Last updated: 2021-09-17

Checks: 6 1

Knit directory: femNATCD_MethSeq/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210128) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version b497cc9. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.Rhistory
    Ignored:    code/.Rhistory
    Ignored:    data/Epicounts.csv
    Ignored:    data/Epimeta.csv
    Ignored:    data/Epitpm.csv
    Ignored:    data/KangUnivers.txt
    Ignored:    data/Kang_DataPreprocessing.RData
    Ignored:    data/Kang_dataset_genesMod_version2.txt
    Ignored:    data/PatMeta.csv
    Ignored:    data/ProcessedData.RData
    Ignored:    data/RTrawdata/
    Ignored:    data/SNPCommonFilt.csv
    Ignored:    data/femNAT_PC20.txt
    Ignored:    output/BrainMod_Enrichemnt.pdf
    Ignored:    output/Brain_Module_Heatmap.pdf
    Ignored:    output/DMR_Results.csv
    Ignored:    output/GOres.xlsx
    Ignored:    output/LME_GOplot.pdf
    Ignored:    output/LME_Results.csv
    Ignored:    output/LME_Results_Sig.csv
    Ignored:    output/LME_tophit.svg
    Ignored:    output/ProcessedData.RData
    Ignored:    output/RNAvsMETplots.pdf
    Ignored:    output/Regions_GOplot.pdf
    Ignored:    output/ResultsgroupComp.txt
    Ignored:    output/SEM_summary_groupEpi_M15.txt
    Ignored:    output/SEM_summary_groupEpi_M2.txt
    Ignored:    output/SEM_summary_groupEpi_M_all.txt
    Ignored:    output/SEM_summary_groupEpi_TopHit.txt
    Ignored:    output/SEM_summary_groupEpi_all.txt
    Ignored:    output/SEMplot_Epi_M15.html
    Ignored:    output/SEMplot_Epi_M15.png
    Ignored:    output/SEMplot_Epi_M15_files/
    Ignored:    output/SEMplot_Epi_M2.html
    Ignored:    output/SEMplot_Epi_M2.png
    Ignored:    output/SEMplot_Epi_M2_files/
    Ignored:    output/SEMplot_Epi_M_all.html
    Ignored:    output/SEMplot_Epi_M_all.png
    Ignored:    output/SEMplot_Epi_M_all_files/
    Ignored:    output/SEMplot_Epi_TopHit.html
    Ignored:    output/SEMplot_Epi_TopHit.png
    Ignored:    output/SEMplot_Epi_TopHit_files/
    Ignored:    output/SEMplot_Epi_all.html
    Ignored:    output/SEMplot_Epi_all.png
    Ignored:    output/SEMplot_Epi_all_files/
    Ignored:    output/barplots.pdf
    Ignored:    output/circos_DMR_tags.svg
    Ignored:    output/circos_LME_tags.svg
    Ignored:    output/clinFact.RData
    Ignored:    output/dds_filt_analyzed.RData
    Ignored:    output/designh0.RData
    Ignored:    output/designh1.RData
    Ignored:    output/envFact.RData
    Ignored:    output/functional_Enrichemnt.pdf
    Ignored:    output/gostres.pdf
    Ignored:    output/modelFact.RData
    Ignored:    output/resdmr.RData
    Ignored:    output/resultsdmr_table.RData
    Ignored:    output/table1_filtered.Rmd
    Ignored:    output/table1_filtered.docx
    Ignored:    output/table1_unfiltered.Rmd
    Ignored:    output/table1_unfiltered.docx
    Ignored:    setup_built.R

Unstaged changes:
    Modified:   analysis/03_01_Posthoc_analyses_Gene_Enrichment.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/03_01_Posthoc_analyses_Gene_Enrichment.Rmd) and HTML (docs/03_01_Posthoc_analyses_Gene_Enrichment.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html b497cc9 achiocch 2021-09-17 Build site.
Rmd 2047ac2 achiocch 2021-09-17 wflow_publish(c(“analysis/", "code/”, "docs/*"))
Rmd fd80c2d achiocch 2021-09-16 adds SEM improvments
html fd80c2d achiocch 2021-09-16 adds SEM improvments
html ccbc9e4 achiocch 2021-08-10 Build site.
Rmd 723a1aa achiocch 2021-08-09 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html 70cd649 achiocch 2021-08-06 Build site.
Rmd 611ca24 achiocch 2021-08-06 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html 2a53a87 achiocch 2021-08-06 Build site.
Rmd e4425b8 achiocch 2021-08-06 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html e3a9ae3 achiocch 2021-08-04 Build site.
Rmd 3979990 achiocch 2021-08-04 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html f6bbdc0 achiocch 2021-08-04 Build site.
Rmd 1a30b73 achiocch 2021-08-04 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html 1a30b73 achiocch 2021-08-04 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html 710904a achiocch 2021-08-03 Build site.
Rmd 16112c3 achiocch 2021-08-03 wflow_publish(c(“analysis/", "code/”, “docs/”))
html 16112c3 achiocch 2021-08-03 wflow_publish(c(“analysis/", "code/”, “docs/”))
html cde8384 achiocch 2021-08-03 Build site.
Rmd d3629d5 achiocch 2021-08-03 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html d3629d5 achiocch 2021-08-03 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html d761be4 achiocch 2021-07-31 Build site.
Rmd b452d2f achiocch 2021-07-30 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html b452d2f achiocch 2021-07-30 wflow_publish(c(“analysis/", "code/”, "docs/*"))
Rmd 1a9f36f achiocch 2021-07-30 reviewed analysis
html 2734c4e achiocch 2021-05-08 Build site.
html a847823 achiocch 2021-05-08 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html 9cc52f7 achiocch 2021-05-08 Build site.
html 158d0b4 achiocch 2021-05-08 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html 0f262d1 achiocch 2021-05-07 Build site.
html 5167b90 achiocch 2021-05-07 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html 05aac7f achiocch 2021-04-23 Build site.
Rmd 5f070a5 achiocch 2021-04-23 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html f5c5265 achiocch 2021-04-19 Build site.
Rmd dc9e069 achiocch 2021-04-19 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html dc9e069 achiocch 2021-04-19 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html 17f1eec achiocch 2021-04-10 Build site.
Rmd 4dee231 achiocch 2021-04-10 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html 91de221 achiocch 2021-04-05 Build site.
Rmd b6c6b33 achiocch 2021-04-05 updated GO function, and model def
html 4ea1bba achiocch 2021-02-25 Build site.
Rmd 6c21638 achiocch 2021-02-25 wflow_publish(c(“analysis/", "code/”, "docs/*"), update = F)
html 6c21638 achiocch 2021-02-25 wflow_publish(c(“analysis/", "code/”, "docs/*"), update = F)

Home = getwd()

Sensitivity Analyses

Sensitivity EWAS

including SES

collector=data.frame(originalP=results_Deseq$pvalue,
                     originall2FC=results_Deseq$log2FoldChange)

rownames(collector)=paste0("Epi", 1:nrow(collector))

parm="EduPar"

workingcopy = dds_filt
workingcopy=workingcopy[,as.vector(!is.na(colData(dds_filt)[parm]))]
modelpar=as.character(design(dds_filt))[2]
tmpmod=gsub("0", paste0("~ 0 +",parm), modelpar)
tmpmod=gsub("int_dis \\+", "", tmpmod)

modelpar=as.formula(tmpmod)
design(workingcopy) = modelpar

workingcopy = DESeq(workingcopy, parallel = T)
parmres=results(workingcopy)

collector[,paste0(parm,"P")] = parmres$pvalue
collector[,paste0(parm,"l2FC")] = parmres$log2FoldChange

idx=collector$originalP<=thresholdp
idx=collector[,paste0(parm,"P")]<=thresholdp

table(collector$originalP<=thresholdp, collector[paste0(parm,"P")]<=thresholdp) %>% fisher.test()

cor.test(collector$originall2FC[idx],collector[,paste0(parm,"l2FC")][idx],
         method = "spearman")

qqplot(y=-log10(collector[,paste0(parm,"P")]), 
       x = -log(runif(nrow(collector))), xlim=c(0,12),ylim=c(0,12),
       col="gray", ylab="", xlab="")
par(new=T)
qqplot(y=-log10(collector$originalP), 
       x = -log(runif(nrow(collector))),xlim=c(0,12),ylim=c(0,12),
       xlab="expected",ylab="observed")
abline(0,1,col="red")
legend("topleft", pch=1, col=c("black", "gray"), legend=c("original", parm))


plot(collector$originall2FC[idx],collector[,paste0(parm,"l2FC")][idx], pch=16, 
     main="log 2 foldchange", ylab=parm, xlab="original")

excluding int_dis

### excluding int_dist

modelpar=as.character(design(dds_filt))[2]
modelpar=as.formula(paste("~",gsub("int_dis +", "", modelpar)))

design(workingcopy) = modelpar

workingcopy = DESeq(workingcopy, parallel=T)
parmres=results(workingcopy)

parm="wo.int.dis"
collector[,paste0(parm,"P")] = parmres$pvalue
collector[,paste0(parm,"l2FC")] = parmres$log2FoldChange

idx=collector$originalP<=thresholdp
idx=collector[,paste0(parm,"P")]<=thresholdp

table(collector$originalP<=thresholdp, collector[paste0(parm,"P")]<=thresholdp) %>% fisher.test()

cor.test(collector$originall2FC[idx],collector[,paste0(parm,"l2FC")][idx],
         method = "spearman")

qqplot(y=-log10(collector[,paste0(parm,"P")]), 
       x = -log(runif(nrow(collector))), xlim=c(0,12),ylim=c(0,12),
       col="gray", ylab="", xlab="")
par(new=T)
qqplot(y=-log10(collector$originalP), 
       x = -log(runif(nrow(collector))),xlim=c(0,12),ylim=c(0,12),
       xlab="expected",ylab="observed")
abline(0,1,col="red")
legend("topleft", pch=1, col=c("black", "gray"), legend=c("original", parm))


plot(collector$originall2FC[idx],collector[,paste0(parm,"l2FC")][idx], pch=16, 
     main="log 2 foldchange", ylab=parm, xlab="original")

Sensitivity main hit

For the most significant tag of interest (5’ of the SLITRK5 gene), we tested if the group effect is stable if correcting for Ethnicity (PC1-PC4) or CD associated environmental risk factors.

tophit=which.min(results_Deseq$padj)
methdata=log2_cpm[tophit,]
Probdat=as.data.frame(colData(dds_filt))
Probdat$topHit=methdata[rownames(Probdat)]


model0=as.character(design(dds_filt))[2]
model0=as.formula(gsub("0 +", "topHit ~ 0 + ", model0))

lmres=lm(model0, data=Probdat)
lmrescoeff = as.data.frame(coefficients(summary(lmres)))

totestpar=c("site","PC_1", "PC_2", "PC_3", "PC_4", envFact)

ressens=data.frame(matrix(nrow = length(totestpar)+1, ncol=c(3)))
colnames(ressens) = c("beta", "se", "p.value")
rownames(ressens) = c("original", totestpar)

ressens["original",] = lmrescoeff["groupCD", c("Estimate", "Std. Error", "Pr(>|t|)")]

for( parm in totestpar){
  modelpar=as.character(design(dds_filt))[2]
  modelpar=as.formula(gsub("0", paste0("topHit ~ 0 +",parm), modelpar))
  lmres=lm(modelpar, data=Probdat)
  lmrescoeff = as.data.frame(coefficients(summary(lmres)))
  ressens[parm,] = lmrescoeff["groupCD", c("Estimate", "Std. Error", "Pr(>|t|)")] 
}

modelpar=as.character(design(dds_filt))[2]
modelpar=as.formula(gsub("int_dis +", "", gsub("0", "topHit ~ 0", modelpar)))

lmres=lm(modelpar, data=Probdat)
lmrescoeff = as.data.frame(coefficients(summary(lmres)))
ressens["w/o_int_dis",] = lmrescoeff["groupCD", c("Estimate", "Std. Error", "Pr(>|t|)")] 


a = barplot(height = ressens$beta, 
            ylim=rev(range(c(0,ressens$beta-ressens$se)))*1.3, 
            names.arg = rownames(ressens), col=Set3, border = NA, las=3, 
            ylab="beta[se]", main="Effect sensitvity analysis")

arrows(a,ressens$beta, a, ressens$beta+ressens$se, angle = 90, length = 0.1)
arrows(a,ressens$beta, a, ressens$beta-ressens$se, angle = 90, length = 0.1)

text(a, min(ressens$beta-ressens$se)*1.15, 
     formatC(ressens$p.value), cex=0.6, srt=90)

All models are corrected for:
site, Age, Pubstat, int_dis, medication, contraceptives, cigday_1,
site is included as random effect.

original: model defined as 0 + +Age + int_dis + medication + contraceptives + cigday_1 + V8 + group

all other models represent the original model + the variable of interest

Real-time PCR validation

Data loading and parsing

RefGenes = c("GUSB")
Targets_of_Int = c("SLITRK5", "MIR4500HG")
nreplicates = 3
flagscore=Inf #replication quality error

SamplesMeta=read_xlsx(paste0(Home,"/data/RTrawdata/ZelllinienRNA_femNAT.xlsx"))
as.data.frame(SamplesMeta) -> SamplesMeta
                      
SamplesMeta$Pou=paste("POU", SamplesMeta$Pou)
rownames(SamplesMeta)=SamplesMeta$Pou

