Last updated: 2022-04-26
Checks: 7 0
Knit directory:
diamantopoulou-ctc-dynamics/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20220425)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version c6ab8b0. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Untracked files:
Untracked: analysis/0_differential_expression_gsea_gsva.md
Untracked: analysis/about.md
Untracked: analysis/br16_dge.md
Untracked: analysis/br16_pca.md
Untracked: analysis/core_gene_sets.md
Untracked: analysis/gsea_across_models.md
Untracked: analysis/index.md
Untracked: analysis/license.md
Untracked: analysis/patients_ctc_counts_distribution.md
Untracked: data/differential_expression/
Untracked: data/patients/
Untracked: data/resources/
Untracked: data/sce/
Unstaged changes:
Modified: analysis/index.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/gsea_across_models.Rmd
)
and HTML (docs/gsea_across_models.html
) files. If you’ve
configured a remote Git repository (see ?wflow_git_remote
),
click on the hyperlinks in the table below to view the files as they
were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | a136590 | fcg-bio | 2022-04-26 | Build site. |
html | bfb622b | fcg-bio | 2022-04-26 | Build site. |
Rmd | 2ef6f7f | fcg-bio | 2022-04-26 | added gsea and gsva tables |
html | 1006c84 | fcg-bio | 2022-04-26 | Build site. |
Rmd | 0ded9f5 | fcg-bio | 2022-04-26 | added final code |
Setup environment
::opts_chunk$set(results='asis', echo=TRUE, message=FALSE, warning=FALSE, error=FALSE, fig.align = 'center', fig.width = 3.5, fig.asp = 0.618, dpi = 600, dev = c("png", "pdf"), fig.showtext = TRUE)
knitr
options(stringsAsFactors = FALSE)
Load packages
library(tidyverse)
library(showtext)
library(scater)
library(clusterProfiler)
library(enrichplot)
library(ComplexHeatmap)
library(circlize)
library(RColorBrewer)
library(cowplot)
library(DT)
library(GSVA)
library(limma)
library(colorblindr)
library(ggbeeswarm)
Set font family for figures
font_add("Helvetica", "./configuration/fonts/Helvetica.ttc")
showtext_auto()
Load ggplot theme
source("./configuration/rmarkdown/ggplot_theme.R")
Load color palettes
source("./configuration/rmarkdown/color_palettes.R")
Load functions
source('./code/R-functions/gse_report.r')
<- function(x) x %>% gsub('REACTOME_', '', .) %>% gsub('WP_', '', .) %>% gsub('BIOCARTA_', '', .) %>% gsub('KEGG_', '', .) %>% gsub('PID_', '', .) %>% gsub('GOBP_', '', .) %>% gsub('_', ' ', .) clean_msigdb_names
Load MSigDB gene sets
<- list(
gmt_files_symbols msigdb.c2.cp = './data/resources/MSigDB/v7.4/c2.cp.v7.4.symbols.gmt',
msigdb.c5.bp = './data/resources/MSigDB/v7.4/c5.go.bp.v7.4.symbols.gmt'
)
<- list(
gmt_files_entrez msigdb.c2.cp = './data/resources/MSigDB/v7.4/c2.cp.v7.4.entrez.gmt',
msigdb.c5.bp = './data/resources/MSigDB/v7.4/c5.go.bp.v7.4.entrez.gmt'
)
# combine MSigDB.C2.CP and GO:BP
<- gsub('c2.cp', 'c2.cp.c5.bp', gmt_files_symbols$msigdb.c2.cp)
msigdb.c2.cp_file if(!file.exists(msigdb.c2.cp_file)) {
<- paste('cat', gmt_files_symbols$msigdb.c5.bp, gmt_files_symbols$msigdb.c2.cp, '>',msigdb.c2.cp_file)
cat_cmd system(cat_cmd)
}$msigdb.c2.cp.c5.bp <- msigdb.c2.cp_file
gmt_files_symbols
<- lapply(gmt_files_symbols, function(x) read.gmt(x) %>% collect %>% .[['term']] %>% levels) gmt_sets
Load results from differential gene expression analyses
<- readRDS(file.path(params$dge_dir, 'lm2', 'dge_edgeR_QLF_robust.rds'))
dge_lm2 <- readRDS(file.path(params$dge_dir, 'patient', 'dge_edgeR_QLF_robust.rds')) dge_patient
Load GSEA results
<- readRDS(file.path(params$dge_dir, 'br16', 'gse_gsea.rds')) gse_gsea_br16
Load LM2 timekinetics data
<- readRDS(file.path(params$sce_dir, 'sce_lm2_tk.rds'))
sce_lm2tk <- readRDS(file.path(params$dge_dir, 'lm2_tk', 'gsva_c2.cp.c5.bp.rds')) gsva_lm2tk
Gene set enrichment analysis from differentially expressed genes in CTCs of NSG-CDX-BR16 mice during the rest phase versus active phase.Table listing the enriched gene sets (n = 138, adjusted P value < 0.05) in CTCs obtained in rest versus active phase from NSG-CDX-BR16 mice. The gene set enrichment analysis (GSEA) was performed using ranking genes as input, according to fold-change as shown in Supplementary table 2.
