))
httr<- biomaRt::useEnsembl(biomart="ensembl", dataset="hsapiens_gene_ensembl")
ensembl <- biomaRt::getBM(attributes=c('external_gene_name','description'), filters = 'external_gene_name', values = dge$results$gene_name, mart =ensembl) %>%
gene_desc ::rename('gene_name' = 'external_gene_name')
dplyr<- dge$results %>% left_join(., gene_desc)
use_res $results <- use_res %>%
dgefilter(!duplicated(feature)) %>%
mutate(rownames = feature) %>%
column_to_rownames('rownames')
detach("package:biomaRt", unload=TRUE)
saveRDS(dge, file = file.path(output_dir, 'dge_edgeR_QLF_robust.rds'))
Run GSEA
<- readRDS(file.path(output_dir, 'dge_edgeR_QLF_robust.rds'))
dge <- gse_omnibus(
res_gse feature_names = dge$results$gene_name,
p = dge$results$FDR,
fc = dge$results$logFC,
gmt_files = gmt_files_symbols,
save_intermediates = file.path(output_dir, 'gse_omnibus'),
run_all_ora = FALSE,
run_all_gsea = FALSE,
run_GSEA = TRUE,
run_gseGO = FALSE,
args_gse = list(minGSSize = 10, maxGSSize = 500, pvalueCutoff = 1),
)saveRDS(res_gse, file = file.path(output_dir, 'gse_gsea.rds'))
Clean data
rm(use_sce)
rm(dge)
rm(res_gse)
Configuration
<- use_sce[,use_sce$sample_type_g == 'ctc_single']
use_sce <- './data/differential_expression/br16-ctc_single'
output_dir if(!file.exists(output_dir))
dir.create(output_dir, recursive = TRUE)
Run DGE analysis
<- edgeR_dge(
dge
use_sce,# Desing configuration for differential expression
group_var = 'timepoint',
group_sample = 'resting',
group_ref = 'active',
numeric_covar = NULL,
batch_vars = NULL,
design_formula = "~ 0 + timepoint",
coef = 'last',
# Conversion from SingleCellExperiment to DGEList
spike_normalization = FALSE,
assay_to_DGEList = 'counts',
assay_to_row_filter = "counts",
use_colData = NULL,
use_rowData = NULL,
# Feature filtering parameters
use_filterByExpr = TRUE,
min_counts = params$min_counts,
min_present_prop = params$min_present_prop,
# EdgeR workflow configuration
run_calcNormFactors = 'TMM',
estimateDisp_robust = FALSE,
estimateDisp_trend.method = "locfit",
glmQLFit_robust = TRUE,
glm_approach = "QLF",
# Output configuration
adjust_method = 'BH',
assays_from_SingleCellExperiment = NULL
)
# Add gene description
::set_config(httr::config(ssl_verifypeer = FALSE))
httr<- biomaRt::useEnsembl(biomart="ensembl", dataset="hsapiens_gene_ensembl")
ensembl <- biomaRt::getBM(attributes=c('external_gene_name','description'), filters = 'external_gene_name', values = dge$results$gene_name, mart =ensembl) %>%
gene_desc ::rename('gene_name' = 'external_gene_name')
dplyr<- dge$results %>% left_join(., gene_desc)
use_res $results <- use_res %>%
dgefilter(!duplicated(feature)) %>%
mutate(rownames = feature) %>%
column_to_rownames('rownames')
detach("package:biomaRt", unload=TRUE)
saveRDS(dge, file = file.path(output_dir, 'dge_edgeR_QLF_robust.rds'))
Run GSEA
<- readRDS(file.path(output_dir, 'dge_edgeR_QLF_robust.rds'))
dge <- gse_omnibus(
res_gse feature_names = dge$results$gene_name,
p = dge$results$FDR,
fc = dge$results$logFC,
gmt_files = gmt_files_symbols,
save_intermediates = file.path(output_dir, 'gse_omnibus'),
run_all_ora = FALSE,
run_all_gsea = FALSE,
run_GSEA = TRUE,
run_gseGO = FALSE,
args_gse = list(minGSSize = 10, maxGSSize = 500, pvalueCutoff = 1),
)saveRDS(res_gse, file = file.path(output_dir, 'gse_gsea.rds'))
Clean data
rm(use_sce)
rm(dge)
rm(res_gse)
Configuration
<- readRDS(file = file.path(params$sce_dir, 'sce_lm2.rds'))
use_sce <- './data/differential_expression/lm2'
output_dir if(!file.exists(output_dir))
dir.create(output_dir, recursive = TRUE)
Run DGE analysis
<- edgeR_dge(
dge
use_sce,# Desing configuration for differential expression
group_var = 'timepoint',