SamplesMeta$Group = dds_filt$group[match(SamplesMeta$femNATID, dds_filt$ID_femNAT)]


Files=list.files(paste0(Home,"/data/RTrawdata/"), full.names = T)

Files=Files[grepl("_data",Files)]

Sets=unique(substr(basename(Files), 1,8))

Targets_all=vector()
Samples_all=vector()


geoMean=function(x){
  x=x[!is.na(x)]
  if(length(x)==0)
    return(NA)
  else
    return((prod(x))^(1/length(x)))}

for (Set in Sets){

    Setfiles=Files[grep(Set, Files)]

    for( i in 1:length(Setfiles)){
      tmp=read.table(Setfiles[i], skip=8, header=T, sep="\t", comment.char = "", fill=T)[1:96,]
      tmp=tmp[,c("Sample.Name", "Target.Name","CÑ.")]
      colnames(tmp)=c("Sample.Name", "Target.Name", "CT")
      tmp$Target.Name=gsub("SLITRK5_L", "SLITRK5_", tmp$Target.Name)
      tmp$Target.Name=gsub("VD_", "", tmp$Target.Name)
      tmp$Target.Name=gsub("_", "", tmp$Target.Name)
      tmp$Target.Name=substr(tmp$Target.Name,1, regexpr("#", tmp$Target.Name)-1)
      tmp$CT=as.numeric(tmp$CT)
      
      # set bad replicates to NA 
      tmpmu = tapply(tmp$CT, paste0(tmp$Sample.Name,"_",tmp$Target.Name), mean, na.rm=T)
      tmpsd = tapply(tmp$CT, paste0(tmp$Sample.Name,"_",tmp$Target.Name), sd, na.rm=T)
      for (corr in which(tmpsd>flagscore)){
        index=unlist(strsplit(names(tmpmu)[corr], "_"))
        tmp[which(tmp$Sample.Name==index[1] & tmp$Target.Name==index[2]),"CT"] = NA
      }
      assign(paste0("tmp_",Set,"_",i),tmp)
    }
    
    tmp=do.call("rbind", mget(apropos(paste0("tmp_",Set))))
    tmp=tmp[which(!(tmp$Sample.Name==""|is.na(tmp$Sample.Name))), ]
    tmp=tmp[!tmp$Sample.Name=="NTC",]
    
    Samples=unique(tmp$Sample.Name)
    Targets=unique(tmp$Target.Name)
    Samples_all=unique(c(Samples_all, Samples))
    Targets_all=unique(c(Targets_all, Targets))
    
    Reform=data.frame(matrix(NA, nrow=length(Samples), ncol=length(Targets)*nreplicates))
    
    colnames(Reform)=paste0(rep(Targets, each=3), letters[1:nreplicates])
    rownames(Reform)=Samples
    
    for (i in Samples) {
      #print(i)
      for (j in Targets){
        Reform[i,grep(j, colnames(Reform))]=tmp[tmp$Sample.Name==i & tmp$Target.Name==j,"CT"]
      }
    }
    
    HK=colnames(Reform)[grep(paste0(RefGenes, collapse="|"),colnames(Reform))]
    
    GMHK=apply(Reform[,HK], 1, geoMean)
    tmp2=Reform-GMHK
    
    assign(paste0(Set,"_dCT"), tmp2)
    rm(list=c(apropos("tmp"), "Reform", "GMHK"))
    
}
Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'get_java_tmp_dir' nicht gefunden
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'set_java_tmp_dir' nicht gefunden
Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'get_java_tmp_dir' nicht gefunden
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'set_java_tmp_dir' nicht gefunden
Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'get_java_tmp_dir' nicht gefunden
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'set_java_tmp_dir' nicht gefunden
Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'get_java_tmp_dir' nicht gefunden
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'set_java_tmp_dir' nicht gefunden
Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'get_java_tmp_dir' nicht gefunden
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'set_java_tmp_dir' nicht gefunden
Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'get_java_tmp_dir' nicht gefunden
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'set_java_tmp_dir' nicht gefunden
Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'get_java_tmp_dir' nicht gefunden
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'set_java_tmp_dir' nicht gefunden
Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'get_java_tmp_dir' nicht gefunden
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'set_java_tmp_dir' nicht gefunden
Samples_all=unique(Samples_all)
Targets_all = unique(Targets_all)

mergedCTtable=data.frame(matrix(NA,ncol=length(Targets_all)*nreplicates, nrow=length(Samples_all)))
colnames(mergedCTtable)=paste0(rep(unique(Targets_all), each=nreplicates), letters[1:nreplicates])
rownames(mergedCTtable)=Samples_all

CTobj=apropos("_dCT")

for( obj in CTobj){
  DF=get(obj)
  for(k in colnames(DF)){
    for(l in rownames(DF)){
      mergedCTtable[l,k]=DF[l,k]
    }
  }
}

CTmeans=colMeans(mergedCTtable, na.rm = T)

meanvec=tapply(CTmeans,gsub(paste0(letters[1:nreplicates],collapse="|"),"",names(CTmeans)), mean, na.rm=T)
meanvec = rep(meanvec, each=nreplicates)
names(meanvec) = paste0(names(meanvec), letters[1:nreplicates])
meanvec=meanvec[colnames(mergedCTtable)]
ddCT=apply(mergedCTtable,1, function(x){x-meanvec}) 

FC=2^-ddCT


SamplesMeta$inset=F
SamplesMeta$inset[SamplesMeta$Pou %in% colnames(FC)]=T

SamplesMeta=SamplesMeta[SamplesMeta$inset,]

CTRLCASEsorter=c(which(SamplesMeta$Group=="CTRL"),which(SamplesMeta$Group=="CD"))
SamplesMeta = SamplesMeta[CTRLCASEsorter, ]

searcher=paste0(Targets_of_Int, collapse = "|")

FC = FC[grepl(searcher, rownames(FC)),SamplesMeta$Pou]

MuFC=apply(FC, 2, function(x){tapply(log2(x), gsub("a|b|c","",rownames(FC)), mean, na.rm=T)})
SDFC=apply(FC, 2, function(x){tapply(log2(x), gsub("a|b|c","",rownames(FC)), sd, na.rm=T)})

plot relative expression by samples

pdf(paste0(Home, "/output/barplots.pdf"))

for(i in Targets_of_Int){
  if(any(!is.na(MuFC[i,]))){
  a=barplot(unlist(MuFC[i,]), col=as.numeric(SamplesMeta[colnames(MuFC),"Group"])+1, main=i, las=3, 
            ylim=c(-max(abs(MuFC[i,])*1.2, na.rm=T), (max(abs(MuFC[i,])*1.2, na.rm=T))))
  arrows(a, MuFC[i,], a, MuFC[i,]+SDFC[i,], angle = 90, length = 0.1)
  arrows(a, MuFC[i,], a, MuFC[i,]-SDFC[i,], angle = 90, length = 0.1)
  legend("topleft", c("case", "control"), col=c(1,2), pch=15, bty="n")
  } else {
    plot(0,0, type="n", main=paste(i, "not detected"))
  }
}

dev.off()
png 
  2 
for(i in Targets_of_Int){
  if(any(!is.na(MuFC[i,]))){
  a=barplot(unlist(MuFC[i,]), col=as.numeric(SamplesMeta[colnames(MuFC),"Group"])+1, main=i, las=3, 
            ylim=c(-max(abs(MuFC[i,])*1.2, na.rm=T), (max(abs(MuFC[i,])*1.2, na.rm=T))))
  arrows(a, MuFC[i,], a, MuFC[i,]+SDFC[i,], angle = 90, length = 0.1)
  arrows(a, MuFC[i,], a, MuFC[i,]-SDFC[i,], angle = 90, length = 0.1)
  legend("topleft", c("case", "control"), col=c(1,2), pch=15, bty="n")
  } else {
    plot(0,0, type="n", main=paste(i, "not detected"))
  }
}

compare across groups

sink(paste0(Home, "/output/ResultsgroupComp.txt"))

Group=SamplesMeta$Group
for(i in Targets_of_Int){
  print(i)
  print(summary(try(lm(unlist(MuFC[i,])~Group))))
  print(t.test(unlist(MuFC[i,])~Group))
}
[1] "SLITRK5"

Call:
lm(formula = unlist(MuFC[i, ]) ~ Group)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.3710 -0.4489  0.1142  0.4382  0.9983 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  -0.1703     0.1718  -0.991    0.334
GroupCD       0.5109     0.2975   1.717    0.102

Residual standard error: 0.6427 on 19 degrees of freedom
Multiple R-squared:  0.1343,    Adjusted R-squared:  0.08878 
F-statistic: 2.949 on 1 and 19 DF,  p-value: 0.1022


    Welch Two Sample t-test

data:  unlist(MuFC[i, ]) by Group
t = -2.0316, df = 18.197, p-value = 0.05706
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -1.03871726  0.01701686
sample estimates:
mean in group CTRL   mean in group CD 
        -0.1702834          0.3405668 

[1] "MIR4500HG"

Call:
lm(formula = unlist(MuFC[i, ]) ~ Group)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.7172 -1.2116 -0.2660  0.5749  5.4474 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  -0.6053     0.5683  -1.065    0.301
GroupCD       0.6614     0.9607   0.688    0.500

Residual standard error: 2.049 on 18 degrees of freedom
  (1 observation deleted due to missingness)
Multiple R-squared:  0.02566,   Adjusted R-squared:  -0.02847 
F-statistic: 0.474 on 1 and 18 DF,  p-value: 0.4999


    Welch Two Sample t-test

data:  unlist(MuFC[i, ]) by Group
t = -0.65047, df = 10.602, p-value = 0.5292
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -2.909646  1.586853
sample estimates:
mean in group CTRL   mean in group CD 
       -0.60525003         0.05614653 
sink()


SamplesMeta$femNATID2=paste0("ID_",gsub("-","_",SamplesMeta$femNATID))

SamplesMeta=SamplesMeta[SamplesMeta$Pou %in% colnames(MuFC),]
MuFC=MuFC[,SamplesMeta$Pou]

TPM4RNA=selEpitpm[,SamplesMeta$femNATID2]
colnames(TPM4RNA)=SamplesMeta$Pou

tags=list()


Targets=Targets_of_Int


sigtags=which(restab$padj<=0.05)

tagsOI=grep(paste0(Targets, collapse = "|"),selEpiMeta$gene)

sigtagsOI = tagsOI[tagsOI %in% sigtags]

fintagsOI=data.frame(tags=sigtagsOI, gene=selEpiMeta[sigtagsOI,"gene"])

#Targ=Targets[1]
#tag=tags[1]

compare against methylation level

pdf(paste0(Home,"/output/RNAvsMETplots.pdf"), width = 15, height = 8)

MuFC=as.data.frame(MuFC)
MuFCsel=MuFC[Targets,]
par(mar=c(5,5,5,3), mfrow=c(1,2))
for (Targ in Targets){
  tags=fintagsOI$tags[grep(Targ, fintagsOI$gene)]
  for (tag in tags){
    data=data.frame(tpm=unlist(TPM4RNA[tag,SamplesMeta$Pou]) , 
                    RT=unlist(MuFCsel[grep(Targ, rownames(MuFCsel)),SamplesMeta$Pou]))
    plot(data$tpm,data$RT, 
         xlab="methylation tpm", 
         ylab = "mRNA log2FC vs mean", 
         ylim=c(-3,3),
         col=4-as.numeric(SamplesMeta$Group), 
         pch=as.numeric(SamplesMeta$Group)+14,
         main=paste(tag, "Meth vs mRNA Expr", Targ))
    legend("topleft", c("control", "case"), pch=c(15,16), col=c(3,2), bty="n")
    a=lm(RT~tpm, data)
    b=summary(a)
    abline(a, col="blue")

    SperCor=cor(data$RT,data$tpm,use = "c", method = "spearman")
    mtext(3, text = paste("beta = ", round(coefficients(a)[2],2), 
                          "; se =", round(b$coefficients[2,2],2), 
                          "; pvalue = ", round(b$coefficients[2,4],3), 
                          "; sperman cor = ", round(SperCor,3)))
  }
}

dev.off()
png 
  2 
MuFC=as.data.frame(MuFC)
MuFCsel=MuFC[Targets,]
par(mar=c(5,5,5,3), mfrow=c(1,2))
for (Targ in Targets){
  tags=fintagsOI$tags[grep(Targ, fintagsOI$gene)]
  for (tag in tags){
    data=data.frame(tpm=unlist(TPM4RNA[tag,SamplesMeta$Pou]) , 
                    RT=unlist(MuFCsel[grep(Targ, rownames(MuFCsel)),SamplesMeta$Pou]))
    plot(data$tpm,data$RT, 
         xlab="methylation tpm", 
         ylab = "mRNA log2FC vs mean", 
         ylim=c(-3,3),
         col=4-as.numeric(SamplesMeta$Group), 
         pch=as.numeric(SamplesMeta$Group)+14,
         main=paste(tag, "Meth vs mRNA Expr", Targ))
    legend("topleft", c("control", "case"), pch=c(15,16), col=c(3,2), bty="n")
    a=lm(RT~tpm, data)
    b=summary(a)
    abline(a, col="blue")
    SperCor=cor(data$RT,data$tpm,use = "c", method = "spearman")
    mtext(3, text = paste("beta = ", round(coefficients(a)[2],2), 
                          "; se =", round(b$coefficients[2,2],2), 
                          "; pvalue = ", round(b$coefficients[2,4],3), 
                          "; Spearman cor = ", round(SperCor,3)))
  }
}

Systems Analysis

Genomic feature enrichment

Significant loci with a p-value <= 0.01 and a absolute log2 fold-change lager 0.5 were tested for enrichment in annotated genomic feature using fisher exact test.