$GSEA$msigdb.c2.cp.c5.bp@result %>%
gse_gsea_br16filter(p.adjust < 0.05) %>%
::select(ID, setSize, enrichmentScore, NES, pvalue, p.adjust, leading_edge, core_enrichment) %>%
dplyrmutate(
NES = round(NES, 2),
pvalue = format.pval(pvalue, digits = 2),
p.adjust = format.pval(p.adjust, digits = 2)
%>%
) rename(
`Term ID` = ID,
`Set size` = setSize,
`Enrichment score` = enrichmentScore,
`P value` = pvalue,
`Adjusted P value` = p.adjust,
`Leading edge` = leading_edge,
`Core enrichment` = core_enrichment
%>%
) datatable(.,
rownames = FALSE,
filter = 'top',
caption = 'Gene set enrichment analysis from differentially expressed genes in CTCs of NSG-CDX-BR16 mice during the rest phase versus active phase.',
extensions = 'Buttons',
options = list(
dom = 'Blfrtip',
buttons = c('csv', 'excel')
))
Generate the data for the similarity heatmap
<- gse_gsea_br16$GSEA$msigdb.c2.cp.c5.bp
use_gse_res
# Number of terms to show
<- 30
showCategoryN
# Calculate jaccard simialrity index
<- pairwise_termsim(use_gse_res, method = 'JC')
use_gse_res
# Collect sim matrix for top N terms
<- use_gse_res@result %>%
use_terms filter(p.adjust < 0.001) %>% head(showCategoryN) %>% collect %>% .[['ID']]
<- use_gse_res@termsim[use_terms,use_terms]
use_mat
# Collect results for selected terms
<- use_gse_res@result[use_terms,]
use_res
# Transform matrix to symmetric
for(x in rownames(use_mat)){
for(y in colnames(use_mat)) {
if(x == y) {
<- 1
use_mat[x,y] else {
} <- max(c(use_mat[x,y], use_mat[y,x]), na.rm = TRUE)
max_sim <- max_sim
use_mat[x,y] <- max_sim
use_mat[y,x]
}
}
}
# Collect FC values for ridge plot. Values are capped at -2 and 2
<- geneInCategory(use_gse_res)[seq_len(showCategoryN)]
gs2id <- lapply(gs2id, function(id) {
gs2val <- use_gse_res@geneList[id]
res <- res[!is.na(res)]
res
})<- lapply(gs2val, function(x) {x[x > 2] <- 2; x[x < -2] <- -2; x} )
gs2val_capped = lapply(gs2val_capped, function(x) data.frame(density(x)[c("x", "y")]))
lt
# Save matrix for future use
<- use_mat br16_gsea_sim_mat
Generate row annotation
<- c(
nes_colors brewer.pal(n = 7, name ="BrBG")[6],
brewer.pal(n = 7, name ="BrBG")[2]
)
= rowAnnotation(
ha_row_nes NES = anno_barplot(
$NES,
use_resbaseline = 0,
width = unit(1, "cm"),
bar_width = 0.7,
gp = gpar(
fill = ifelse(use_res$NES < 0 , nes_colors[1], nes_colors[2]),
col = ifelse(use_res$NES < 0 , nes_colors[1], nes_colors[2])
)
),annotation_name_gp = gpar(fontsize = 8)
)
= colorRamp2(
col_fun_nes seq(max(use_res$NES), min(use_res$NES), length.out = 8),
brewer.pal(n = 8, name ="BrBG") %>% rev)
= rowAnnotation(
ha_row_nes_ht NES = use_res$NES,
border = c( NES = TRUE),
col = list( NES = col_fun_nes),
simple_anno_size = unit(0.8, "cm"),
annotation_name_rot = 0,
annotation_name_gp = gpar(fontsize = 8)
)
= colorRamp2(
col_fun_pval seq(max(-log10(use_res$p.adjust)), -log10(0.05), length.out = 8),
brewer.pal(n = 8, name ="Reds") %>% rev)
= rowAnnotation(
ha_row_pval `-log10\n(adjusted\np value)` = -log10(use_res$p.adjust),
border = c( `-log10\n(adjusted\np value)` = TRUE),
col = list( `-log10\n(adjusted\np value)` = col_fun_pval),
simple_anno_size = unit(0.8, "cm"),
annotation_name_rot = 0,
annotation_name_gp = gpar(fontsize = 8),
annotation_legend_param = list(title_gp = gpar(fontsize = 8),labels_gp = gpar(fontsize = 8))
)
Heatmap showing the pair-wise similarity matrix of enriched gene sets (gene set enrichment analysis (GSEA), adjusted P value ≤ 0.0001) using differential expression between CTCs of rest and active phase from NSG-CDX-BR16 mice. Heatmap colors represent the Jaccard similarity coefficient. The heatmap on the right represents the adjusted P value as obtained in GSEA.