group_sample = 'resting',
group_ref = 'active',
numeric_covar = NULL,
batch_vars = NULL,
design_formula = "~ 0 + timepoint",
coef = 'last',
# Conversion from SingleCellExperiment to DGEList
spike_normalization = FALSE,
assay_to_DGEList = 'counts',
assay_to_row_filter = "counts",
use_colData = NULL,
use_rowData = NULL,
# Feature filtering parameters
use_filterByExpr = TRUE,
min_counts = params$min_counts,
min_present_prop = params$min_present_prop,
# EdgeR workflow configuration
run_calcNormFactors = 'TMM',
estimateDisp_robust = FALSE,
estimateDisp_trend.method = "locfit",
glmQLFit_robust = TRUE,
glm_approach = "QLF",
# Output configuration
adjust_method = 'BH',
assays_from_SingleCellExperiment = NULL
)
# Add gene description
::set_config(httr::config(ssl_verifypeer = FALSE))
httr<- biomaRt::useEnsembl(biomart="ensembl", dataset="hsapiens_gene_ensembl")
ensembl <- biomaRt::getBM(attributes=c('external_gene_name','description'), filters = 'external_gene_name', values = dge$results$gene_name, mart =ensembl) %>%
gene_desc ::rename('gene_name' = 'external_gene_name')
dplyr<- dge$results %>% left_join(., gene_desc)
use_res $results <- use_res %>%
dgefilter(!duplicated(feature)) %>%
mutate(rownames = feature) %>%
column_to_rownames('rownames')
detach("package:biomaRt", unload=TRUE)
saveRDS(dge, file = file.path(output_dir, 'dge_edgeR_QLF_robust.rds'))
Clean data
rm(use_sce)
rm(dge)
Configuration
<- readRDS(file = file.path(params$sce_dir, 'sce_patient.rds'))
use_sce <- './data/differential_expression/patient'
output_dir if(!file.exists(output_dir))
dir.create(output_dir, recursive = TRUE)
Run DGE analysis
<- edgeR_dge(
dge
use_sce,# Desing configuration for differential expression
group_var = 'timepoint',
group_sample = 'resting',
group_ref = 'active',
numeric_covar = NULL,
batch_vars = NULL,
design_formula = "~ 0 + timepoint",
coef = 'last',
# Conversion from SingleCellExperiment to DGEList
spike_normalization = FALSE,
assay_to_DGEList = 'counts',
assay_to_row_filter = "counts",
use_colData = NULL,
use_rowData = NULL,
# Feature filtering parameters
use_filterByExpr = TRUE,
min_counts = params$min_counts,
min_present_prop = params$min_present_prop,
# EdgeR workflow configuration
run_calcNormFactors = 'TMM',
estimateDisp_robust = FALSE,
estimateDisp_trend.method = "locfit",
glmQLFit_robust = TRUE,
glm_approach = "QLF",
# Output configuration
adjust_method = 'BH',
assays_from_SingleCellExperiment = NULL
)
# Add gene description
::set_config(httr::config(ssl_verifypeer = FALSE))
httr<- biomaRt::useEnsembl(biomart="ensembl", dataset="hsapiens_gene_ensembl")
ensembl <- biomaRt::getBM(attributes=c('external_gene_name','description'), filters = 'external_gene_name', values = dge$results$gene_name, mart =ensembl) %>%
gene_desc ::rename('gene_name' = 'external_gene_name')
dplyr<- dge$results %>% left_join(., gene_desc)
use_res $results <- use_res %>%
dgefilter(!duplicated(feature)) %>%
mutate(rownames = feature) %>%
column_to_rownames('rownames')
detach("package:biomaRt", unload=TRUE)
saveRDS(dge, file = file.path(output_dir, 'dge_edgeR_QLF_robust.rds'))
Clean data
rm(use_sce)
rm(dge)
Configuration
<- readRDS(file = file.path(params$sce_dir, 'sce_lm2_tk.rds'))
use_sce <- './data/differential_expression/lm2_tk'
output_dir if(!file.exists(output_dir))
dir.create(output_dir, recursive = TRUE)
Run GSVA run with gene-set size between 5 and 700. Original GSEA analysis was performed with 10-500, but with this new treshold we make sure that all the gene sets from BR16 results are included in the analysis, as the effective gene set (expressed genes) might be different in GSVA analysis.