Ranges=rowData(dds_filt)

TotTagsofInterest=sum(Ranges$WaldPvalue_groupCD<=thresholdp & abs(Ranges$groupCD)>thresholdLFC)

Resall=data.frame()
index = Ranges$WaldPvalue_groupCD<=thresholdp& abs(Ranges$groupCD)>thresholdLFC
for (feat in unique(Ranges$feature)){
  tmp=table(Ranges$feature == feat, signif=index)
  resfish=fisher.test(tmp)
  res = c(resfish$estimate, unlist(resfish$conf.int), resfish$p.value)
  Resall = rbind(Resall, res)
}
tmp=table(Ranges$tf_binding!="", signif=index)
resfish=fisher.test(tmp)
res = c(resfish$estimate, unlist(resfish$conf.int), resfish$p.value)
Resall = rbind(Resall, res)
tmp=table(Ranges$cpg=="cpg", signif=index)
resfish=fisher.test(tmp)
res = c(resfish$estimate, unlist(resfish$conf.int), resfish$p.value)
Resall = rbind(Resall, res)
colnames(Resall)=c("OR", "CI95L", "CI95U", "P")
rownames(Resall)=c(unique(Ranges$feature), "TF-binding", "CpG-island")
Resall$Beta = log(Resall$OR)
Resall$SE = (log(Resall$OR)-log(Resall$CI95L))/1.96
Resall$Padj=p.adjust(Resall$P, method = "bonferroni")

Resdown=data.frame()
index = Ranges$WaldPvalue_groupCD<=thresholdp & Ranges$groupCD<thresholdLFC
for (feat in unique(Ranges$feature)){
  tmp=table(Ranges$feature == feat, signif=index)
  resfish=fisher.test(tmp)
  res = c(resfish$estimate, unlist(resfish$conf.int), resfish$p.value)
  Resdown = rbind(Resdown, res)
}
tmp=table(Ranges$tf_binding!="", signif=index)
resfish=fisher.test(tmp)
res = c(resfish$estimate, unlist(resfish$conf.int), resfish$p.value)
Resdown = rbind(Resdown, res)
tmp=table(Ranges$cpg=="cpg", signif=index)
resfish=fisher.test(tmp)
res = c(resfish$estimate, unlist(resfish$conf.int), resfish$p.value)
Resdown = rbind(Resdown, res)
colnames(Resdown)=c("OR", "CI95L", "CI95U", "P")
rownames(Resdown)=c(unique(Ranges$feature), "TF-binding", "CpG-island")
Resdown$Beta = log(Resdown$OR)
Resdown$SE = (log(Resdown$OR)-log(Resdown$CI95L))/1.96
Resdown$Padj=p.adjust(Resdown$P, method = "bonferroni")

Resup=data.frame()
index = Ranges$WaldPvalue_groupCD<=thresholdp & Ranges$groupCD>thresholdLFC
for (feat in unique(Ranges$feature)){
  tmp=table(Ranges$feature == feat, signif=index)
  resfish=fisher.test(tmp)
  res = c(resfish$estimate, unlist(resfish$conf.int), resfish$p.value)
  Resup = rbind(Resup, res)
}
tmp=table(Ranges$tf_binding!="", signif=index)
resfish=fisher.test(tmp)
res = c(resfish$estimate, unlist(resfish$conf.int), resfish$p.value)
Resup = rbind(Resup, res)
tmp=table(Ranges$cpg=="cpg", signif=index)
resfish=fisher.test(tmp)
res = c(resfish$estimate, unlist(resfish$conf.int), resfish$p.value)
Resup = rbind(Resup, res)
colnames(Resup)=c("OR", "CI95L", "CI95U", "P")
rownames(Resup)=c(unique(Ranges$feature), "TF-binding", "CpG-island")
Resup$Beta = log(Resup$OR)
Resup$SE = (log(Resup$OR)-log(Resup$CI95L))/1.96
Resup$Padj=p.adjust(Resup$P, method = "bonferroni")

multiORplot(Resall, Pval = "P", Padj = "Padj", beta="Beta",SE = "SE", pheno="All diff. methylated loci")

multiORplot(Resup, Pval = "P", Padj = "Padj", beta="Beta",SE = "SE", pheno="hypomethylated loci")

multiORplot(Resdown, Pval = "P", Padj = "Padj", beta="Beta",SE = "SE", pheno="Hypermethylated loci")

pdf(paste0(Home, "/output/functional_Enrichemnt.pdf"))
multiORplot(Resall, Pval = "P", Padj = "Padj", beta="Beta",SE = "SE", pheno="All diff. methylated loci")
multiORplot(Resup, Pval = "P", Padj = "Padj", beta="Beta",SE = "SE", pheno="hypomethylated loci")
multiORplot(Resdown, Pval = "P", Padj = "Padj", beta="Beta",SE = "SE", pheno="Hypermethylated loci")
dev.off()
png 
  2 

GO-term Enrichment

Significant loci and differentially methylated regions with a p-value <= 0.01 and an absolute log2 fold-change lager 0.5 were tested for enrichment among GO-terms Molecular Function, Cellular Compartment and Biological Processes, KEGG pathways, Transcription factor Binding sites, Human Protein Atlas Tissue Expression, Human Phenotypes.

getGOresults = function(geneset, genereference){
  resgo = gost(geneset, organism = "hsapiens",
               correction_method = "g_SCS",
               domain_scope = "custom",
               sources = c("GO:BP", "GO:MF", "GO:CC"),
               custom_bg = genereference)
  if(length(resgo) != 0){
    return(resgo)
  } else {
    print("no significant results")
    return(NULL)
  }  
}

gene_univers = getuniquegenes(as.data.frame(rowRanges(dds_filt))$gene)


idx = (results_Deseq$pvalue <= thresholdp & 
         (abs(results_Deseq$log2FoldChange) > thresholdLFC))

genes_reg = getuniquegenes(as.data.frame(rowRanges(dds_filt))$gene[idx])


dmr_genes = unique(resultsdmr_table$name[resultsdmr_table$p.value<=thresholdp & 
                   abs(resultsdmr_table$value)>=thresholdLFC])


Genes_of_interset = list("01_dmregions" = dmr_genes,  
                         "02_dmtag" = genes_reg
                         )

gostres = getGOresults(Genes_of_interset, gene_univers)

gostplot(gostres, capped = TRUE, interactive = T)
p = gostplot(gostres, capped = TRUE, interactive = F)

toptab = gostres$result

pp = publish_gostplot(p, filename = paste0(Home,"/output/gostres.pdf"))
The image is saved to C:/Users/chiocchetti/Projects/femNATCD_MethSeq/output/gostres.pdf
write.xlsx2(toptab, file = paste0(Home,"/output/GOres.xlsx"), sheetName = "GO_enrichment")

Brain Developmental Processes Enrichment tests

Gene sets identified to be deferentially methylated with a p-value <= 0.01 and an absolute log2 fold-change larger 0.5 were tested for enrichment among gene-modules coregulated during Brain expression.

Kang Modules

# define Reference Universe 

KangUnivers<- read.table(paste0(Home,"/data/KangUnivers.txt"), sep="\t", header=T)
colnames(KangUnivers)<-c("EntrezId","Symbol")

Kang_genes<-read.table(paste0(Home,"/data/Kang_dataset_genesMod_version2.txt"),sep="\t",header=TRUE)

#3)Generate Gene universe to be used for single gene lists
tmp=merge(KangUnivers,Kang_genes,by.y="EntrezGene",by.x="EntrezId",all=TRUE) #18826
KangUni_Final<-tmp[duplicated(tmp$EntrezId)==FALSE,] #18675


# Local analysis gene universe
Annotation_list<-data.frame(Symbol = gene_univers)

# match modules 
Annotation_list$Module = Kang_genes$Module[match(Annotation_list$Symbol,Kang_genes$symbol)]

# check if overlapping in gene universes
Annotation_list$univers = Annotation_list$Symbol %in% KangUni_Final$Symbol

# drop duplicates 
Annotation_list = Annotation_list[duplicated(Annotation_list$Symbol)==FALSE,]

# selct only genes that have been detected on both datasets
Annotation_list = Annotation_list[Annotation_list$univers==T,] 

# final reference 
UniversalGeneset=Annotation_list$Symbol

# define Gene lists to test 
# sort and order Modules to be tested

Modules=unique(Annotation_list$Module)
Modules = Modules[! Modules %in% c(NA, "")]
Modules = Modules[order(as.numeric(gsub("M","",Modules)))]

GL_all=list()

for(i in Modules){
  GL_all[[i]]=Annotation_list$Symbol[Annotation_list$Module%in%i]
}
GL_all[["M_all"]]=Kang_genes$symbol[Kang_genes$Module %in% Modules]


GOI1 = Genes_of_interset

Resultsall=list()
for(j in names(GOI1)){
  Res = data.frame()
  for(i in names(GL_all)){
    Modulegene=GL_all[[i]]
    Factorgene=GOI1[[j]]
    Testframe<-fisher.test(table(factor(UniversalGeneset %in% Factorgene,levels=c("TRUE","FALSE")),
                                 factor(UniversalGeneset %in% Modulegene,levels=c("TRUE","FALSE"))))
    beta=log(Testframe$estimate)
    Res[i, "beta"] =beta
    Res[i, "SE"]=abs(beta-log(Testframe$conf.int[1]))/1.96
    Res[i, "Pval"]=Testframe$p.value
    Res[i, "OR"]=(Testframe$estimate)
    Res[i, "ORL"]=(Testframe$conf.int[1])
    Res[i, "ORU"]=(Testframe$conf.int[2])
  }
  Res$Padj = p.adjust(Res$Pval, method = "bonferroni")
  Resultsall[[j]] = Res
  
}
par(mfrow = c(2,1))
for (i in names(Resultsall)){ 
  multiORplot(datatoplot = Resultsall[[i]], pheno=i)
}

par(mfrow = c(1,1))
pdf(paste0(Home, "/output/BrainMod_Enrichemnt.pdf"))
for (i in names(Resultsall)){
  multiORplot(datatoplot = Resultsall[[i]], pheno=i)
}
dev.off()
png 
  2 
Modsig = c()

for(r in names(Resultsall)){
  a=rownames(Resultsall[[r]])[Resultsall[[r]]$Padj<=0.05]
  Modsig = c(Modsig,a)
}

Brain espresseion heatmaps

# show brains and expression
Modsig2=unique(Modsig[Modsig!="M_all"])

load(paste0(Home,"/data/Kang_DataPreprocessing.RData")) #Load the Kang expression data of all genes 
datExprPlot=matriz #Expression data of Kang loaded as Rdata object DataPreprocessing.RData


Genes = GL_all[names(GL_all)!="M_all"]

Genes_expression<-list()

pcatest<-list()
for (i in names(Genes)){
  Genes_expression[[i]]<-matriz[,which(colnames(matriz) %in% Genes[[i]])]
  pcatest[[i]]=prcomp(t(as.matrix(Genes_expression[[i]])),retx=TRUE)
}

# PCA test
PCA<-data.frame(pcatest[[1]]$rotation)
PCA$donor_name<-rownames(PCA)
PC1<-data.frame(PCA[,c(1,ncol(PCA))])

#Combining the age with expression data
list <- strsplit(sampleInfo$age, " ")
library("plyr")
------------------------------------------------------------------------------
You have loaded plyr after dplyr - this is likely to cause problems.
If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
library(plyr); library(dplyr)
------------------------------------------------------------------------------

Attache Paket: 'plyr'
The following object is masked from 'package:matrixStats':

    count
The following object is masked from 'package:IRanges':

    desc
The following object is masked from 'package:S4Vectors':

    rename
The following objects are masked from 'package:dplyr':

    arrange, count, desc, failwith, id, mutate, rename, summarise,
    summarize
The following object is masked from 'package:purrr':

    compact
df <- ldply(list)
colnames(df) <- c("Age", "time")

sampleInfo<-cbind(sampleInfo[,1:9],df)
sampleInfo$Age<-as.numeric(sampleInfo$Age)

sampleInfo$period<-ifelse(sampleInfo$time=="pcw",sampleInfo$Age*7,ifelse(sampleInfo$time=="yrs",sampleInfo$Age*365+270,ifelse(sampleInfo$time=="mos",sampleInfo$Age*30+270,NA)))

#We need it just for the donor names

PCA_matrix<-merge.with.order(PC1,sampleInfo,by.y="SampleID",by.x="donor_name",keep_order=1)

#Select which have phenotype info present 
matriz2<-matriz[which(rownames(matriz) %in% PCA_matrix$donor_name),]
FactorGenes_expression<-list()
#Factors here mean modules
for (i in names(Genes)){
  FactorGenes_expression[[i]]<-matriz2[,which(colnames(matriz2) %in% Genes[[i]])]
}