<- colorRamp2(seq(0, 1, length.out = 4), brewer.pal(4, "GnBu"))
col_fun <- 2
n_split <- HeatmapAnnotation(
ha_top foo = anno_block(
labels = c("Translation", "Cell division"),
labels_gp = gpar(col = "black", fontsize = 8),
gp = gpar(lwd = 0, lty = 0))
)
<- Heatmap(
ht
use_mat, name = 'Similarity',
column_split = n_split,
row_split = n_split,
column_title = NULL,
row_title = NULL,
col = col_fun,
show_column_dend = FALSE,
show_column_names = FALSE,
border = TRUE,
top_annotation = ha_top,
heatmap_legend_param = list(title_gp = gpar(fontsize = 8),labels_gp = gpar(fontsize = 8)),
width = unit(7, "cm"))
<- draw(ht + ha_row_pval + ha_row_nes, ht_gap = unit(c(0.2, 0.3, 0.3), "cm"))
ht_br16_c2
for (slice in 1:n_split) {
decorate_annotation("NES", {
grid.lines(unit(c(0, 0), "native"), unit(c(0, 1), "npc"), gpar(lty = 2))
slice = slice)
}, }
Version | Author | Date |
---|---|---|
1006c84 | fcg-bio | 2022-04-26 |
cat("\n\n")
Heatmap showing the pair-wise similarity matrix of enriched gene sets (gene set enrichment analysis (GSEA), adjusted P value ≤ 0.0001) using differential expression between CTCs of rest and active phase from NSG-CDX-BR16 mice. Heatmap colors represent the Jaccard similarity coefficient. The heatmap on the right represents the adjusted P value as obtained in GSEA.
<- use_mat
use_mat_rn rownames(use_mat_rn) <- rownames(use_mat_rn) %>%
gsub("REACTOME_", "", .) %>%
gsub("BIOCARTA_", "", .) %>%
gsub("^PID_", "", .) %>%
gsub("^WP_", "", .) %>%
gsub("^PID_", "", .) %>%
gsub("^GOBP_", "", .) %>%
gsub("_", " ", .)
<- Heatmap(
ht
use_mat_rn, name = 'Similarity',
column_split = n_split,
row_split = n_split,
column_title = NULL,
row_title = NULL,
col = col_fun,
show_column_dend = FALSE,
show_column_names = FALSE,
show_row_dend = FALSE,
row_names_side = "left",
row_names_gp = gpar(fontsize = 8),
row_names_max_width = unit(7, "cm"),
border = TRUE,
top_annotation = ha_top,
heatmap_legend_param = list(title_gp = gpar(fontsize = 8),
labels_gp = gpar(fontsize = 8)
),width = unit(6, "cm"))
draw(ht + ha_row_pval + ha_row_nes, ht_gap = unit(c(0.2, 0.3, 0.3), "cm"))
for (slice in 1:n_split) {
decorate_annotation("NES", {
grid.lines(unit(c(0, 0), "native"), unit(c(0, 1), "npc"), gpar(lty = 2))
slice = slice)
}, }
Version | Author | Date |
---|---|---|
1006c84 | fcg-bio | 2022-04-26 |
cat("\n\n")
<- gse_gsea_br16$GSEA$msigdb.c2.cp.c5.bp@result %>% filter(p.adjust < 0.001)
gse_gsea_br16_f <- row_order(ht_br16_c2) %>% unlist
row_order <- rownames(br16_gsea_sim_mat)[row_order]
use_gsets <- read.gmt(gmt_files_symbols$msigdb.c2.cp.c5.bp)
use_gmt_gsets <- use_gmt_gsets %>% filter(term %in% use_gsets)
use_gmt_gsets saveRDS(use_gsets, file = file.path(params$dge_dir, 'br16', 'ht_br16_c2_gene_sets.Rmd'))
Run GSEA using candidate pathways from NSG-CDX-BR16.
