Last updated: 2022-07-07
Checks: 7 0
Knit directory:
20180328_Atkins_RatFracture/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20220705)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version defc17e. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Untracked files:
Untracked: data/gmt/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/alnQC.Rmd
) and HTML
(docs/alnQC.html
) files. If you’ve configured a remote Git
repository (see ?wflow_git_remote
), click on the hyperlinks
in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | defc17e | Steve Pederson | 2022-07-07 | Finished primary analysis |
Rmd | c4a6c6c | Steve Pederson | 2022-07-06 | Reanalysed using voom |
html | c4a6c6c | Steve Pederson | 2022-07-06 | Reanalysed using voom |
Rmd | dd28879 | Steve Pederson | 2022-07-06 | Setup initial DGE after restructure |
html | dd28879 | Steve Pederson | 2022-07-06 | Setup initial DGE after restructure |
library(ngsReports)
library(tidyverse)
library(yaml)
library(scales)
library(pander)
library(glue)
library(plotly)
library(edgeR)
library(ggfortify)
library(AnnotationHub)
library(ensembldb)
library(magrittr)
library(BSgenome.Rnorvegicus.UCSC.rn6)
library(broom)
library(ggrepel)
panderOptions("table.split.table", Inf)
panderOptions("big.mark", ",")
theme_set(theme_bw())
suffix <- "_L001"
pattern <- paste0("_CB2YGANXX_.+fastq.gz")
sp <- "Rnorvegicus"
rn6 <- BSgenome.Rnorvegicus.UCSC.rn6
samples <- "data/targets.csv" %>%
here::here() %>%
read_csv() %>%
mutate(
Filename = paste0(File, suffix)
)
group_cols <- hcl.colors(
n = length(unique(samples$group)),
palette = "Zissou 1"
) %>%
setNames(unique(samples$group))
ah <- AnnotationHub() %>%
subset(rdataclass == "EnsDb") %>%
subset(species == "Rattus norvegicus") %>%
subset(str_detect(description, "96"))
ensDb <- ah[[1]]
genesGR <- genes(ensDb) %>%
keepStandardChromosomes(species = "Rattus_norvegicus", pruning.mode = "coarse") %>%
sortSeqlevels()
transGR <- transcripts(ensDb) %>%
keepStandardChromosomes(species = "Rattus_norvegicus", pruning.mode = "coarse") %>%
sortSeqlevels()
exonGR <- exonsBy(ensDb, "tx") %>%
reduce() %>%
keepStandardChromosomes(species = "Rattus_norvegicus", pruning.mode = "coarse") %>%
sortSeqlevels()
exonGR_UCSC <- exonGR
seqlevels(exonGR_UCSC) <- paste0("chr", seqlevels(exonGR_UCSC)) %>%
str_replace("chrMT", "chrM")
genome(exonGR_UCSC) <- genome(rn6)
exonSeq <- getSeq(rn6, exonGR_UCSC) %>%
lapply(unlist) %>%
as("DNAStringSet")
transGC <- exonSeq %>%
letterFrequency("GC", as.prob = TRUE) %>%
.[,1] %>%
setNames(names(exonSeq))
transGR$gc_content <- transGC[names(transGR)]
mcols(transGR) <- mcols(transGR) %>%
cbind(
transcriptLengths(ensDb)[rownames(.), c("nexon", "tx_len")]
)
mcols(genesGR) <- mcols(genesGR) %>%
as.data.frame() %>%
dplyr::select(
gene_id, gene_name, gene_biotype, entrezid
) %>%
left_join(
mcols(transGR) %>%
as.data.frame() %>%
mutate(
tx_support_level = case_when(
is.na(tx_support_level) ~ 1L,
TRUE ~ tx_support_level
)
) %>%
group_by(gene_id) %>%
summarise(
n_tx = n(),
longest_tx = max(tx_len),
ave_tx_len = mean(tx_len),
gc_content = sum(tx_len*gc_content) / sum(tx_len)
) %>%
mutate(
bin_length = cut(
x = ave_tx_len,
labels = seq_len(10),
breaks = quantile(ave_tx_len, probs = seq(0, 1, length.out = 11)),
include.lowest = TRUE
),
bin_gc = cut(
x = gc_content,
labels = seq_len(10),
breaks = quantile(gc_content, probs = seq(0, 1, length.out = 11)),
include.lowest = TRUE
),
bin = paste(bin_gc, bin_length, sep = "_")
),
by = "gene_id"
) %>%
set_rownames(.$gene_id) %>%
as("DataFrame")
trans2Gene <- mcols(transGR) %>%
as.data.frame() %>%
dplyr::select(tx_id, gene_id) %>%
dplyr::filter(!is.na(tx_id), !is.na(gene_id)) %>%
as_tibble()
Annotation data was loaded as an EnsDb
object, using
Ensembl release 96. Transcript level gene lengths and GC content was
converted to gene level values using:
write_rds(genesGR, here::here("output/genesGR.rds"), compress = "gz")
counts <- list.files(here::here("data/3_kallisto"), full.names = TRUE) %>%
catchKallisto()