FactorseGE<-list()
for (i in names(Genes)){
  FactorseGE[[i]]<-FactorGenes_expression[[i]]
}

allModgenes=NULL
colors=vector()
for ( i in names(Genes)){
  allModgenes=cbind(allModgenes,FactorseGE[[i]])
  colors=c(colors, rep(i, ncol(FactorseGE[[i]])))
}


lengths=unlist(lapply(FactorGenes_expression, ncol), use.names = F)

MEorig=moduleEigengenes(allModgenes, colors)

PCA_matrixfreeze=PCA_matrix

index=!PCA_matrix$structure_acronym %in% c("URL", "DTH", "CGE","LGE", "MGE",  "Ocx", "PCx", "M1C-S1C","DIE", "TCx", "CB")
PCA_matrix=PCA_matrix[index,]
ME = MEorig$eigengenes[index,]
matsel = matriz2[index,]

colnames(ME) = gsub("ME", "", colnames(ME))

timepoints=seq(56,15000, length.out=1000)
matrix(c("CB", "THA", "CBC", "MD"), ncol=2 ) -> cnm


brainheatmap=function(Module){
  MEmod=ME[,Module]
  toplot=data.frame(matrix(NA, nrow=length(table(PCA_matrix$structure_acronym)), ncol=998))
  rownames(toplot)=unique(PCA_matrix$structure_acronym)
  target <- c("OFC", "DFC", "VFC", "MFC","M1C","S1C","IPC","A1C","STC","ITC","V1C","HIP","AMY","STR","MD","CBC")
  toplot<-toplot[c(6,2,8,5,11,12,10,9,7,4,14,3,1,13,16,15),]
  
  
  for ( i in unique(PCA_matrix$structure_acronym)){
    index=PCA_matrix$structure_acronym==i
    LOESS=loess(MEmod[index]~PCA_matrix$period[index])
    toplot[i,]=predict(LOESS,newdata = round(exp(seq(log(56),log(15000), length.out=998)),2))
    colnames(toplot)[c(1,77,282,392,640,803,996)]<-
      c("1pcw","21pcw","Birth","1.3years","5.4years","13.6years","40.7years")
  }
  
  
  
  cols=viridis(100)
  labvec <- c(rep(NA, 1000))
  
  labvec[c(1,77,282,392,640,803,996)] <- c("1pcw","21pcw","Birth","1.3years","5.4years","13.6years","40.7years")
  
  
  toplot<-toplot[,1:998]
  date<-c(1:998)
  dateY<-paste0(round(date/365,2),"_Years")
  
  names(toplot)<-dateY
  
  par(xpd=FALSE) 
  heatmap.2(as.matrix(toplot), col = cols, 
            main=Module,
            trace = "none", 
            na.color = "grey",
            Colv = F, Rowv = F,
            labCol = labvec,
            #breaks = seq(-0.1,0.1, length.out=101),
            symkey = T,
            scale = "row",
            key.title = "",
            dendrogram = "none",
            key.xlab = "eigengene",
            density.info = "none",
            #main=paste("Module",1),
            srtCol=90,
            tracecol = "none", 
            cexRow = 1,
            add.expr=eval.parent(abline(v=282),
                                 axis(1,at=c(1,77,282,392,640,803,996),
                                      labels =FALSE)),cexCol = 1)
  
 
}

brainheatmap_gene=function(Genename){
  MEmod=matsel[,Genename]
  toplot=data.frame(matrix(NA, nrow=length(table(PCA_matrix$structure_acronym)), ncol=998))
  rownames(toplot)=unique(PCA_matrix$structure_acronym)
  target <- c("OFC", "DFC", "VFC", "MFC","M1C","S1C","IPC","A1C","STC","ITC","V1C","HIP","AMY","STR","MD","CBC")
  toplot<-toplot[c(6,2,8,5,11,12,10,9,7,4,14,3,1,13,16,15),]


  for ( i in unique(PCA_matrix$structure_acronym)){
    index=PCA_matrix$structure_acronym==i
    LOESS=loess(MEmod[index]~PCA_matrix$period[index])
    toplot[i,]=predict(LOESS,newdata = round(exp(seq(log(56),log(15000), length.out=998)),2))
    colnames(toplot)[c(1,77,282,392,640,803,996)]<-
      c("1pcw","21pcw","Birth","1.3years","5.4years","13.6years","40.7years")
  }



  cols=viridis(100)
  labvec <- c(rep(NA, 1000))

  labvec[c(1,77,282,392,640,803,996)] <- c("1pcw","21pcw","Birth","1.3years","5.4years","13.6years","40.7years")


  toplot<-toplot[,1:998]
  date<-c(1:998)
  dateY<-paste0(round(date/365,2),"_Years")

  names(toplot)<-dateY

  par(xpd=FALSE)
  heatmap.2(as.matrix(toplot), col = cols,
            main=Genename,
            trace = "none",
            na.color = "grey",
            Colv = F, Rowv = F,
            labCol = labvec,
            #breaks = seq(-0.1,0.1, length.out=101),
            symkey = F,
            scale = "none",
            key.title = "",
            dendrogram = "none",
            key.xlab = "eigengene",
            density.info = "none",
            #main=paste("Module",1),
            #srtCol=90,
            tracecol = "none",
            cexRow = 1,
            add.expr=eval.parent(abline(v=282),
                                 axis(1,at=c(1,77,282,392,640,803,996),
                                      labels =FALSE))
            ,cexCol = 1)
}


brainheatmap_gene("SLITRK5")

for(Module in Modsig2){
  brainheatmap(Module)
}

pdf(paste0(Home, "/output/Brain_Module_Heatmap.pdf"))

brainheatmap_gene("SLITRK5")
for(Module in Modsig2){
  brainheatmap(Module)
}
dev.off()
png 
  2 

Risk Factor Mediation Analysis

Risk factor loading and correlation plots

dropfact=c("site", "0", "group")

modelFact=strsplit(as.character(design(dds_filt))[2], " \\+ ")[[1]]


Patdata=as.data.frame(colData(dds_filt))

load(paste0(Home, "/output/envFact.RData"))

envFact=envFact[!envFact %in% dropfact] 
modelFact=modelFact[!modelFact %in% dropfact] 

EpiMarker = c()

# TopHit
Patdata$Epi_TopHit=log2_cpm[base::which.min(results_Deseq$pvalue),]

# 1PC of all diff met
tmp=glmpca(log2_cpm[base::which(results_Deseq$pvalue<=thresholdp),], 1)

Patdata$Epi_all= tmp$factors$dim1
  
EpiMarker = c(EpiMarker, "Epi_TopHit", "Epi_all")

#Brain Modules

Epitestset=GL_all[Modsig]

for(n in names(Epitestset)){
  index=gettaglistforgenelist(genelist = Epitestset[[n]], dds_filt)
  index = base::intersect(index, base::which(results_Deseq$pvalue<=thresholdp))
  # get eigenvalue
  epiname=paste0("Epi_",n)
  tmp=glmpca(log2_cpm[index,], 1)
  Patdata[,epiname]= tmp$factors$dim1
  EpiMarker = c(EpiMarker, epiname)
}

cormat = cor(apply(Patdata[,c("group", envFact, modelFact, EpiMarker)] %>% mutate_all(as.numeric), 2, minmax_scaling),
             use = "pairwise.complete.obs")

par(mfrow=c(1,2))
corrplot(cormat, main="correlations")
corrplot(cormat, order = "hclust", main="correlations ordered")

SEM analysis

fullmodEnv=paste(unique(envFact,modelFact), sep = "+", collapse = "+")

Dataset = Patdata[,c("group", envFact, modelFact,EpiMarker)]

model = "
Epi~a*Matsmk+b*Matagg+c*FamScore+d*EduPar+e*n_trauma+Age+int_dis+medication+contraceptives+cigday_1+V8

group~f*Matsmk+g*Matagg+h*FamScore+i*EduPar+j*n_trauma+Age+int_dis+medication+contraceptives+cigday_1+V8+z*Epi

#direct
directMatsmk := f
directMatagg := g
directFamScore := h
directEduPar := i
directn_trauma := j

#indirect
EpiMatsmk := a*z
EpiMatagg := b*z
EpiFamScore := c*z
EpiEduPar := d*z
Epin_trauma := e*z

total := f + g + h + i + j + (a*z)+(b*z)+(c*z)+(d*z)+(e*z)

"


Netlist = list()

for (marker in EpiMarker) {
  Dataset$Epi = Dataset[,marker]
  Datasetscaled = Dataset %>% mutate_if(is.numeric, minmax_scaling)
  Datasetscaled = Datasetscaled %>% mutate_if(is.factor, ~ as.numeric(.)-1)
  Datasetscaled$group = ordered(as.factor(Datasetscaled$group))
  
  fit<-sem(model,data=Datasetscaled)
  
  sink(paste0(Home,"/output/SEM_summary_group",marker,".txt"))
  summary(fit)
  print(fitMeasures(fit))
  print(parameterEstimates(fit))
  sink()
  
  cat("############################\n")
  cat("############################\n")
  cat(marker, "\n")
  cat("############################\n")
  cat("############################\n")
  
  cat("##Mediation Model ##\n")
  summary(fit)
  cat("\n")
  print(fitMeasures(fit))
  cat("\n")
  print(parameterEstimates(fit))
  cat("\n")
  
  #SOURCE FOR PLOT https://stackoverflow.com/questions/51270032/how-can-i-display-only-significant-path-lines-on-a-path-diagram-r-lavaan-sem
  restab=lavaan::standardizedSolution(fit) %>% dplyr::filter(!is.na(pvalue)) %>% 
    arrange(desc(pvalue)) %>% mutate_if("is.numeric","round",3) %>% 
    dplyr::select(-ci.lower,-ci.upper,-z)
  
  pvalue_cutoff <- 0.05
  
  obj <- semPlot:::semPlotModel(fit)
  original_Pars <- obj@Pars
  
  print(original_Pars)
  
  check_Pars <- obj@Pars %>% dplyr:::filter(!(edge %in% c("int","<->") | lhs == rhs)) # this is the list of parameter to sift thru
  keep_Pars <- obj@Pars %>% dplyr:::filter(edge %in% c("int","<->") | lhs == rhs) # this is the list of parameter to keep asis
  
  test_against <- lavaan::standardizedSolution(fit) %>% dplyr::filter(pvalue < pvalue_cutoff, rhs != lhs)
  
  # for some reason, the rhs and lhs are reversed in the standardizedSolution() output, for some of the values
  # I'll have to reverse it myself, and test against both orders
  
  test_against_rev <- test_against %>% dplyr::rename(rhs2 = lhs, lhs = rhs) %>% dplyr::rename(rhs = rhs2)
  
  checked_Pars <-
    check_Pars %>% semi_join(test_against, by = c("lhs", "rhs")) %>% bind_rows(
      check_Pars %>% semi_join(test_against_rev, by = c("lhs", "rhs"))
    )
  
  obj@Pars <- keep_Pars %>% bind_rows(checked_Pars) %>% 
    mutate_if("is.numeric","round",3) %>% 
    mutate_at(c("lhs","rhs"),~gsub("Epi", marker,.))
  
  obj@Vars = obj@Vars %>% mutate_at(c("name"),~gsub("Epi", marker,.))
  
  DF = obj@Pars
  DF = DF[DF$lhs!=DF$rhs,]
  DF = DF[abs(DF$est)>0.1,]
  
  DF = DF[DF$edge == "~>",] # only include directly modelled effects in figure 
  
  nodes <- data.frame(id=obj@Vars$name, label = obj@Vars$name)
  nodes$color<-Dark8[8]
  nodes$color[nodes$label == "group"] = Dark8[3]
  nodes$color[nodes$label == marker] = Dark8[4]
  nodes$color[nodes$label %in% envFact] = Dark8[5]
  
  edges <- data.frame(from = DF$lhs, 
                      to = DF$rhs, 
                      width=abs(DF$est), 
                      arrows ="to")
  
  edges$dashes = F
  edges$label =  DF$est
  edges$color=c("firebrick", "forestgreen")[1:2][factor(sign(DF$est), levels=c(-1,0,1),labels=c(1,2,2))]
  edges$width=2
  cexlab = 18
  plotnet<- visNetwork(nodes, edges,  
                       main=list(text=marker,
                                 style="font-family:arial;font-size:20px;text-align:center"),
                       submain=list(text="significant paths", 
                                    style="font-family:arial;text-align:center")) %>% 
    visEdges(arrows =list(to = list(enabled = TRUE, scaleFactor = 0.7)),
                       font=list(size=cexlab, style="font-family:arial;text-align:center")) %>%
    visNodes(font=list(size=cexlab, style="font-family:arial;text-align:center")) %>%
    
    visPhysics(enabled = T, solver = "forceAtlas2Based")
  
  
  Netlist[[marker]] = plotnet
  htmlfile = paste0(Home,"/output/SEMplot_",marker,".html")
  visSave(plotnet, htmlfile)
  webshot(paste0(Home,"/output/SEMplot_",marker,".html"), zoom = 1, 
          file = paste0(Home,"/output/SEMplot_",marker,".png"))
  
}
Warning in lav_samplestats_step2(UNI = FIT, wt = wt, ov.names = ov.names, :
lavaan WARNING: correlation between variables group and Epi is (nearly) 1.0
############################
############################
Epi_TopHit 
############################
############################
##Mediation Model ##
lavaan 0.6-7 ended normally after 132 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of free parameters                         26
                                                      
                                                  Used       Total
  Number of observations                            80          99
                                                                  