NSG-LM2
# use_sce <- sce_lm2
<- file.path(params$dge_dir, 'lm2')
output_dir <- dge_lm2
dge <- dge$results$logFC %>% set_names(dge$results$gene_name) %>% sort(decreasing = TRUE)
fc_list <- GSEA(fc_list, TERM2GENE=use_gmt_gsets, pvalueCutoff = 1)
gsea_lm2 <- pairwise_termsim(gsea_lm2) gsea_lm2
Patient
# use_sce <- sce_lm2
<- file.path(params$dge_dir, 'patient')
output_dir <- dge_patient
dge <- dge$results$logFC %>% set_names(dge$results$gene_name) %>% sort(decreasing = TRUE)
fc_list <- GSEA(fc_list, TERM2GENE=use_gmt_gsets, pvalueCutoff = 1)
gsea_patient <- pairwise_termsim(gsea_patient) gsea_patient
Combine NSG-CDX-BR16, NSG-LM2 and patient GSEA data
@result$donor <- 'LM2'
gsea_lm2@result$donor <- 'Patient'
gsea_patient<- gse_gsea_br16_f %>%
gsea_br16 mutate(donor = 'Br16') %>%
::select(one_of(colnames(gsea_lm2@result)))
dplyr<- rbind(gsea_br16, gsea_lm2@result, gsea_patient@result)
gsea_comb <- gsea_comb %>%
gsea_comb left_join(gse_gsea_br16_f %>% dplyr::select(ID, NES, p.adjust),
by = 'ID',
suffix = c("", ".br16")) %>%
mutate(ID = factor(ID, levels = rev(use_gsets)))
$results %>%
dge_lm2::select(gene_name, gene_type, logFC, logCPM, PValue, FDR, description) %>%
dplyrrownames_to_column('Ensemble ID') %>%
mutate(
logFC = round(logFC, 2),
logCPM = round(logCPM, 2),
PValue = format.pval(PValue, digits = 2),
FDR = format.pval(FDR, digits = 2),
description = gsub(" \\[.*\\]", "", description)
%>%
) ::rename(
dplyr`Gene name` = gene_name,
`Gene type` = gene_type
%>%
) datatable(.,
rownames = FALSE,
filter = 'top',
caption = 'Differential expression analysis in CTCs of NSG-LM2 mice during the rest phase versus active phase.',
extensions = 'Buttons',
options = list(
dom = 'Blfrtip',
buttons = c('csv', 'excel')
))
@result %>%
gsea_lm2::select(ID, setSize, enrichmentScore, NES, pvalue, p.adjust, leading_edge, core_enrichment) %>%
dplyrmutate(
NES = round(NES, 2),
pvalue = format.pval(pvalue, digits = 2),
p.adjust = format.pval(p.adjust, digits = 2)
%>%
) rename(
`Term ID` = ID,
`Set size` = setSize,
`Enrichment score` = enrichmentScore,
`P value` = pvalue,
`Adjusted P value` = p.adjust,
`Leading edge` = leading_edge,
`Core enrichment` = core_enrichment
%>%
) datatable(.,
rownames = FALSE,
filter = 'top',
caption = 'Gene set enrichment analysis in CTCs of NSG-LM2 mice during the rest phase versus active phase. Only enriched gene sets from NSG-CDX-BR16 were analysed.',
extensions = 'Buttons',
options = list(
dom = 'Blfrtip',
buttons = c('csv', 'excel')
))
$results %>%
dge_patient::select(gene_name, gene_type, logFC, logCPM, PValue, FDR, description) %>%
dplyrrownames_to_column('Ensemble ID') %>%
mutate(
logFC = round(logFC, 2),
logCPM = round(logCPM, 2),
PValue = format.pval(PValue, digits = 2),
FDR = format.pval(FDR, digits = 2),
description = gsub(" \\[.*\\]", "", description)
%>%
) ::rename(
dplyr`Gene name` = gene_name,
`Gene type` = gene_type
%>%
) datatable(.,
rownames = FALSE,
filter = 'top',
caption = 'Differential expression analysis in CTCs of breast cancer patient during the rest phase versus active phase.',
extensions = 'Buttons',
options = list(
dom = 'Blfrtip',
buttons = c('csv', 'excel')
))
@result %>%
gsea_patient::select(ID, setSize, enrichmentScore, NES, pvalue, p.adjust, leading_edge, core_enrichment) %>%
dplyrmutate(
NES = round(NES, 2),
pvalue = format.pval(pvalue, digits = 2),
p.adjust = format.pval(p.adjust, digits = 2)
%>%
) rename(
`Term ID` = ID,
`Set size` = setSize,
`Enrichment score` = enrichmentScore,
`P value` = pvalue,
`Adjusted P value` = p.adjust,
`Leading edge` = leading_edge,
`Core enrichment` = core_enrichment
%>%
) datatable(.,
rownames = FALSE,
filter = 'top',
caption = 'Gene set enrichment analysis in CTCs of breast cancer patient during the rest phase versus active phase. Only enriched gene sets from NSG-CDX-BR16 were analysed.',
extensions = 'Buttons',
options = list(
dom = 'Blfrtip',
buttons = c('csv', 'excel')
))
Plot comparing the normalized enrichment score (NES) and adjusted P value (dot size) obtained using GSEA for gene sets shown in “d”. Left and right panels show the results for NSG-CDX-BR16 and NSG-LM2 models, respectively. Gene sets with an adjusted P value ≤ 0.05 in each sample set are highlighted in red.
