Last updated: 2022-02-23

Checks: 7 0

Knit directory: Serreze-T1D_Workflow/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20220210) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version c62f852. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    analysis/.DS_Store

Untracked files:
    Untracked:  data/GM_covar.csv
    Untracked:  data/bad_markers_all_4.batches.RData
    Untracked:  data/covar_cleaned_ici.vs.eoi.csv
    Untracked:  data/covar_cleaned_ici.vs.pbs.csv
    Untracked:  data/covar_corrected.cleaned_ici.vs.eoi.csv
    Untracked:  data/covar_corrected.cleaned_ici.vs.eoi1.csv
    Untracked:  data/covar_corrected.cleaned_ici.vs.pbs.csv
    Untracked:  data/covar_corrected.cleaned_ici.vs.pbs1.csv
    Untracked:  data/covar_corrected_ici.vs.eoi.csv
    Untracked:  data/covar_corrected_ici.vs.eoi1.csv
    Untracked:  data/covar_corrected_ici.vs.pbs.csv
    Untracked:  data/covar_corrected_ici.vs.pbs1.csv
    Untracked:  data/e.RData
    Untracked:  data/e_snpg_samqc_4.batches.RData
    Untracked:  data/e_snpg_samqc_4.batches_bc.RData
    Untracked:  data/errors_ind_4.batches.RData
    Untracked:  data/errors_ind_4.batches_bc.RData
    Untracked:  data/genetic_map.csv
    Untracked:  data/genotype_errors_marker_4.batches.RData
    Untracked:  data/genotype_freq_marker_4.batches.RData
    Untracked:  data/gm_allqc_4.batches.RData
    Untracked:  data/gm_samqc_3.batches.RData
    Untracked:  data/gm_samqc_4.batches.RData
    Untracked:  data/gm_samqc_4.batches_bc.RData
    Untracked:  data/gm_serreze.192.RData
    Untracked:  data/percent_missing_id_3.batches.RData
    Untracked:  data/percent_missing_id_4.batches.RData
    Untracked:  data/percent_missing_id_4.batches_bc.RData
    Untracked:  data/percent_missing_marker_4.batches.RData
    Untracked:  data/pheno.csv
    Untracked:  data/physical_map.csv
    Untracked:  data/qc_info_bad_sample_3.batches.RData
    Untracked:  data/qc_info_bad_sample_4.batches.RData
    Untracked:  data/qc_info_bad_sample_4.batches_bc.RData
    Untracked:  data/sample_geno.csv
    Untracked:  data/sample_geno_bc.csv
    Untracked:  data/serreze_probs.rds
    Untracked:  data/serreze_probs_allqc.rds
    Untracked:  data/summary.cg_3.batches.RData
    Untracked:  data/summary.cg_4.batches.RData
    Untracked:  data/summary.cg_4.batches_bc.RData
    Untracked:  output/Percent_missing_genotype_data_4.batches.pdf
    Untracked:  output/Percent_missing_genotype_data_per_marker.pdf
    Untracked:  output/Proportion_matching_genotypes_before_removal_of_bad_samples_4.batches.pdf
    Untracked:  output/genotype_error_marker.pdf
    Untracked:  output/genotype_frequency_marker.pdf

Unstaged changes:
    Modified:   analysis/2.2.1_snp_qc_4.batches.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/index.Rmd) and HTML (docs/index.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd c62f852 Belinda Cornes 2022-02-23 updating geno freq calculation and correcting phenotypes
Rmd 80fa7b1 Belinda Cornes 2022-02-23 Start workflowr project.
html 982969f Belinda Cornes 2022-02-11 Build site.
Rmd fc17722 Belinda Cornes 2022-02-11 QTL Mapping correcting MAF cutoff
html 14f643a Belinda Cornes 2022-02-11 Build site.
Rmd 676cb2e Belinda Cornes 2022-02-11 updating index
html d3accce Belinda Cornes 2022-02-11 Build site.
Rmd e325cf0 Belinda Cornes 2022-02-11 updating index
html 1218e08 Belinda Cornes 2022-02-11 Build site.
Rmd 8427b21 Belinda Cornes 2022-02-11 QTL Mapping after snp qc
html 7b05d41 Belinda Cornes 2022-02-10 Build site.
Rmd d199bd4 Belinda Cornes 2022-02-10 QC analysis
Rmd 131508a Belinda Cornes 2022-02-10 Start workflowr project.

Neogen Files At A Glance [Total Samples: 192]

Haplotype Phasing

1. Experiment Design

abbreviations for strains: AB: het; AA: hom
type of cross: Backcross
number of mice phenotyped: 192
total number of mice phenotypes: 2 [1 binary/1 quantiative]
phenotypes: diabetic status/group [binary] & age of onset [continuous]
number of mice: 192
number of markers: 137302
covariates: sex [F: 192; M: 0] (sex not used as all females); binary diabetic status for continous traits

2. Genotype QC

3. Phenotype QC

4. QTL Analysis


R version 3.6.2 (2019-12-12)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Catalina 10.15.7

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

locale:
[1] en_AU.UTF-8/en_AU.UTF-8/en_AU.UTF-8/C/en_AU.UTF-8/en_AU.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ggrepel_0.8.2     qtlcharts_0.11-6  qtl2_0.22         broman_0.70-4    
 [5] ggplot2_3.3.5     tibble_3.1.2      readxl_1.3.1      cluster_2.1.0    
 [9] dplyr_0.8.5       optparse_1.6.6    mclust_5.4.6      tidyr_1.0.2      
[13] data.table_1.14.0 knitr_1.33        kableExtra_1.1.0  workflowr_1.6.2  

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.7        assertthat_0.2.1  rprojroot_1.3-2   digest_0.6.27    
 [5] utf8_1.2.1        R6_2.5.0          cellranger_1.1.0  backports_1.2.1  
 [9] RSQLite_2.2.7     evaluate_0.14     httr_1.4.1        pillar_1.6.1     
[13] rlang_0.4.11      rstudioapi_0.13   whisker_0.4       blob_1.2.1       
[17] rmarkdown_2.1     qtl_1.46-2        webshot_0.5.2     readr_1.3.1      
[21] stringr_1.4.0     bit_4.0.4         munsell_0.5.0     compiler_3.6.2   
[25] httpuv_1.5.2      xfun_0.24         pkgconfig_2.0.3   htmltools_0.5.1.1
[29] tidyselect_1.0.0  fansi_0.5.0       viridisLite_0.4.0 crayon_1.4.1     
[33] withr_2.4.2       later_1.0.0       grid_3.6.2        jsonlite_1.7.2   
[37] gtable_0.3.0      lifecycle_1.0.0   DBI_1.1.1         git2r_0.26.1     
[41] magrittr_2.0.1    scales_1.1.1      stringi_1.7.2     cachem_1.0.5     
[45] fs_1.4.1          promises_1.1.0    getopt_1.20.3     xml2_1.3.1       
[49] ellipsis_0.3.2    vctrs_0.3.8       tools_3.6.2       bit64_4.0.5      
[53] glue_1.4.2        purrr_0.3.4       hms_0.5.3         parallel_3.6.2   
[57] fastmap_1.1.0     yaml_2.2.1        colorspace_2.0-2  rvest_0.3.5      
[61] memoise_2.0.0