Model Test User Model:
                                              Standard      Robust
  Test Statistic                                 0.000       0.000
  Degrees of freedom                                 0           0

Parameter Estimates:

  Standard errors                           Robust.sem
  Information                                 Expected
  Information saturated (h1) model        Unstructured

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  Epi ~                                               
    Matsmk     (a)   -0.033    0.050   -0.657    0.511
    Matagg     (b)   -0.014    0.072   -0.202    0.840
    FamScore   (c)    0.056    0.076    0.739    0.460
    EduPar     (d)   -0.038    0.108   -0.358    0.721
    n_trauma   (e)    0.085    0.111    0.767    0.443
    Age              -0.090    0.097   -0.929    0.353
    int_dis          -0.074    0.057   -1.310    0.190
    medication       -0.044    0.059   -0.759    0.448
    contrcptvs       -0.017    0.049   -0.341    0.733
    cigday_1         -0.111    0.136   -0.815    0.415
    V8               -0.089    0.568   -0.156    0.876
  group ~                                             
    Matsmk     (f)    0.045    1.077    0.041    0.967
    Matagg     (g)    1.436    2.290    0.627    0.531
    FamScore   (h)    0.440    2.056    0.214    0.831
    EduPar     (i)   -3.687    2.227   -1.655    0.098
    n_trauma   (j)    2.952    1.445    2.043    0.041
    Age              -3.468    2.438   -1.422    0.155
    int_dis           0.802    0.808    0.992    0.321
    medication        0.875    0.817    1.072    0.284
    contrcptvs        0.031    0.843    0.037    0.970
    cigday_1          9.678    7.094    1.364    0.172
    V8               12.694   16.068    0.790    0.430
    Epi        (z)   -6.500    0.589  -11.034    0.000

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               0.843    0.319    2.646    0.008
   .group             0.000                           

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)
    group|t1          0.266    8.437    0.032    0.975

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               0.023    0.004    5.481    0.000
   .group             0.014                           

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)
    group             1.000                           

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)
    directMatsmk      0.045    1.077    0.041    0.967
    directMatagg      1.436    2.290    0.627    0.531
    directFamScore    0.440    2.056    0.214    0.831
    directEduPar     -3.687    2.227   -1.655    0.098
    directn_trauma    2.952    1.445    2.043    0.041
    EpiMatsmk         0.212    0.317    0.667    0.505
    EpiMatagg         0.094    0.468    0.201    0.841
    EpiFamScore      -0.366    0.495   -0.741    0.459
    EpiEduPar         0.250    0.705    0.354    0.723
    Epin_trauma      -0.552    0.722   -0.764    0.445
    total             0.823    4.116    0.200    0.842

                         npar                          fmin 
                       26.000                         0.000 
                        chisq                            df 
                        0.000                         0.000 
                       pvalue                  chisq.scaled 
                           NA                         0.000 
                    df.scaled                 pvalue.scaled 
                        0.000                            NA 
         chisq.scaling.factor                baseline.chisq 
                           NA                       111.273 
                  baseline.df               baseline.pvalue 
                        1.000                         0.000 
        baseline.chisq.scaled            baseline.df.scaled 
                      111.273                         1.000 
       baseline.pvalue.scaled baseline.chisq.scaling.factor 
                        0.000                         1.000 
                          cfi                           tli 
                        1.000                         1.000 
                         nnfi                           rfi 
                        1.000                         1.000 
                          nfi                          pnfi 
                        1.000                         0.000 
                          ifi                           rni 
                        1.000                         1.000 
                   cfi.scaled                    tli.scaled 
                        1.000                         1.000 
                   cfi.robust                    tli.robust 
                           NA                            NA 
                  nnfi.scaled                   nnfi.robust 
                        1.000                            NA 
                   rfi.scaled                    nfi.scaled 
                        1.000                         1.000 
                   ifi.scaled                    rni.scaled 
                        1.000                         1.000 
                   rni.robust                         rmsea 
                           NA                         0.000 
               rmsea.ci.lower                rmsea.ci.upper 
                        0.000                         0.000 
                 rmsea.pvalue                  rmsea.scaled 
                           NA                         0.000 
        rmsea.ci.lower.scaled         rmsea.ci.upper.scaled 
                        0.000                         0.000 
          rmsea.pvalue.scaled                  rmsea.robust 
                           NA                            NA 
        rmsea.ci.lower.robust         rmsea.ci.upper.robust 
                        0.000                         0.000 
          rmsea.pvalue.robust                           rmr 
                           NA                         2.452 
                   rmr_nomean                          srmr 
                        0.000                         0.000 
                 srmr_bentler           srmr_bentler_nomean 
                        2.452                         0.000 
                         crmr                   crmr_nomean 
                        3.165                         0.000 
                   srmr_mplus             srmr_mplus_nomean 
                           NA                            NA 
                        cn_05                         cn_01 
                           NA                            NA 
                          gfi                          agfi 
                        1.000                         1.000 
                         pgfi                           mfi 
                        0.000                         1.000 

               lhs  op                                     rhs          label
1              Epi   ~                                  Matsmk              a
2              Epi   ~                                  Matagg              b
3              Epi   ~                                FamScore              c
4              Epi   ~                                  EduPar              d
5              Epi   ~                                n_trauma              e
6              Epi   ~                                     Age               
7              Epi   ~                                 int_dis               
8              Epi   ~                              medication               
9              Epi   ~                          contraceptives               
10             Epi   ~                                cigday_1               
11             Epi   ~                                      V8               
12           group   ~                                  Matsmk              f
13           group   ~                                  Matagg              g
14           group   ~                                FamScore              h
15           group   ~                                  EduPar              i
16           group   ~                                n_trauma              j
17           group   ~                                     Age               
18           group   ~                                 int_dis               
19           group   ~                              medication               
20           group   ~                          contraceptives               
21           group   ~                                cigday_1               
22           group   ~                                      V8               
23           group   ~                                     Epi              z
24           group   |                                      t1               
25             Epi  ~~                                     Epi               
26           group  ~~                                   group               
27          Matsmk  ~~                                  Matsmk               
28          Matsmk  ~~                                  Matagg               
29          Matsmk  ~~                                FamScore               
30          Matsmk  ~~                                  EduPar               
31          Matsmk  ~~                                n_trauma               
32          Matsmk  ~~                                     Age               
33          Matsmk  ~~                                 int_dis               
34          Matsmk  ~~                              medication               
35          Matsmk  ~~                          contraceptives               
36          Matsmk  ~~                                cigday_1               
37          Matsmk  ~~                                      V8               
38          Matagg  ~~                                  Matagg               
39          Matagg  ~~                                FamScore               
40          Matagg  ~~                                  EduPar               
41          Matagg  ~~                                n_trauma               
42          Matagg  ~~                                     Age               
43          Matagg  ~~                                 int_dis               
44          Matagg  ~~                              medication               
45          Matagg  ~~                          contraceptives               
46          Matagg  ~~                                cigday_1               
47          Matagg  ~~                                      V8               
48        FamScore  ~~                                FamScore               
49        FamScore  ~~                                  EduPar               
50        FamScore  ~~                                n_trauma               
51        FamScore  ~~                                     Age               
52        FamScore  ~~                                 int_dis               
53        FamScore  ~~                              medication               
54        FamScore  ~~                          contraceptives               
55        FamScore  ~~                                cigday_1               
56        FamScore  ~~                                      V8               
57          EduPar  ~~                                  EduPar               
58          EduPar  ~~                                n_trauma               
59          EduPar  ~~                                     Age               
60          EduPar  ~~                                 int_dis               
61          EduPar  ~~                              medication               
62          EduPar  ~~                          contraceptives               
63          EduPar  ~~                                cigday_1               
64          EduPar  ~~                                      V8               
65        n_trauma  ~~                                n_trauma               
66        n_trauma  ~~                                     Age               
67        n_trauma  ~~                                 int_dis               
68        n_trauma  ~~                              medication               
69        n_trauma  ~~                          contraceptives               
70        n_trauma  ~~                                cigday_1               
71        n_trauma  ~~                                      V8               
72             Age  ~~                                     Age               
73             Age  ~~                                 int_dis               
74             Age  ~~                              medication               
75             Age  ~~                          contraceptives               
76             Age  ~~                                cigday_1               
77             Age  ~~                                      V8               
78         int_dis  ~~                                 int_dis               
79         int_dis  ~~                              medication               
80         int_dis  ~~                          contraceptives               
81         int_dis  ~~                                cigday_1               
82         int_dis  ~~                                      V8               
83      medication  ~~                              medication               
84      medication  ~~                          contraceptives               
85      medication  ~~                                cigday_1               
86      medication  ~~                                      V8               
87  contraceptives  ~~                          contraceptives               
88  contraceptives  ~~                                cigday_1               
89  contraceptives  ~~                                      V8               
90        cigday_1  ~~                                cigday_1               
91        cigday_1  ~~                                      V8               
92              V8  ~~                                      V8               
93           group ~*~                                   group               
94             Epi  ~1                                                       
95           group  ~1                                                       
96          Matsmk  ~1                                                       
97          Matagg  ~1                                                       
98        FamScore  ~1                                                       
99          EduPar  ~1                                                       
100       n_trauma  ~1                                                       
101            Age  ~1                                                       
102        int_dis  ~1                                                       
103     medication  ~1                                                       
104 contraceptives  ~1                                                       
105       cigday_1  ~1                                                       
106             V8  ~1                                                       
107   directMatsmk  :=                                       f   directMatsmk
108   directMatagg  :=                                       g   directMatagg
109 directFamScore  :=                                       h directFamScore
110   directEduPar  :=                                       i   directEduPar
111 directn_trauma  :=                                       j directn_trauma
112      EpiMatsmk  :=                                     a*z      EpiMatsmk
113      EpiMatagg  :=                                     b*z      EpiMatagg
114    EpiFamScore  :=                                     c*z    EpiFamScore
115      EpiEduPar  :=                                     d*z      EpiEduPar
116    Epin_trauma  :=                                     e*z    Epin_trauma
117          total  := f+g+h+i+j+(a*z)+(b*z)+(c*z)+(d*z)+(e*z)          total
       est     se       z pvalue ci.lower ci.upper
1   -0.033  0.050  -0.657  0.511   -0.130    0.065
2   -0.014  0.072  -0.202  0.840   -0.155    0.126
3    0.056  0.076   0.739  0.460   -0.093    0.206
4   -0.038  0.108  -0.358  0.721   -0.249    0.172
5    0.085  0.111   0.767  0.443   -0.132    0.302
6   -0.090  0.097  -0.929  0.353   -0.280    0.100
7   -0.074  0.057  -1.310  0.190   -0.186    0.037
8   -0.044  0.059  -0.759  0.448   -0.159    0.070
9   -0.017  0.049  -0.341  0.733   -0.113    0.080
10  -0.111  0.136  -0.815  0.415   -0.378    0.156
11  -0.089  0.568  -0.156  0.876   -1.202    1.025
12   0.045  1.077   0.041  0.967   -2.066    2.155
13   1.436  2.290   0.627  0.531   -3.053    5.924
14   0.440  2.056   0.214  0.831   -3.590    4.471
15  -3.687  2.227  -1.655  0.098   -8.052    0.678
16   2.952  1.445   2.043  0.041    0.119    5.784
17  -3.468  2.438  -1.422  0.155   -8.247    1.310
18   0.802  0.808   0.992  0.321   -0.782    2.387
19   0.875  0.817   1.072  0.284   -0.725    2.475
20   0.031  0.843   0.037  0.970   -1.621    1.683
21   9.678  7.094   1.364  0.172   -4.225   23.582
22  12.694 16.068   0.790  0.430  -18.800   44.187
23  -6.500  0.589 -11.034  0.000   -7.654   -5.345
24   0.266  8.437   0.032  0.975  -16.271   16.803
25   0.023  0.004   5.481  0.000    0.015    0.032
26   0.014  0.000      NA     NA    0.014    0.014
27   0.196  0.000      NA     NA    0.196    0.196
28   0.049  0.000      NA     NA    0.049    0.049
29  -0.009  0.000      NA     NA   -0.009   -0.009
30  -0.006  0.000      NA     NA   -0.006   -0.006
31   0.007  0.000      NA     NA    0.007    0.007
32  -0.003  0.000      NA     NA   -0.003   -0.003
33   0.022  0.000      NA     NA    0.022    0.022
34   0.004  0.000      NA     NA    0.004    0.004
35   0.022  0.000      NA     NA    0.022    0.022
36   0.017  0.000      NA     NA    0.017    0.017
37   0.003  0.000      NA     NA    0.003    0.003
38   0.091  0.000      NA     NA    0.091    0.091
39   0.034  0.000      NA     NA    0.034    0.034
40  -0.017  0.000      NA     NA   -0.017   -0.017
41   0.007  0.000      NA     NA    0.007    0.007
42   0.000  0.000      NA     NA    0.000    0.000
43   0.033  0.000      NA     NA    0.033    0.033
44   0.008  0.000      NA     NA    0.008    0.008
45   0.008  0.000      NA     NA    0.008    0.008
46   0.010  0.000      NA     NA    0.010    0.010
47   0.001  0.000      NA     NA    0.001    0.001
48   0.132  0.000      NA     NA    0.132    0.132
49  -0.029  0.000      NA     NA   -0.029   -0.029
50   0.027  0.000      NA     NA    0.027    0.027
51   0.004  0.000      NA     NA    0.004    0.004
52   0.065  0.000      NA     NA    0.065    0.065
53   0.004  0.000      NA     NA    0.004    0.004
54   0.058  0.000      NA     NA    0.058    0.058
55   0.044  0.000      NA     NA    0.044    0.044
56   0.001  0.000      NA     NA    0.001    0.001
57   0.054  0.000      NA     NA    0.054    0.054
58  -0.008  0.000      NA     NA   -0.008   -0.008
59   0.003  0.000      NA     NA    0.003    0.003
60  -0.019  0.000      NA     NA   -0.019   -0.019
61   0.010  0.000      NA     NA    0.010    0.010
62  -0.013  0.000      NA     NA   -0.013   -0.013
63  -0.015  0.000      NA     NA   -0.015   -0.015
64   0.000  0.000      NA     NA    0.000    0.000
65   0.051  0.000      NA     NA    0.051    0.051
66   0.002  0.000      NA     NA    0.002    0.002
67   0.042  0.000      NA     NA    0.042    0.042
68   0.018  0.000      NA     NA    0.018    0.018
69   0.018  0.000      NA     NA    0.018    0.018
70   0.021  0.000      NA     NA    0.021    0.021
71   0.000  0.000      NA     NA    0.000    0.000
72   0.047  0.000      NA     NA    0.047    0.047
73   0.008  0.000      NA     NA    0.008    0.008
74  -0.002  0.000      NA     NA   -0.002   -0.002
75   0.035  0.000      NA     NA    0.035    0.035
76   0.009  0.000      NA     NA    0.009    0.009
77  -0.001  0.000      NA     NA   -0.001   -0.001
78   0.213  0.000      NA     NA    0.213    0.213
79   0.061  0.000      NA     NA    0.061    0.061
80   0.061  0.000      NA     NA    0.061    0.061
81   0.044  0.000      NA     NA    0.044    0.044
82   0.006  0.000      NA     NA    0.006    0.006
83   0.146  0.000      NA     NA    0.146    0.146
84   0.035  0.000      NA     NA    0.035    0.035
85   0.003  0.000      NA     NA    0.003    0.003
86   0.002  0.000      NA     NA    0.002    0.002
87   0.213  0.000      NA     NA    0.213    0.213
88   0.049  0.000      NA     NA    0.049    0.049
89   0.003  0.000      NA     NA    0.003    0.003
90   0.062  0.000      NA     NA    0.062    0.062
91   0.002  0.000      NA     NA    0.002    0.002
92   0.005  0.000      NA     NA    0.005    0.005
93   1.000  0.000      NA     NA    1.000    1.000
94   0.843  0.319   2.646  0.008    0.219    1.468
95   0.000  0.000      NA     NA    0.000    0.000
96   0.262  0.000      NA     NA    0.262    0.262
97   0.100  0.000      NA     NA    0.100    0.100
98   0.225  0.000      NA     NA    0.225    0.225
99   0.606  0.000      NA     NA    0.606    0.606
100  0.196  0.000      NA     NA    0.196    0.196
101  0.562  0.000      NA     NA    0.562    0.562
102  0.300  0.000      NA     NA    0.300    0.300
103  0.175  0.000      NA     NA    0.175    0.175
104  0.300  0.000      NA     NA    0.300    0.300
105  0.124  0.000      NA     NA    0.124    0.124
106  0.529  0.000      NA     NA    0.529    0.529
107  0.045  1.077   0.041  0.967   -2.066    2.155
108  1.436  2.290   0.627  0.531   -3.053    5.924
109  0.440  2.056   0.214  0.831   -3.590    4.471
110 -3.687  2.227  -1.655  0.098   -8.052    0.678
111  2.952  1.445   2.043  0.041    0.119    5.784
112  0.212  0.317   0.667  0.505   -0.410    0.834
113  0.094  0.468   0.201  0.841   -0.822    1.010
114 -0.366  0.495  -0.741  0.459   -1.336    0.603
115  0.250  0.705   0.354  0.723   -1.133    1.632
116 -0.552  0.722  -0.764  0.445   -1.966    0.863
117  0.823  4.116   0.200  0.842   -7.244    8.889