<- default_labeller(18)
label_func <- (gsea_comb$NES %>% abs %>% max) + 0.25
xlim <- gsea_comb %>%
dotplot_br16 filter(donor == 'Br16') %>%
mutate(
color = ifelse(pvalue <= 0.05, 'P <= 0.05', 'P > 0.05'),
row_split = ifelse(NES.br16 < 0, 'Translation', 'Cell division') %>% factor(levels=c('Translation', 'Cell division'))
%>%
) ggplot(aes(x = NES, y = ID, size = -log10(pvalue), color = color)) +
geom_point(alpha = 0.7) +
scale_color_manual(values = c(`P <= 0.05` = 'firebrick', `P > 0.05` = 'grey70')) +
scale_y_discrete(labels = label_func) +
scale_size(range = c(1.5, 3.8)) +
labs(
x = 'Normalized enrichment score',
y = NULL,
color = NULL,
size = bquote("-log"[10] ~ .(paste0("(P-value)")))
+
) facet_grid(cols = vars(donor), row = vars(row_split), scales = 'free_y', space = 'free', switch = "y") +
xlim(c(-xlim, xlim)) +
geom_vline(xintercept = 0, lty = 3) +
panel_border(color = "black") +
theme(
axis.title.y=element_blank(),
axis.ticks.y=element_blank(),
axis.text.y=element_blank(),
strip.background = element_rect(fill = 'white'),
strip.placement = "outside"
)
<- gsea_comb %>%
dotplot_lm2filter(donor == 'LM2') %>%
mutate(
color = ifelse(pvalue <= 0.05, 'P <= 0.05', 'P > 0.05'),
row_split = ifelse(NES.br16 < 0, 'Translation', 'Cell division') %>% factor(levels=c('Translation', 'Cell division'))
%>%
) ggplot(aes(x = NES, y = ID, size = -log10(pvalue), color = color)) +
geom_point(alpha = 0.7) +
scale_color_manual(values = c(`P <= 0.05` = 'firebrick', `P > 0.05` = 'grey70')) +
scale_y_discrete(labels = label_func) +
scale_size(range = c(1.5, 3.8)) +
labs(
x = 'Normalized enrichment score',
y = NULL,
color = NULL,
size = bquote("-log"[10] ~ .(paste0("(P-value)")))
+
) facet_grid(cols = vars(donor), row = vars(row_split), scales = 'free_y', space = 'free', switch = "y") +
xlim(c(-xlim, xlim)) +
geom_vline(xintercept = 0, lty = 3) +
panel_border(color = "black") +
theme(
axis.title.y=element_blank(),
axis.ticks.y=element_blank(),
axis.text.y=element_blank(),
strip.background = element_rect(fill = 'white'),
strip.placement = "outside"
)
plot_grid(dotplot_br16, dotplot_lm2)
Version | Author | Date |
---|---|---|
1006c84 | fcg-bio | 2022-04-26 |
Plot showing the NES and P value (dot size) in patient CTCs obtained using GSEA for gene sets shown in “d”. Gene sets with an P value ≤ 0.05 are highlighted in red (bottom).
<- default_labeller(18)
label_func <- (gsea_comb$NES %>% abs %>% max) + 0.25
xlim %>%
gsea_comb filter(donor == 'Patient') %>%
mutate(
color = ifelse(pvalue <= 0.05, 'P <= 0.05', 'P > 0.05'),
row_split = ifelse(NES.br16 < 0, 'Translation', 'Cell division') %>% factor(levels=c('Translation', 'Cell division'))
%>%
) ggplot(aes(x = NES, y = ID, size = -log10(pvalue), color = color)) +
geom_point(alpha = 0.7) +
scale_color_manual(values = c(`P <= 0.05` = 'firebrick', `P > 0.05` = 'grey70')) +
scale_y_discrete(labels = label_func) +
scale_size(range = c(1.5, 3.8)) +
labs(
x = 'Normalized enrichment score',
y = NULL,
color = NULL,
size = bquote("-log"[10] ~ .(paste0("(P-value)")))
+
) facet_grid(cols = vars(donor), row = vars(row_split), scales = 'free_y', space = 'free', switch = "y") +
xlim(c(-xlim, xlim)) +
geom_vline(xintercept = 0, lty = 3) +
panel_border(color = "black") +
theme(
axis.title.y=element_blank(),
axis.ticks.y=element_blank(),
axis.text.y=element_blank(),
strip.background = element_rect(fill = 'white'),
strip.placement = "outside"
)
Version | Author | Date |
---|---|---|
1006c84 | fcg-bio | 2022-04-26 |
Plots comparing the normalized enrichment score (NES) and adjusted P value (dot size) obtained using GSEA for gene sets shown in “d”. Gene sets with an adjusted P value ≤ 0.05 in each sample set are highlighted in red
<- default_labeller(18)
label_func <- (gsea_comb$NES %>% abs %>% max) + 0.25
xlim %>%
gsea_comb mutate(
color = ifelse(pvalue <= 0.05, 'P <= 0.05', 'P > 0.05'),
row_split = ifelse(NES.br16 < 0, 'Translation', 'Cell division') %>% factor(levels=c('Translation', 'Cell division'))
%>%
) ggplot(aes(x = NES, y = ID, size = -log10(pvalue), color = color)) +
geom_point(alpha = 0.7) +
scale_color_manual(values = c(`P <= 0.05` = 'firebrick', `P > 0.05` = 'grey70')) +
scale_y_discrete(labels = label_func) +
scale_size(range = c(1.5, 3.8)) +
labs(
x = 'Normalized enrichment score',
y = NULL,
color = NULL,
size = bquote("-log"[10] ~ .(paste0("(P-value)")))
+
) facet_grid(cols = vars(donor), row = vars(row_split), scales = 'free_y', space = 'free', switch = "y") +