For this analysis we remove samples from timepoint ZT0 (06:00). It only contains one replicate and can bias results. The timepoint will be added for visualization.
<- use_sce[,!use_sce$timepoint %in% c('0600')]
use_sce rownames(use_sce) <- rowData(use_sce)$gene_name
<- "./data/resources/MSigDB/v7.4/c2.cp.c5.bp.v7.4.symbols.gmt"
use_gmt_file <- GSEABase::getGmt(use_gmt_file)
gset <- foreach(x = gset, .combine = rbind) %do% {c(term_size = length(x@geneIds))} %>% data.frame()
gset_db $term_name <- names(gset)
gset_db
<- gsva(assay(use_sce, 'logcpm'),
gsva_res method = 'gsva',
gset.idx.list = gset,
min.sz = 5,
max.sz = 700,
kcdf = "Gaussian",
mx.diff = TRUE,
verbose = FALSE)
saveRDS(gsva_res, file = file.path(output_dir, 'gsva_c2.cp.c5.bp.rds'))
sessionInfo()
R version 4.1.0 (2021-05-18) Platform: x86_64-apple-darwin17.0 (64-bit) Running under: macOS Big Sur 10.16
Matrix products: default BLAS: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.dylib LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib
locale: [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages: [1] parallel stats4 stats graphics grDevices utils datasets [8] methods base
other attached packages: [1] foreach_1.5.1 GSVA_1.40.1
[3] clusterProfiler_4.0.5 edgeR_3.34.1
[5] limma_3.48.3 scran_1.20.1
[7] scater_1.20.1 scuttle_1.2.1
[9] SingleCellExperiment_1.14.1 SummarizedExperiment_1.22.0 [11]
Biobase_2.52.0 GenomicRanges_1.44.0
[13] GenomeInfoDb_1.28.4 IRanges_2.26.0
[15] S4Vectors_0.30.2 BiocGenerics_0.38.0
[17] MatrixGenerics_1.4.3 matrixStats_0.61.0
[19] forcats_0.5.1 stringr_1.4.0
[21] dplyr_1.0.7 purrr_0.3.4
[23] readr_2.0.2 tidyr_1.1.4
[25] tibble_3.1.5 ggplot2_3.3.5
[27] tidyverse_1.3.1 workflowr_1.6.2
loaded via a namespace (and not attached): [1] utf8_1.2.2
tidyselect_1.1.1
[3] RSQLite_2.2.8 AnnotationDbi_1.54.1
[5] grid_4.1.0 BiocParallel_1.26.2
[7] scatterpie_0.1.7 munsell_0.5.0
[9] ScaledMatrix_1.0.0 codetools_0.2-18
[11] statmod_1.4.36 withr_2.4.2
[13] colorspace_2.0-2 GOSemSim_2.18.1
[15] knitr_1.36 rstudioapi_0.13
[17] DOSE_3.18.3 git2r_0.28.0
[19] GenomeInfoDbData_1.2.6 polyclip_1.10-0
[21] bit64_4.0.5 farver_2.1.0
[23] rhdf5_2.36.0 rprojroot_2.0.2