    label            lhs edge            rhs           est           std group
1       a         Matsmk   ~>            Epi -3.256589e-02 -0.0872133419      
2       b         Matagg   ~>            Epi -1.446988e-02 -0.0264216870      
3       c       FamScore   ~>            Epi  5.638498e-02  0.1240368997      
4       d         EduPar   ~>            Epi -3.844427e-02 -0.0539309025      
5       e       n_trauma   ~>            Epi  8.486733e-02  0.1163122416      
6                    Age   ~>            Epi -9.011773e-02 -0.1187813154      
7                int_dis   ~>            Epi -7.447596e-02 -0.2077304276      
8             medication   ~>            Epi -4.445645e-02 -0.1028146778      
9         contraceptives   ~>            Epi -1.677936e-02 -0.0468014586      
10              cigday_1   ~>            Epi -1.109172e-01 -0.1663967836      
11                    V8   ~>            Epi -8.888125e-02 -0.0366069688      
12      f         Matsmk   ~>          group  4.459322e-02  0.0049084093      
13      g         Matagg   ~>          group  1.435869e+00  0.1077612087      
14      h       FamScore   ~>          group  4.400936e-01  0.0397909584      
15      i         EduPar   ~>          group -3.687103e+00 -0.2125902008      
16      j       n_trauma   ~>          group  2.951804e+00  0.1662739924      
17                   Age   ~>          group -3.468157e+00 -0.1878834534      
18               int_dis   ~>          group  8.022992e-01  0.0919755210      
19            medication   ~>          group  8.750760e-01  0.0831798311      
20        contraceptives   ~>          group  3.125001e-02  0.0035824991      
21              cigday_1   ~>          group  9.678494e+00  0.5967683249      
22                    V8   ~>          group  1.269350e+01  0.2148755047      
23      z            Epi   ~>          group -6.499591e+00 -0.2671393575      
25                   Epi  <->            Epi  2.334009e-02  0.8538634661      
26                 group  <->          group  1.400524e-02  0.0008655263      
27                Matsmk  <->         Matsmk  1.960443e-01  1.0000000000      
28                Matsmk  <->         Matagg  4.936709e-02  0.3693241433      
29                Matsmk  <->       FamScore -9.177215e-03 -0.0569887592      
30                Matsmk  <->         EduPar -5.564346e-03 -0.0541843459      
31                Matsmk  <->       n_trauma  7.459313e-03  0.0743497863      
32                Matsmk  <->            Age -3.217300e-03 -0.0333441329      
33                Matsmk  <->        int_dis  2.151899e-02  0.1053910232      
34                Matsmk  <->     medication  4.113924e-03  0.0242997446      
35                Matsmk  <-> contraceptives  2.151899e-02  0.1053910232      
36                Matsmk  <->       cigday_1  1.693829e-02  0.1542372547      
37                Matsmk  <->             V8  2.928139e-03  0.0971189320      
38                Matagg  <->         Matagg  9.113924e-02  1.0000000000      
39                Matagg  <->       FamScore  3.417722e-02  0.3112715087      
40                Matagg  <->         EduPar -1.656118e-02 -0.2365241196      
41                Matagg  <->       n_trauma  7.233273e-03  0.1057402114      
42                Matagg  <->            Age  3.118694e-04  0.0047405101      
43                Matagg  <->        int_dis  3.291139e-02  0.2364027144      
44                Matagg  <->     medication  7.594937e-03  0.0657951695      
45                Matagg  <-> contraceptives  7.594937e-03  0.0545544726      
46                Matagg  <->       cigday_1  1.018987e-02  0.1360858260      
47                Matagg  <->             V8  8.272067e-04  0.0402393217      
48              FamScore  <->       FamScore  1.322785e-01  1.0000000000      
49              FamScore  <->         EduPar -2.948312e-02 -0.3495149022      
50              FamScore  <->       n_trauma  2.667269e-02  0.3236534989      
51              FamScore  <->            Age  3.636947e-03  0.0458878230      
52              FamScore  <->        int_dis  6.455696e-02  0.3849084009      
53              FamScore  <->     medication  4.430380e-03  0.0318580293      
54              FamScore  <-> contraceptives  5.822785e-02  0.3471722832      
55              FamScore  <->       cigday_1  4.381329e-02  0.4856887960      
56              FamScore  <->             V8  7.814844e-04  0.0315547719      
57                EduPar  <->         EduPar  5.379307e-02  1.0000000000      
58                EduPar  <->       n_trauma -8.024412e-03 -0.1526891136      
59                EduPar  <->            Age  2.762108e-03  0.0546490350      
60                EduPar  <->        int_dis -1.909283e-02 -0.1785114035      
61                EduPar  <->     medication  1.017932e-02  0.1147832062      
62                EduPar  <-> contraceptives -1.329114e-02 -0.1242676068      
63                EduPar  <->       cigday_1 -1.493803e-02 -0.2596730517      
64                EduPar  <->             V8 -8.860887e-06 -0.0005610523      
65              n_trauma  <->       n_trauma  5.134332e-02  1.0000000000      
66              n_trauma  <->            Age  1.582278e-03  0.0320439451      
67              n_trauma  <->        int_dis  4.159132e-02  0.3980335009      
68              n_trauma  <->     medication  1.763110e-02  0.2034979577      
69              n_trauma  <-> contraceptives  1.808318e-02  0.1730580439      
70              n_trauma  <->       cigday_1  2.128165e-02  0.3786692420      
71              n_trauma  <->             V8 -4.694340e-04 -0.0304243917      
72                   Age  <->            Age  4.748866e-02  1.0000000000      
73                   Age  <->        int_dis  8.090259e-03  0.0805056484      
74                   Age  <->     medication -1.655660e-03 -0.0198700345      
75                   Age  <-> contraceptives  3.524124e-02  0.3506833348      
76                   Age  <->       cigday_1  8.542355e-03  0.1580445206      
77                   Age  <->             V8 -1.333633e-03 -0.0898732659      
78               int_dis  <->        int_dis  2.126582e-01  1.0000000000      
79               int_dis  <->     medication  6.075949e-02  0.3445843938      
80               int_dis  <-> contraceptives  6.075949e-02  0.2857142857      
81               int_dis  <->       cigday_1  4.449367e-02  0.3890038953      
82               int_dis  <->             V8  5.645344e-03  0.1797788722      
83            medication  <->     medication  1.462025e-01  1.0000000000      
84            medication  <-> contraceptives  3.544304e-02  0.2010075631      
85            medication  <->       cigday_1  3.275316e-03  0.0345360471      
86            medication  <->             V8  2.084232e-03  0.0800493604      
87        contraceptives  <-> contraceptives  2.126582e-01  1.0000000000      
88        contraceptives  <->       cigday_1  4.892405e-02  0.4277382803      
89        contraceptives  <->             V8  2.688833e-03  0.0856272484      
90              cigday_1  <->       cigday_1  6.151859e-02  1.0000000000      
91              cigday_1  <->             V8  1.509276e-03  0.0893623867      
92                    V8  <->             V8  4.636832e-03  1.0000000000      
93                 group  <->          group  1.000000e+00  1.0000000000      
94                        int            Epi  8.434318e-01  5.1014410172      
95                        int          group  0.000000e+00  0.0000000000      
96                        int         Matsmk  2.625000e-01  0.5928600601      
97                        int         Matagg  1.000000e-01  0.3312434486      
98                        int       FamScore  2.250000e-01  0.6186398880      
99                        int         EduPar  6.062500e-01  2.6138976225      
100                       int       n_trauma  1.964286e-01  0.8668873691      
101                       int            Age  5.621377e-01  2.5795724974      
102                       int        int_dis  3.000000e-01  0.6505492185      
103                       int     medication  1.750000e-01  0.4576785957      
104                       int contraceptives  3.000000e-01  0.6505492185      
105                       int       cigday_1  1.243750e-01  0.5014526157      
106                       int             V8  5.286908e-01  7.7640983340      
    fixed par
1   FALSE   1
2   FALSE   2
3   FALSE   3
4   FALSE   4
5   FALSE   5
6   FALSE   6
7   FALSE   7
8   FALSE   8
9   FALSE   9
10  FALSE  10
11  FALSE  11
12  FALSE  12
13  FALSE  13
14  FALSE  14
15  FALSE  15
16  FALSE  16
17  FALSE  17
18  FALSE  18
19  FALSE  19
20  FALSE  20
21  FALSE  21
22  FALSE  22
23  FALSE  23
25  FALSE  25
26   TRUE   0
27   TRUE   0
28   TRUE   0
29   TRUE   0
30   TRUE   0
31   TRUE   0
32   TRUE   0
33   TRUE   0
34   TRUE   0
35   TRUE   0
36   TRUE   0
37   TRUE   0
38   TRUE   0
39   TRUE   0
40   TRUE   0
41   TRUE   0
42   TRUE   0
43   TRUE   0
44   TRUE   0
45   TRUE   0
46   TRUE   0
47   TRUE   0
48   TRUE   0
49   TRUE   0
50   TRUE   0
51   TRUE   0
52   TRUE   0
53   TRUE   0
54   TRUE   0
55   TRUE   0
56   TRUE   0
57   TRUE   0
58   TRUE   0
59   TRUE   0
60   TRUE   0
61   TRUE   0
62   TRUE   0
63   TRUE   0
64   TRUE   0
65   TRUE   0
66   TRUE   0
67   TRUE   0
68   TRUE   0
69   TRUE   0
70   TRUE   0
71   TRUE   0
72   TRUE   0
73   TRUE   0
74   TRUE   0
75   TRUE   0
76   TRUE   0
77   TRUE   0
78   TRUE   0
79   TRUE   0
80   TRUE   0
81   TRUE   0
82   TRUE   0
83   TRUE   0
84   TRUE   0
85   TRUE   0
86   TRUE   0
87   TRUE   0
88   TRUE   0
89   TRUE   0
90   TRUE   0
91   TRUE   0
92   TRUE   0
93   TRUE   0
94  FALSE  26
95   TRUE   0
96   TRUE   0
97   TRUE   0
98   TRUE   0
99   TRUE   0
100  TRUE   0
101  TRUE   0
102  TRUE   0
103  TRUE   0
104  TRUE   0
105  TRUE   0
106  TRUE   0
Warning in lav_samplestats_step2(UNI = FIT, wt = wt, ov.names = ov.names, :
lavaan WARNING: correlation between variables group and Epi is (nearly) 1.0
############################
############################
Epi_all 
############################
############################
##Mediation Model ##
lavaan 0.6-7 ended normally after 138 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of free parameters                         26
                                                      