xlim(c(-xlim, xlim)) +
geom_vline(xintercept = 0, lty = 3) +
panel_border(color = "black") +
theme(
axis.title.y=element_blank(),
axis.ticks.y=element_blank(),
axis.text.y=element_blank(),
strip.background = element_rect(fill = 'white'),
strip.placement = "outside"
)
Version | Author | Date |
---|---|---|
1006c84 | fcg-bio | 2022-04-26 |
Run differential expression at pathway level removing timepoint 0600 (ZT = 0, only 1 biological replicate) and using only candidate pathways from BR16 analysis. We use limma (Smyth 2004) as suggested in GSVA vignette. For several groups (timepoints) we are using the strategy defined at limma vignette Section 9.3
<- sce_lm2tk
use_sce <- gsva_lm2tk
gsva_res <- gse_gsea_br16$GSEA$msigdb.c2.cp.c5.bp@result[use_gsets, 'NES'] %>% set_names(use_gsets)
use_gsets_nes <- ifelse(use_gsets_nes < 0, 'Translation', 'Cell division') %>% factor(levels=c('Translation', 'Cell division'))
use_gsets_cat <- read.gmt(gmt_files_symbols$msigdb.c2.cp.c5.bp)
use_gmt_gsets <- use_gmt_gsets %>% filter(term %in% use_gsets)
use_gmt_gsets
# Remove 06000 samples, only one replicate
<- intersect(colnames(gsva_res), use_sce[,use_sce$timepoint!='0600']$sample_alias)
use_samples
# limma
<- use_sce[,use_samples]$timepoint %>% factor
f <- model.matrix(~ 0 + f)
design <- gsva_res[use_gsets,use_samples]
gsva_res_sel <- lmFit(gsva_res_sel, design)
fit <- combn(colnames(design), 2, simplify = TRUE) %>% apply(., 2, function(x) paste(x, collapse = '-'))
contrast_to_eval <- makeContrasts(contrasts = contrast_to_eval, levels = colnames(design))
contrast.matrix <- contrasts.fit(fit, contrast.matrix)
fit2 <- eBayes(fit2)
fit2 # fit2$F.p.value
<- topTable(fit2, number=100000) %>%
limma_res rownames_to_column('Term') %>%
mutate(to_rownames = Term) %>%
column_to_rownames('to_rownames')
$Term_cat <- use_gsets_cat[limma_res$Term] limma_res
Additional objects for plotting
<- colData(use_sce) %>% data.frame %>% arrange(zt, sample_type)
coldata_ord <- gsva_res[use_gsets, coldata_ord$sample_alias]
gsva_mat <- gsva_mat %>% data.frame %>%
gsva_df rownames_to_column('term') %>%
pivot_longer(-term, names_to = 'sample_alias') %>%
left_join(coldata_ord) %>%
mutate(term = factor(term, levels = use_gsets))
$term_cat <- use_gsets_cat[gsva_df$term]
gsva_df
<- gsva_df %>%
gsva_avg_df group_by(zt, timepoint, term) %>%
summarise(mean_gsva = mean(value)) %>%
mutate(term = factor(term, levels = use_gsets))
$term_cat <- use_gsets_cat[gsva_avg_df$term]
gsva_avg_df
$term <- clean_msigdb_names(gsva_df$term) %>% factor(., clean_msigdb_names(use_gsets))
gsva_df$term <- clean_msigdb_names(gsva_avg_df$term) %>% factor(., clean_msigdb_names(use_gsets))
gsva_avg_df
<- gsva_avg_df %>%
gsva_avg_mat ungroup() %>%
::select(-term_cat, -timepoint) %>%
dplyrpivot_wider(names_from = zt, values_from = mean_gsva) %>%
column_to_rownames('term') %>%
as.matrix
<- gsva_avg_mat[clean_msigdb_names(use_gsets),] gsva_avg_mat
%>%
gsva_res_sel %>%
as.data.frame rownames_to_column('Term') %>%
left_join(limma_res) %>%
mutate(
P.Value = format.pval(P.Value, digits = 2),
adj.P.Val = format.pval(adj.P.Val, digits = 2)
%>%
) ::select(Term, Term_cat,AveExpr:adj.P.Val, LM2_Clusters_0200_1:LM2_WBC_2200_1) %>%
dplyrrename(
`Term ID` = Term,
`Category` = Term_cat,
`Average GSVA score` = AveExpr,
`P value` = P.Value,
`Adjusted P value` = adj.P.Val,
%>%
) datatable(.,
rownames = FALSE,
filter = 'top',
caption = 'Results from differential enrichment across timepoints of NSG-LM2 time kinetics experiment. Only enriched gene sets from NSG-CDX-BR16 were reported. The F statistic and the corresponding P value combine the pair-wise comparisons between all the time points in the experiment with more than three replicates. GSVA scores for each individual sample are listed at the end of the table.',
extensions = 'Buttons',
options = list(
dom = 'Blfrtip',
buttons = c('csv', 'excel')
))
GSVA score for translation (yellow, n= 5) and cell division (blue, n= 17) gene sets in CTCs obtained from the NSG-LM2 time-kinetics experiment. Yellow and blue lines represent the average at each time point. Individual points represent the enrichment score for each CTC sample. The white and grey backgrounds represent environmental light (rest period) and dark conditions (active period), respectively. Differential expression adjusted P values as obtained from limma are shown for each individual gene set.