dge <- counts$counts %>%
as.data.frame() %>%
rownames_to_column("tx_id") %>%
as_tibble() %>%
set_colnames(basename(colnames(.))) %>%
set_colnames(str_remove(colnames(.),"_CB2Y.+")) %>%
mutate(tx_id = str_remove(tx_id, "\\.[0-9]+")) %>%
dplyr::filter(tx_id %in% trans2Gene$tx_id) %>%
pivot_longer(cols = all_of(samples$Rat), names_to = "Rat", values_to = "count") %>%
left_join(trans2Gene) %>%
group_by(Rat, gene_id) %>%
summarise(count = sum(count)) %>%
pivot_wider(names_from = "Rat", values_from = "count") %>%
dplyr::filter(grepl("ENSRNOG", gene_id)) %>%
as.data.frame() %>%
column_to_rownames("gene_id") %>%
DGEList()
dge$samples %<>%
mutate(Rat = rownames(.)) %>%
dplyr::select(-group) %>%
left_join(samples, by = "Rat") %>%
set_rownames(.$Rat)
dge$genes <- genesGR[rownames(dge)] %>%
mcols()
Counts were imported as generated by transcript-level assignment by
kallisto
. These were then restricted to the 31,715
transcripts located on the autosomes and sex-chromosomes included in
R_nor6.0. After adding counts for all transcripts within each gene,
counts were then obtained for 23,706 genes.
dge$samples %>%
mutate(lib.size = lib.size / 1e6) %>%
ggplot(aes(Rat, lib.size, fill = group)) +
geom_col() +
facet_wrap(~group, scales = "free_x") +
scale_y_continuous(expand = expansion(c(0, .05))) +
scale_fill_manual(values = group_cols) +
labs(
x = "Sample", y = "Library Size (millions)",
fill = "Group"
)
Version | Author | Date |
---|---|---|
c4a6c6c | Steve Pederson | 2022-07-06 |
After assignment to genes, library sizes ranged between 6,934,169 and 14,552,053 reads, with a median library size of 10,208,651 reads.
trimFqc <- here::here("data/1_trimmedData/FastQC") %>%
list.files(pattern = "zip", full.names = TRUE) %>%
FastqcDataList()
trimFqc %>%
getModule("Basic") %>%
mutate(Filename = str_remove_all(Filename, "_R1.fastq.gz")) %>%
left_join(dge$samples, by = "Filename") %>%
mutate(`% Assigned To Genes` = lib.size / Total_Sequences) %>%
ggplot(aes(Rat, `% Assigned To Genes`, fill = group)) +
geom_col() +
facet_wrap(~group, scales = "free_x") +
scale_fill_manual(values = group_cols) +
scale_y_continuous(labels = percent, expand = expansion(c(0, 0.05))) +
labs(fill = "Group")
Version | Author | Date |
---|---|---|
c4a6c6c | Steve Pederson | 2022-07-06 |
dge$counts %>%
as_tibble() %>%
mutate(
across(everything(), as.logical)
) %>%
summarise(
across(everything(), sum)
) %>%
pivot_longer(
everything(), names_to = "Rat", values_to = "Detected"
) %>%
left_join(samples)%>%
ggplot(aes(group, Detected, colour = group)) +
geom_point() +
geom_segment(
aes(xend = group, y = 0, yend = Detected),
data = . %>%
group_by(group) %>%
summarise(Detected = min(Detected)),
colour = "black", size = 1/4) +
scale_y_continuous(labels = comma, expand = expansion(c(0, 0.05))) +
scale_colour_manual(values = group_cols) +
labs(
x = "Group",
y = "Genes Detected",
colour = "Group"
)
plotly::ggplotly(
dge$counts %>%
is_greater_than(0) %>%
rowSums() %>%
table() %>%
enframe(name = "n_samples", value = "n_genes") %>%
mutate(
n_samples = as.integer(n_samples),
n_genes = as.integer(n_genes),
) %>%
arrange(desc(n_samples)) %>%
mutate(
Detectable = cumsum(n_genes),
Undetectable = sum(n_genes) - Detectable
) %>%
pivot_longer(
cols = ends_with("table"),
names_to = "Status",
values_to = "Number of Genes"
) %>%
dplyr::rename(
`Number of Samples` = n_samples,
) %>%
ggplot(aes(`Number of Samples`, `Number of Genes`, colour = Status)) +
geom_line() +
geom_vline(
aes(xintercept = `Mean Sample Number`),
data = . %>%
summarise(`Mean Sample Number` = mean(`Number of Samples`)),
linetype = 2,
colour = "grey50"
) +
scale_x_continuous(expand = expansion(c(0.01, 0.01))) +
scale_y_continuous(labels = comma) +
scale_colour_manual(values = c(rgb(0.1, 0.7, 0.2), rgb(0.7, 0.1, 0.1))) +
labs(
x = "Samples > 0"
)
)
pca <- dge$counts %>%
.[rowSums(. == 0) < ncol(.)/2,] %>%
cpm(log = TRUE) %>%
t() %>%
prcomp()
A PCA was performed using logCPM values from the subset of 18,017 genes with at least one read in more than half of the samples.