                                                  Used       Total
  Number of observations                            80          99
                                                                  
Model Test User Model:
                                              Standard      Robust
  Test Statistic                                 0.000       0.000
  Degrees of freedom                                 0           0

Parameter Estimates:

  Standard errors                           Robust.sem
  Information                                 Expected
  Information saturated (h1) model        Unstructured

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  Epi ~                                               
    Matsmk     (a)    0.014    0.025    0.573    0.567
    Matagg     (b)    0.023    0.038    0.590    0.555
    FamScore   (c)   -0.037    0.042   -0.871    0.384
    EduPar     (d)   -0.090    0.060   -1.514    0.130
    n_trauma   (e)    0.025    0.048    0.523    0.601
    Age               0.034    0.064    0.534    0.593
    int_dis           0.023    0.024    0.934    0.350
    medication        0.007    0.030    0.248    0.804
    contrcptvs       -0.016    0.027   -0.583    0.560
    cigday_1          0.022    0.052    0.425    0.671
    V8                0.060    0.306    0.197    0.844
  group ~                                             
    Matsmk     (f)    0.078    1.107    0.071    0.944
    Matagg     (g)    1.249    2.383    0.524    0.600
    FamScore   (h)    0.526    1.914    0.275    0.783
    EduPar     (i)   -2.316    2.797   -0.828    0.408
    n_trauma   (j)    2.090    1.387    1.506    0.132
    Age              -3.306    1.889   -1.750    0.080
    int_dis           1.003    0.828    1.212    0.226
    medication        1.073    0.724    1.482    0.138
    contrcptvs        0.336    0.720    0.466    0.641
    cigday_1         10.127    7.243    1.398    0.162
    V8               12.524   14.939    0.838    0.402
    Epi        (z)   12.386   20.689    0.599    0.549

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               0.134    0.171    0.784    0.433
   .group             0.000                           

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)
    group|t1          7.408    8.008    0.925    0.355

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               0.006    0.001    5.129    0.000
   .group             0.010                           

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)
    group             1.000                           

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)
    directMatsmk      0.078    1.107    0.071    0.944
    directMatagg      1.249    2.383    0.524    0.600
    directFamScore    0.526    1.914    0.275    0.783
    directEduPar     -2.316    2.797   -0.828    0.408
    directn_trauma    2.090    1.387    1.506    0.132
    EpiMatsmk         0.178    0.432    0.412    0.680
    EpiMatagg         0.281    0.668    0.420    0.674
    EpiFamScore      -0.452    0.917   -0.493    0.622
    EpiEduPar        -1.121    2.019   -0.555    0.579
    Epin_trauma       0.311    0.788    0.394    0.693
    total             0.823    4.116    0.200    0.842

                         npar                          fmin 
                       26.000                         0.000 
                        chisq                            df 
                        0.000                         0.000 
                       pvalue                  chisq.scaled 
                           NA                         0.000 
                    df.scaled                 pvalue.scaled 
                        0.000                            NA 
         chisq.scaling.factor                baseline.chisq 
                           NA                         0.358 
                  baseline.df               baseline.pvalue 
                        1.000                         0.549 
        baseline.chisq.scaled            baseline.df.scaled 
                        0.358                         1.000 
       baseline.pvalue.scaled baseline.chisq.scaling.factor 
                        0.549                         1.000 
                          cfi                           tli 
                        1.000                         1.000 
                         nnfi                           rfi 
                        1.000                         1.000 
                          nfi                          pnfi 
                        1.000                         0.000 
                          ifi                           rni 
                        1.000                         1.000 
                   cfi.scaled                    tli.scaled 
                        1.000                         1.000 
                   cfi.robust                    tli.robust 
                           NA                            NA 
                  nnfi.scaled                   nnfi.robust 
                        1.000                            NA 
                   rfi.scaled                    nfi.scaled 
                        1.000                         1.000 
                   ifi.scaled                    rni.scaled 
                        1.000                         1.000 
                   rni.robust                         rmsea 
                           NA                         0.000 
               rmsea.ci.lower                rmsea.ci.upper 
                        0.000                         0.000 
                 rmsea.pvalue                  rmsea.scaled 
                           NA                         0.000 
        rmsea.ci.lower.scaled         rmsea.ci.upper.scaled 
                        0.000                         0.000 
          rmsea.pvalue.scaled                  rmsea.robust 
                           NA                            NA 
        rmsea.ci.lower.robust         rmsea.ci.upper.robust 
                        0.000                         0.000 
          rmsea.pvalue.robust                           rmr 
                           NA                         0.742 
                   rmr_nomean                          srmr 
                        0.000                         0.000 
                 srmr_bentler           srmr_bentler_nomean 
                        0.742                         0.000 
                         crmr                   crmr_nomean 
                        0.959                         0.000 
                   srmr_mplus             srmr_mplus_nomean 
                           NA                            NA 
                        cn_05                         cn_01 
                        1.000                         1.000 
                          gfi                          agfi 
                        1.000                         1.000 
                         pgfi                           mfi 
                        0.000                         1.000 

               lhs  op                                     rhs          label
1              Epi   ~                                  Matsmk              a
2              Epi   ~                                  Matagg              b
3              Epi   ~                                FamScore              c
4              Epi   ~                                  EduPar              d
5              Epi   ~                                n_trauma              e
6              Epi   ~                                     Age               
7              Epi   ~                                 int_dis               
8              Epi   ~                              medication               
9              Epi   ~                          contraceptives               
10             Epi   ~                                cigday_1               
11             Epi   ~                                      V8               
12           group   ~                                  Matsmk              f
13           group   ~                                  Matagg              g
14           group   ~                                FamScore              h
15           group   ~                                  EduPar              i
16           group   ~                                n_trauma              j
17           group   ~                                     Age               
18           group   ~                                 int_dis               
19           group   ~                              medication               
20           group   ~                          contraceptives               
21           group   ~                                cigday_1               
22           group   ~                                      V8               
23           group   ~                                     Epi              z
24           group   |                                      t1               
25             Epi  ~~                                     Epi               
26           group  ~~                                   group               
27          Matsmk  ~~                                  Matsmk               
28          Matsmk  ~~                                  Matagg               
29          Matsmk  ~~                                FamScore               
30          Matsmk  ~~                                  EduPar               
31          Matsmk  ~~                                n_trauma               
32          Matsmk  ~~                                     Age               
33          Matsmk  ~~                                 int_dis               
34          Matsmk  ~~                              medication               
35          Matsmk  ~~                          contraceptives               
36          Matsmk  ~~                                cigday_1               
37          Matsmk  ~~                                      V8               
38          Matagg  ~~                                  Matagg               
39          Matagg  ~~                                FamScore               
40          Matagg  ~~                                  EduPar               
41          Matagg  ~~                                n_trauma               
42          Matagg  ~~                                     Age               
43          Matagg  ~~                                 int_dis               
44          Matagg  ~~                              medication               
45          Matagg  ~~                          contraceptives               
46          Matagg  ~~                                cigday_1               
47          Matagg  ~~                                      V8               
48        FamScore  ~~                                FamScore               
49        FamScore  ~~                                  EduPar               
50        FamScore  ~~                                n_trauma               
51        FamScore  ~~                                     Age               
52        FamScore  ~~                                 int_dis               
53        FamScore  ~~                              medication               
54        FamScore  ~~                          contraceptives               
55        FamScore  ~~                                cigday_1               
56        FamScore  ~~                                      V8               
57          EduPar  ~~                                  EduPar               
58          EduPar  ~~                                n_trauma               
59          EduPar  ~~                                     Age               
60          EduPar  ~~                                 int_dis               
61          EduPar  ~~                              medication               
62          EduPar  ~~                          contraceptives               
63          EduPar  ~~                                cigday_1               
64          EduPar  ~~                                      V8               
65        n_trauma  ~~                                n_trauma               
66        n_trauma  ~~                                     Age               
67        n_trauma  ~~                                 int_dis               
68        n_trauma  ~~                              medication               
69        n_trauma  ~~                          contraceptives               
70        n_trauma  ~~                                cigday_1               
71        n_trauma  ~~                                      V8               
72             Age  ~~                                     Age               
73             Age  ~~                                 int_dis               
74             Age  ~~                              medication               
75             Age  ~~                          contraceptives               
76             Age  ~~                                cigday_1               
77             Age  ~~                                      V8               
78         int_dis  ~~                                 int_dis               
79         int_dis  ~~                              medication               
80         int_dis  ~~                          contraceptives               
81         int_dis  ~~                                cigday_1               
82         int_dis  ~~                                      V8               
83      medication  ~~                              medication               
84      medication  ~~                          contraceptives               
85      medication  ~~                                cigday_1               
86      medication  ~~                                      V8               
87  contraceptives  ~~                          contraceptives               
88  contraceptives  ~~                                cigday_1               
89  contraceptives  ~~                                      V8               
90        cigday_1  ~~                                cigday_1               
91        cigday_1  ~~                                      V8               
92              V8  ~~                                      V8               
93           group ~*~                                   group               
94             Epi  ~1                                                       
95           group  ~1                                                       
96          Matsmk  ~1                                                       
97          Matagg  ~1                                                       
98        FamScore  ~1                                                       
99          EduPar  ~1                                                       
100       n_trauma  ~1                                                       
101            Age  ~1                                                       
102        int_dis  ~1                                                       
103     medication  ~1                                                       
104 contraceptives  ~1                                                       
105       cigday_1  ~1                                                       
106             V8  ~1                                                       
107   directMatsmk  :=                                       f   directMatsmk
108   directMatagg  :=                                       g   directMatagg
109 directFamScore  :=                                       h directFamScore
110   directEduPar  :=                                       i   directEduPar
111 directn_trauma  :=                                       j directn_trauma
112      EpiMatsmk  :=                                     a*z      EpiMatsmk
113      EpiMatagg  :=                                     b*z      EpiMatagg
114    EpiFamScore  :=                                     c*z    EpiFamScore
115      EpiEduPar  :=                                     d*z      EpiEduPar
116    Epin_trauma  :=                                     e*z    Epin_trauma
117          total  := f+g+h+i+j+(a*z)+(b*z)+(c*z)+(d*z)+(e*z)          total
       est     se      z pvalue ci.lower ci.upper
1    0.014  0.025  0.573  0.567   -0.035    0.064
2    0.023  0.038  0.590  0.555   -0.053    0.098
3   -0.037  0.042 -0.871  0.384   -0.119    0.046
4   -0.090  0.060 -1.514  0.130   -0.208    0.027
5    0.025  0.048  0.523  0.601   -0.069    0.119
6    0.034  0.064  0.534  0.593   -0.091    0.160
7    0.023  0.024  0.934  0.350   -0.025    0.071
8    0.007  0.030  0.248  0.804   -0.051    0.066
9   -0.016  0.027 -0.583  0.560   -0.069    0.037
10   0.022  0.052  0.425  0.671   -0.079    0.123
11   0.060  0.306  0.197  0.844   -0.540    0.660
12   0.078  1.107  0.071  0.944   -2.092    2.248
13   1.249  2.383  0.524  0.600   -3.421    5.919
14   0.526  1.914  0.275  0.783   -3.226    4.278
15  -2.316  2.797 -0.828  0.408   -7.798    3.165
16   2.090  1.387  1.506  0.132   -0.629    4.808
17  -3.306  1.889 -1.750  0.080   -7.007    0.396
18   1.003  0.828  1.212  0.226   -0.619    2.625
19   1.073  0.724  1.482  0.138   -0.346    2.492
20   0.336  0.720  0.466  0.641   -1.076    1.748
21  10.127  7.243  1.398  0.162   -4.070   24.323
22  12.524 14.939  0.838  0.402  -16.756   41.805
23  12.386 20.689  0.599  0.549  -28.163   52.936
24   7.408  8.008  0.925  0.355   -8.288   23.104
25   0.006  0.001  5.129  0.000    0.004    0.009
26   0.010  0.000     NA     NA    0.010    0.010
27   0.196  0.000     NA     NA    0.196    0.196
28   0.049  0.000     NA     NA    0.049    0.049
29  -0.009  0.000     NA     NA   -0.009   -0.009
30  -0.006  0.000     NA     NA   -0.006   -0.006
31   0.007  0.000     NA     NA    0.007    0.007
32  -0.003  0.000     NA     NA   -0.003   -0.003
33   0.022  0.000     NA     NA    0.022    0.022
34   0.004  0.000     NA     NA    0.004    0.004
35   0.022  0.000     NA     NA    0.022    0.022
36   0.017  0.000     NA     NA    0.017    0.017
37   0.003  0.000     NA     NA    0.003    0.003
38   0.091  0.000     NA     NA    0.091    0.091
39   0.034  0.000     NA     NA    0.034    0.034
40  -0.017  0.000     NA     NA   -0.017   -0.017
41   0.007  0.000     NA     NA    0.007    0.007
42   0.000  0.000     NA     NA    0.000    0.000
43   0.033  0.000     NA     NA    0.033    0.033
44   0.008  0.000     NA     NA    0.008    0.008
45   0.008  0.000     NA     NA    0.008    0.008
46   0.010  0.000     NA     NA    0.010    0.010
47   0.001  0.000     NA     NA    0.001    0.001
48   0.132  0.000     NA     NA    0.132    0.132
49  -0.029  0.000     NA     NA   -0.029   -0.029
50   0.027  0.000     NA     NA    0.027    0.027
51   0.004  0.000     NA     NA    0.004    0.004
52   0.065  0.000     NA     NA    0.065    0.065
53   0.004  0.000     NA     NA    0.004    0.004
54   0.058  0.000     NA     NA    0.058    0.058
55   0.044  0.000     NA     NA    0.044    0.044
56   0.001  0.000     NA     NA    0.001    0.001
57   0.054  0.000     NA     NA    0.054    0.054
58  -0.008  0.000     NA     NA   -0.008   -0.008
59   0.003  0.000     NA     NA    0.003    0.003
60  -0.019  0.000     NA     NA   -0.019   -0.019
61   0.010  0.000     NA     NA    0.010    0.010
62  -0.013  0.000     NA     NA   -0.013   -0.013
63  -0.015  0.000     NA     NA   -0.015   -0.015
64   0.000  0.000     NA     NA    0.000    0.000
65   0.051  0.000     NA     NA    0.051    0.051
66   0.002  0.000     NA     NA    0.002    0.002
67   0.042  0.000     NA     NA    0.042    0.042
68   0.018  0.000     NA     NA    0.018    0.018
69   0.018  0.000     NA     NA    0.018    0.018
70   0.021  0.000     NA     NA    0.021    0.021
71   0.000  0.000     NA     NA    0.000    0.000
72   0.047  0.000     NA     NA    0.047    0.047
73   0.008  0.000     NA     NA    0.008    0.008
74  -0.002  0.000     NA     NA   -0.002   -0.002
75   0.035  0.000     NA     NA    0.035    0.035
76   0.009  0.000     NA     NA    0.009    0.009
77  -0.001  0.000     NA     NA   -0.001   -0.001
78   0.213  0.000     NA     NA    0.213    0.213
79   0.061  0.000     NA     NA    0.061    0.061
80   0.061  0.000     NA     NA    0.061    0.061
81   0.044  0.000     NA     NA    0.044    0.044
82   0.006  0.000     NA     NA    0.006    0.006
83   0.146  0.000     NA     NA    0.146    0.146
84   0.035  0.000     NA     NA    0.035    0.035
85   0.003  0.000     NA     NA    0.003    0.003
86   0.002  0.000     NA     NA    0.002    0.002
87   0.213  0.000     NA     NA    0.213    0.213
88   0.049  0.000     NA     NA    0.049    0.049
89   0.003  0.000     NA     NA    0.003    0.003
90   0.062  0.000     NA     NA    0.062    0.062
91   0.002  0.000     NA     NA    0.002    0.002
92   0.005  0.000     NA     NA    0.005    0.005
93   1.000  0.000     NA     NA    1.000    1.000
94   0.134  0.171  0.784  0.433   -0.201    0.469
95   0.000  0.000     NA     NA    0.000    0.000
96   0.262  0.000     NA     NA    0.262    0.262
97   0.100  0.000     NA     NA    0.100    0.100
98   0.225  0.000     NA     NA    0.225    0.225
99   0.606  0.000     NA     NA    0.606    0.606
100  0.196  0.000     NA     NA    0.196    0.196
101  0.562  0.000     NA     NA    0.562    0.562
102  0.300  0.000     NA     NA    0.300    0.300
103  0.175  0.000     NA     NA    0.175    0.175
104  0.300  0.000     NA     NA    0.300    0.300
105  0.124  0.000     NA     NA    0.124    0.124
106  0.529  0.000     NA     NA    0.529    0.529
107  0.078  1.107  0.071  0.944   -2.092    2.248
108  1.249  2.383  0.524  0.600   -3.421    5.919
109  0.526  1.914  0.275  0.783   -3.226    4.278
110 -2.316  2.797 -0.828  0.408   -7.798    3.165
111  2.090  1.387  1.506  0.132   -0.629    4.808
112  0.178  0.432  0.412  0.680   -0.669    1.025
113  0.281  0.668  0.420  0.674   -1.029    1.591
114 -0.452  0.917 -0.493  0.622   -2.251    1.346
115 -1.121  2.019 -0.555  0.579   -5.078    2.836
116  0.311  0.788  0.394  0.693   -1.233    1.855
117  0.823  4.116  0.200  0.842   -7.244    8.889