<- data.frame(
bg_color xmin = c(-2, 0, 12),
xmax = c(0, 12, 22),
fill_bg = c('night', 'day', 'night')
)
<- limma_res %>%
adj_p_df mutate(
term = clean_msigdb_names(limma_res$Term) %>% factor(., clean_msigdb_names(use_gsets)),
label = format.pval(adj.P.Val, digits = 1),
label = paste("italic('P=')~", label),
ypos = ifelse(Term_cat == 'Translation', -0.45, 0.45)
)
ggplot() +
geom_rect(data = bg_color, aes(xmin = xmin, xmax = xmax, ymin = -Inf, ymax = Inf, fill = fill_bg), alpha = 0.5) +
geom_hline(yintercept = 0, lty = 2, size = 0.2) +
geom_quasirandom(data = gsva_df, aes(zt, value, group = term, color = term_cat), size = 1, pch = 16, alpha = 0.4, width = 0.3) +
geom_line(data = gsva_avg_df, aes(zt, mean_gsva, group = term, color = term_cat), size = 0.6, alpha = 1) +
facet_wrap(~term, labeller = label_wrap_gen(width = 25), ncol = 5, scales = 'free_x') +
scale_fill_manual(values = c('night' = "grey80", 'day' = "white")) +
scale_color_OkabeIto() +
labs(
x = 'Time (ZT)',
y = 'GSVA enrichment score',
color = NULL,
fill = NULL
+
) guides(fill = FALSE) +
scale_x_continuous(
expand = c(0,0),
breaks=c(0, 4, 12, 16, 20)
+
) scale_y_continuous(
expand = c(0,0),
limits = c(-0.55, 0.55)
+
) theme(
legend.position="top",
plot.margin = margin(14, 7, 3, 1.5),
strip.background = element_rect(fill = 'white'),
strip.text = element_text(size = 6)
+
) geom_text(x = 16, aes(label = label, y = ypos), data = adj_p_df, size = 1.8, hjust = 0, parse = TRUE)
Version | Author | Date |
---|---|---|
1006c84 | fcg-bio | 2022-04-26 |
Average GSVA score for translation (yellow, n=5) and cell division (blue, n=17) gene sets in CTCs obtained in the NSG-LM2 time-kinetics experiment. The average was calculated for each gene set and time point across all CTC samples (ZT0 n=1, ZT4 n=9, ZT12 n=6, ZT16 n=3, ZT20 n=5). The white and grey backgrounds represent environmental light (rest period) and dark conditions (active period), respectively.
<- data.frame(
bg_color xmin = c(-2, 0, 12),
xmax = c(0, 12, 22),
fill_bg = c('night', 'day', 'night')
)
ggplot() +
geom_rect(data = bg_color, aes(xmin = xmin, xmax = xmax, ymin = -Inf, ymax = Inf, fill = fill_bg), alpha = 0.5) +
geom_hline(yintercept = 0, lty = 2, size = 0.3) +
geom_line(data = gsva_avg_df, aes(zt, mean_gsva, group = term, color = term_cat), size = 0.6, alpha = 0.3) +
geom_point(data = gsva_avg_df, aes(zt, mean_gsva, group = term, color = term_cat), size = 1, pch = 16, alpha = 0.5) +
scale_fill_manual(values = c('night' = "grey80", 'day' = "white")) +
scale_color_OkabeIto() +
labs(
x = 'Time (ZT)',
y = 'Mean GSVA\nenrichment score',
color = NULL,
fill = NULL
+
) guides(fill = "none") +
scale_x_continuous(
expand = c(0,0),
breaks=c(0, 4, 12, 16, 20)
+
) scale_y_continuous(
expand = c(0,0),
limits = c(-0.55, 0.55)
+
) theme(
legend.position="top",
plot.margin = margin(14, 7, 3, 1.5)
)
Version | Author | Date |
---|---|---|
1006c84 | fcg-bio | 2022-04-26 |
sessionInfo()
R version 4.1.0 (2021-05-18) Platform: x86_64-apple-darwin17.0 (64-bit) Running under: macOS Big Sur 10.16
Matrix products: default BLAS: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.dylib LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib
locale: [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages: [1] grid parallel stats4 stats graphics
grDevices utils
[8] datasets methods base