showLabel <- nrow(samples) <= 20
pca %>%
tidy() %>%
dplyr::rename(Rat = row) %>%
left_join(dge$samples, by = "Rat") %>%
dplyr::filter(PC %in% 1:2) %>%
pivot_wider(names_from = "PC", names_prefix = "PC", values_from = "value") %>%
ggplot(
aes(PC1, PC2, colour = group, size = lib.size/1e6)
) +
geom_point() +
geom_text_repel(aes(label = Rat), show.legend = FALSE) +
scale_colour_manual(values = group_cols) +
scale_size_continuous(limits = c(5, 15), breaks = seq(5, 15, by = 5)) +
labs(
x = glue("PC1 ({percent(pca$sdev[[1]]^2 / sum(pca$sdev^2), 0.1)})"),
y = glue("PC2 ({percent(pca$sdev[[2]]^2 / sum(pca$sdev^2), 0.1)})"),
colour = "Group",
size = "Library Size\n(millions)"
)
mcols(genesGR) %>%
as.data.frame() %>%
dplyr::filter(gene_id %in% rownames(pca$rotation)) %>%
as_tibble() %>%
mutate(
bin_length = cut(
x = ave_tx_len,
labels = seq_len(10),
breaks = quantile(ave_tx_len, probs = seq(0, 1, length.out = 11)),
include.lowest = TRUE
),
bin_gc = cut(
x = gc_content,
labels = seq_len(10),
breaks = quantile(gc_content, probs = seq(0, 1, length.out = 11)),
include.lowest = TRUE
),
bin = paste(bin_gc, bin_length, sep = "_")
) %>%
dplyr::select(gene_id, contains("bin")) %>%
mutate(
PC1 = pca$rotation[gene_id, "PC1"],
PC2 = pca$rotation[gene_id, "PC2"]
) %>%
pivot_longer(
cols = c("PC1", "PC2"),
names_to = "PC",
values_to = "value"
) %>%
group_by(PC, bin_gc, bin_length, bin) %>%
summarise(
Size = n(),
mean = mean(value),
sd = sd(value),
t = t.test(value)$statistic,
p = t.test(value)$p.value,
adjP = p.adjust(p, method = "bonf")
) %>%
ggplot(
aes(bin_length, bin_gc, colour = t, alpha = -log10(adjP), size = Size)
) +
geom_point() +
facet_wrap(~PC) +
scale_colour_gradient2() +
scale_size_continuous(range = c(1, 10)) +
labs(
x = "Average Transcript Length",
y = "GC Content",
alpha = expression(paste(-log[10], p[adj]))) +
theme(
panel.grid = element_blank(),
legend.position = "bottom"
)
write_rds(dge, here::here("output/dge.rds"))
sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.4 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
locale:
[1] LC_CTYPE=en_AU.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_AU.UTF-8 LC_COLLATE=en_AU.UTF-8
[5] LC_MONETARY=en_AU.UTF-8 LC_MESSAGES=en_AU.UTF-8
[7] LC_PAPER=en_AU.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] ggrepel_0.9.1 broom_0.8.0
[3] BSgenome.Rnorvegicus.UCSC.rn6_1.4.1 BSgenome_1.64.0
[5] rtracklayer_1.56.0 Biostrings_2.64.0
[7] XVector_0.36.0 magrittr_2.0.3
[9] ensembldb_2.20.1 AnnotationFilter_1.20.0
[11] GenomicFeatures_1.48.0 AnnotationDbi_1.58.0