[25] downloader_0.4 treeio_1.16.2
[27] vctrs_0.3.8 generics_0.1.1
[29] xfun_0.27 R6_2.5.1
[31] ggbeeswarm_0.6.0 graphlayouts_0.7.1
[33] rsvd_1.0.5 locfit_1.5-9.4
[35] rhdf5filters_1.4.0 bitops_1.0-7
[37] cachem_1.0.6 fgsea_1.18.0
[39] gridGraphics_0.5-1 DelayedArray_0.18.0
[41] assertthat_0.2.1 showtext_0.9-4
[43] promises_1.2.0.1 scales_1.1.1
[45] ggraph_2.0.5 enrichplot_1.12.3
[47] beeswarm_0.4.0 gtable_0.3.0
[49] beachmat_2.8.1 tidygraph_1.2.0
[51] rlang_0.4.12 splines_4.1.0
[53] lazyeval_0.2.2 broom_0.7.10
[55] yaml_2.2.1 reshape2_1.4.4
[57] modelr_0.1.8 backports_1.3.0
[59] httpuv_1.6.3 qvalue_2.24.0
[61] tools_4.1.0 ggplotify_0.1.0
[63] ellipsis_0.3.2 jquerylib_0.1.4
[65] RColorBrewer_1.1-2 Rcpp_1.0.7
[67] plyr_1.8.6 sparseMatrixStats_1.4.2
[69] zlibbioc_1.38.0 RCurl_1.98-1.5
[71] viridis_0.6.2 cowplot_1.1.1
[73] haven_2.4.3 ggrepel_0.9.1
[75] cluster_2.1.2 fs_1.5.0
[77] magrittr_2.0.1 data.table_1.14.2
[79] DO.db_2.9 reprex_2.0.1
[81] whisker_0.4 xtable_1.8-4
[83] hms_1.1.1 patchwork_1.1.1
[85] evaluate_0.14 XML_3.99-0.8
[87] readxl_1.3.1 gridExtra_2.3
[89] compiler_4.1.0 shadowtext_0.0.9
[91] crayon_1.4.2 htmltools_0.5.2
[93] ggfun_0.0.4 later_1.3.0
[95] tzdb_0.2.0 aplot_0.1.1
[97] lubridate_1.8.0 DBI_1.1.1
[99] tweenr_1.0.2 dbplyr_2.1.1
[101] MASS_7.3-54 Matrix_1.3-4
[103] cli_3.1.0 metapod_1.0.0
[105] igraph_1.2.7 pkgconfig_2.0.3
[107] xml2_1.3.2 annotate_1.70.0
[109] ggtree_3.0.4 vipor_0.4.5
[111] bslib_0.3.1 dqrng_0.3.0
[113] XVector_0.32.0 rvest_1.0.2
[115] yulab.utils_0.0.4 digest_0.6.28
[117] graph_1.70.0 showtextdb_3.0
[119] Biostrings_2.60.2 rmarkdown_2.11
[121] cellranger_1.1.0 fastmatch_1.1-3
[123] tidytree_0.3.5 GSEABase_1.54.0
[125] DelayedMatrixStats_1.14.3 lifecycle_1.0.1
[127] nlme_3.1-153 jsonlite_1.7.2
[129] Rhdf5lib_1.14.2 BiocNeighbors_1.10.0
[131] viridisLite_0.4.0 fansi_0.5.0
[133] pillar_1.6.4 lattice_0.20-45
[135] KEGGREST_1.32.0 fastmap_1.1.0
[137] httr_1.4.2 GO.db_3.13.0
[139] glue_1.4.2 iterators_1.0.13
[141] png_0.1-7 bluster_1.2.1
[143] bit_4.0.4 HDF5Array_1.20.0
[145] ggforce_0.3.3 stringi_1.7.5
[147] sass_0.4.0 blob_1.2.2
[149] BiocSingular_1.8.1 memoise_2.0.0
[151] irlba_2.3.3 ape_5.5
[153] sysfonts_0.8.5