other attached packages: [1] ggbeeswarm_0.6.0 colorblindr_0.1.0
[3] colorspace_2.0-2 limma_3.48.3
[5] GSVA_1.40.1 DT_0.19
[7] cowplot_1.1.1 RColorBrewer_1.1-2
[9] circlize_0.4.13 ComplexHeatmap_2.8.0
[11] enrichplot_1.12.3 clusterProfiler_4.0.5
[13] scater_1.20.1 scuttle_1.2.1
[15] SingleCellExperiment_1.14.1 SummarizedExperiment_1.22.0 [17]
Biobase_2.52.0 GenomicRanges_1.44.0
[19] GenomeInfoDb_1.28.4 IRanges_2.26.0
[21] S4Vectors_0.30.2 BiocGenerics_0.38.0
[23] MatrixGenerics_1.4.3 matrixStats_0.61.0
[25] showtext_0.9-4 showtextdb_3.0
[27] sysfonts_0.8.5 forcats_0.5.1
[29] stringr_1.4.0 dplyr_1.0.7
[31] purrr_0.3.4 readr_2.0.2
[33] tidyr_1.1.4 tibble_3.1.5
[35] ggplot2_3.3.5 tidyverse_1.3.1
[37] workflowr_1.6.2
loaded via a namespace (and not attached): [1] utf8_1.2.2
tidyselect_1.1.1
[3] htmlwidgets_1.5.4 RSQLite_2.2.8
[5] AnnotationDbi_1.54.1 BiocParallel_1.26.2
[7] scatterpie_0.1.7 munsell_0.5.0
[9] ScaledMatrix_1.0.0 codetools_0.2-18
[11] withr_2.4.2 GOSemSim_2.18.1
[13] highr_0.9 knitr_1.36
[15] rstudioapi_0.13 DOSE_3.18.3
[17] labeling_0.4.2 git2r_0.28.0
[19] GenomeInfoDbData_1.2.6 polyclip_1.10-0
[21] bit64_4.0.5 farver_2.1.0
[23] rhdf5_2.36.0 rprojroot_2.0.2
[25] downloader_0.4 vctrs_0.3.8
[27] treeio_1.16.2 generics_0.1.1
[29] xfun_0.27 R6_2.5.1
[31] doParallel_1.0.16 clue_0.3-60
[33] graphlayouts_0.7.1 rsvd_1.0.5
[35] rhdf5filters_1.4.0 bitops_1.0-7
[37] cachem_1.0.6 fgsea_1.18.0
[39] gridGraphics_0.5-1 DelayedArray_0.18.0
[41] assertthat_0.2.1 promises_1.2.0.1
[43] scales_1.1.1 ggraph_2.0.5
[45] beeswarm_0.4.0 gtable_0.3.0
[47] beachmat_2.8.1 Cairo_1.5-12.2
[49] tidygraph_1.2.0 rlang_0.4.12
[51] GlobalOptions_0.1.2 splines_4.1.0
[53] lazyeval_0.2.2 broom_0.7.10
[55] yaml_2.2.1 reshape2_1.4.4
[57] modelr_0.1.8 crosstalk_1.1.1
[59] backports_1.3.0 httpuv_1.6.3
[61] qvalue_2.24.0 tools_4.1.0
[63] ggplotify_0.1.0 ellipsis_0.3.2
[65] jquerylib_0.1.4 Rcpp_1.0.7
[67] plyr_1.8.6 sparseMatrixStats_1.4.2
[69] zlibbioc_1.38.0 RCurl_1.98-1.5
[71] GetoptLong_1.0.5 viridis_0.6.2
[73] cluster_2.1.2 haven_2.4.3
[75] ggrepel_0.9.1 fs_1.5.0
[77] magrittr_2.0.1 data.table_1.14.2
[79] DO.db_2.9 reprex_2.0.1
[81] whisker_0.4 xtable_1.8-4
[83] hms_1.1.1 patchwork_1.1.1
[85] evaluate_0.14 XML_3.99-0.8
[87] readxl_1.3.1 shape_1.4.6
[89] gridExtra_2.3 compiler_4.1.0
[91] crayon_1.4.2 shadowtext_0.0.9
[93] htmltools_0.5.2 ggfun_0.0.4
[95] later_1.3.0 tzdb_0.2.0
[97] aplot_0.1.1 lubridate_1.8.0
[99] DBI_1.1.1 tweenr_1.0.2
[101] dbplyr_2.1.1 MASS_7.3-54
[103] Matrix_1.3-4 cli_3.1.0
[105] igraph_1.2.7 pkgconfig_2.0.3
[107] xml2_1.3.2 foreach_1.5.1
[109] annotate_1.70.0 ggtree_3.0.4
[111] vipor_0.4.5 bslib_0.3.1
[113] XVector_0.32.0 rvest_1.0.2
[115] yulab.utils_0.0.4 digest_0.6.28
[117] graph_1.70.0 Biostrings_2.60.2
[119] rmarkdown_2.11 cellranger_1.1.0
[121] fastmatch_1.1-3 tidytree_0.3.5
[123] GSEABase_1.54.0 DelayedMatrixStats_1.14.3 [125] rjson_0.2.20
lifecycle_1.0.1
[127] nlme_3.1-153 jsonlite_1.7.2
[129] Rhdf5lib_1.14.2 BiocNeighbors_1.10.0
[131] viridisLite_0.4.0 fansi_0.5.0
[133] pillar_1.6.4 lattice_0.20-45
[135] KEGGREST_1.32.0 fastmap_1.1.0
[137] httr_1.4.2 GO.db_3.13.0
[139] glue_1.4.2 png_0.1-7
[141] iterators_1.0.13 bit_4.0.4
[143] HDF5Array_1.20.0 ggforce_0.3.3
[145] stringi_1.7.5 sass_0.4.0
[147] blob_1.2.2 BiocSingular_1.8.1
[149] memoise_2.0.0 irlba_2.3.3
[151] ape_5.5