[13] Biobase_2.56.0 GenomicRanges_1.48.0
[15] GenomeInfoDb_1.32.1 IRanges_2.30.0
[17] S4Vectors_0.34.0 AnnotationHub_3.4.0
[19] BiocFileCache_2.4.0 dbplyr_2.1.1
[21] ggfortify_0.4.14 edgeR_3.38.0
[23] limma_3.52.0 plotly_4.10.0
[25] glue_1.6.2 pander_0.6.5
[27] scales_1.2.0 yaml_2.3.5
[29] forcats_0.5.1 stringr_1.4.0
[31] dplyr_1.0.9 purrr_0.3.4
[33] readr_2.1.2 tidyr_1.2.0
[35] tidyverse_1.3.1 ngsReports_1.13.0
[37] tibble_3.1.7 ggplot2_3.3.6
[39] BiocGenerics_0.42.0 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] readxl_1.4.0 backports_1.4.1
[3] lazyeval_0.2.2 crosstalk_1.2.0
[5] BiocParallel_1.30.0 digest_0.6.29
[7] htmltools_0.5.2 fansi_1.0.3
[9] memoise_2.0.1 tzdb_0.3.0
[11] modelr_0.1.8 matrixStats_0.62.0
[13] vroom_1.5.7 prettyunits_1.1.1
[15] colorspace_2.0-3 blob_1.2.3
[17] rvest_1.0.2 rappdirs_0.3.3
[19] haven_2.5.0 xfun_0.30
[21] callr_3.7.0 crayon_1.5.1
[23] RCurl_1.98-1.6 jsonlite_1.8.0
[25] zoo_1.8-10 gtable_0.3.0
[27] zlibbioc_1.42.0 DelayedArray_0.22.0
[29] Rhdf5lib_1.18.0 DBI_1.1.2
[31] Rcpp_1.0.8.3 viridisLite_0.4.0
[33] xtable_1.8-4 progress_1.2.2
[35] bit_4.0.4 DT_0.22
[37] htmlwidgets_1.5.4 httr_1.4.3
[39] ellipsis_0.3.2 farver_2.1.0
[41] pkgconfig_2.0.3 XML_3.99-0.9
[43] sass_0.4.1 here_1.0.1
[45] locfit_1.5-9.5 utf8_1.2.2
[47] labeling_0.4.2 tidyselect_1.1.2
[49] rlang_1.0.2 later_1.3.0
[51] munsell_0.5.0 BiocVersion_3.15.2
[53] cellranger_1.1.0 tools_4.2.0
[55] cachem_1.0.6 cli_3.3.0
[57] generics_0.1.2 RSQLite_2.2.13
[59] evaluate_0.15 fastmap_1.1.0
[61] ggdendro_0.1.23 processx_3.5.3
[63] knitr_1.39 bit64_4.0.5
[65] fs_1.5.2 KEGGREST_1.36.0
[67] whisker_0.4 mime_0.12
[69] xml2_1.3.3 biomaRt_2.52.0
[71] compiler_4.2.0 rstudioapi_0.13
[73] filelock_1.0.2 curl_4.3.2
[75] png_0.1-7 interactiveDisplayBase_1.34.0
[77] reprex_2.0.1 bslib_0.3.1
[79] stringi_1.7.6 highr_0.9
[81] ps_1.7.0 lattice_0.20-45
[83] ProtGenerics_1.28.0 Matrix_1.4-1
[85] vctrs_0.4.1 rhdf5filters_1.8.0
[87] pillar_1.7.0 lifecycle_1.0.1
[89] BiocManager_1.30.17 jquerylib_0.1.4
[91] data.table_1.14.2 bitops_1.0-7
[93] httpuv_1.6.5 R6_2.5.1
[95] BiocIO_1.6.0 promises_1.2.0.1
[97] gridExtra_2.3 MASS_7.3-57
[99] assertthat_0.2.1 rhdf5_2.40.0
[101] SummarizedExperiment_1.26.1 rprojroot_2.0.3
[103] rjson_0.2.21 withr_2.5.0
[105] GenomicAlignments_1.32.0 Rsamtools_2.12.0
[107] GenomeInfoDbData_1.2.8 parallel_4.2.0
[109] hms_1.1.1 grid_4.2.0
[111] rmarkdown_2.14 MatrixGenerics_1.8.0
[113] git2r_0.30.1 getPass_0.2-2
[115] shiny_1.7.1 lubridate_1.8.0
[117] restfulr_0.0.13