    label            lhs edge            rhs           est           std group
1       a         Matsmk   ~>            Epi  1.438673e-02  0.0741179628      
2       b         Matagg   ~>            Epi  2.267876e-02  0.0796629313      
3       c       FamScore   ~>            Epi -3.652791e-02 -0.1545801550      
4       d         EduPar   ~>            Epi -9.048835e-02 -0.2441969198      
5       e       n_trauma   ~>            Epi  2.508125e-02  0.0661264989      
6                    Age   ~>            Epi  3.417168e-02  0.0866454295      
7                int_dis   ~>            Epi  2.287155e-02  0.1227216212      
8             medication   ~>            Epi  7.364842e-03  0.0327661364      
9         contraceptives   ~>            Epi -1.577718e-02 -0.0846554328      
10              cigday_1   ~>            Epi  2.200542e-02  0.0635063420      
11                    V8   ~>            Epi  6.028764e-02  0.0477664897      
12      f         Matsmk   ~>          group  7.806065e-02  0.0085921942      
13      g         Matagg   ~>          group  1.249013e+00  0.0937377451      
14      h       FamScore   ~>          group  5.260579e-01  0.0475633998      
15      i         EduPar   ~>          group -2.316420e+00 -0.1335596716      
16      j       n_trauma   ~>          group  2.089539e+00  0.1177029208      
17                   Age   ~>          group -3.305688e+00 -0.1790818485      
18               int_dis   ~>          group  1.003070e+00  0.1149918512      
19            medication   ~>          group  1.072802e+00  0.1019745562      
20        contraceptives   ~>          group  3.357290e-01  0.0384879458      
21              cigday_1   ~>          group  1.012685e+01  0.6244133457      
22                    V8   ~>          group  1.252446e+01  0.2120138949      
23      z            Epi   ~>          group  1.238624e+01  0.2646366947      
25                   Epi  <->            Epi  6.453078e-03  0.8736462116      
26                 group  <->          group  9.975008e-03  0.0006164571      
27                Matsmk  <->         Matsmk  1.960443e-01  1.0000000000      
28                Matsmk  <->         Matagg  4.936709e-02  0.3693241433      
29                Matsmk  <->       FamScore -9.177215e-03 -0.0569887592      
30                Matsmk  <->         EduPar -5.564346e-03 -0.0541843459      
31                Matsmk  <->       n_trauma  7.459313e-03  0.0743497863      
32                Matsmk  <->            Age -3.217300e-03 -0.0333441329      
33                Matsmk  <->        int_dis  2.151899e-02  0.1053910232      
34                Matsmk  <->     medication  4.113924e-03  0.0242997446      
35                Matsmk  <-> contraceptives  2.151899e-02  0.1053910232      
36                Matsmk  <->       cigday_1  1.693829e-02  0.1542372547      
37                Matsmk  <->             V8  2.928139e-03  0.0971189320      
38                Matagg  <->         Matagg  9.113924e-02  1.0000000000      
39                Matagg  <->       FamScore  3.417722e-02  0.3112715087      
40                Matagg  <->         EduPar -1.656118e-02 -0.2365241196      
41                Matagg  <->       n_trauma  7.233273e-03  0.1057402114      
42                Matagg  <->            Age  3.118694e-04  0.0047405101      
43                Matagg  <->        int_dis  3.291139e-02  0.2364027144      
44                Matagg  <->     medication  7.594937e-03  0.0657951695      
45                Matagg  <-> contraceptives  7.594937e-03  0.0545544726      
46                Matagg  <->       cigday_1  1.018987e-02  0.1360858260      
47                Matagg  <->             V8  8.272067e-04  0.0402393217      
48              FamScore  <->       FamScore  1.322785e-01  1.0000000000      
49              FamScore  <->         EduPar -2.948312e-02 -0.3495149022      
50              FamScore  <->       n_trauma  2.667269e-02  0.3236534989      
51              FamScore  <->            Age  3.636947e-03  0.0458878230      
52              FamScore  <->        int_dis  6.455696e-02  0.3849084009      
53              FamScore  <->     medication  4.430380e-03  0.0318580293      
54              FamScore  <-> contraceptives  5.822785e-02  0.3471722832      
55              FamScore  <->       cigday_1  4.381329e-02  0.4856887960      
56              FamScore  <->             V8  7.814844e-04  0.0315547719      
57                EduPar  <->         EduPar  5.379307e-02  1.0000000000      
58                EduPar  <->       n_trauma -8.024412e-03 -0.1526891136      
59                EduPar  <->            Age  2.762108e-03  0.0546490350      
60                EduPar  <->        int_dis -1.909283e-02 -0.1785114035      
61                EduPar  <->     medication  1.017932e-02  0.1147832062      
62                EduPar  <-> contraceptives -1.329114e-02 -0.1242676068      
63                EduPar  <->       cigday_1 -1.493803e-02 -0.2596730517      
64                EduPar  <->             V8 -8.860887e-06 -0.0005610523      
65              n_trauma  <->       n_trauma  5.134332e-02  1.0000000000      
66              n_trauma  <->            Age  1.582278e-03  0.0320439451      
67              n_trauma  <->        int_dis  4.159132e-02  0.3980335009      
68              n_trauma  <->     medication  1.763110e-02  0.2034979577      
69              n_trauma  <-> contraceptives  1.808318e-02  0.1730580439      
70              n_trauma  <->       cigday_1  2.128165e-02  0.3786692420      
71              n_trauma  <->             V8 -4.694340e-04 -0.0304243917      
72                   Age  <->            Age  4.748866e-02  1.0000000000      
73                   Age  <->        int_dis  8.090259e-03  0.0805056484      
74                   Age  <->     medication -1.655660e-03 -0.0198700345      
75                   Age  <-> contraceptives  3.524124e-02  0.3506833348      
76                   Age  <->       cigday_1  8.542355e-03  0.1580445206      
77                   Age  <->             V8 -1.333633e-03 -0.0898732659      
78               int_dis  <->        int_dis  2.126582e-01  1.0000000000      
79               int_dis  <->     medication  6.075949e-02  0.3445843938      
80               int_dis  <-> contraceptives  6.075949e-02  0.2857142857      
81               int_dis  <->       cigday_1  4.449367e-02  0.3890038953      
82               int_dis  <->             V8  5.645344e-03  0.1797788722      
83            medication  <->     medication  1.462025e-01  1.0000000000      
84            medication  <-> contraceptives  3.544304e-02  0.2010075631      
85            medication  <->       cigday_1  3.275316e-03  0.0345360471      
86            medication  <->             V8  2.084232e-03  0.0800493604      
87        contraceptives  <-> contraceptives  2.126582e-01  1.0000000000      
88        contraceptives  <->       cigday_1  4.892405e-02  0.4277382803      
89        contraceptives  <->             V8  2.688833e-03  0.0856272484      
90              cigday_1  <->       cigday_1  6.151859e-02  1.0000000000      
91              cigday_1  <->             V8  1.509276e-03  0.0893623867      
92                    V8  <->             V8  4.636832e-03  1.0000000000      
93                 group  <->          group  1.000000e+00  1.0000000000      
94                        int            Epi  1.340350e-01  1.5595617056      
95                        int          group  0.000000e+00  0.0000000000      
96                        int         Matsmk  2.625000e-01  0.5928600601      
97                        int         Matagg  1.000000e-01  0.3312434486      
98                        int       FamScore  2.250000e-01  0.6186398880      
99                        int         EduPar  6.062500e-01  2.6138976225      
100                       int       n_trauma  1.964286e-01  0.8668873691      
101                       int            Age  5.621377e-01  2.5795724974      
102                       int        int_dis  3.000000e-01  0.6505492185      
103                       int     medication  1.750000e-01  0.4576785957      
104                       int contraceptives  3.000000e-01  0.6505492185      
105                       int       cigday_1  1.243750e-01  0.5014526157      
106                       int             V8  5.286908e-01  7.7640983340      
    fixed par
1   FALSE   1
2   FALSE   2
3   FALSE   3
4   FALSE   4
5   FALSE   5
6   FALSE   6
7   FALSE   7
8   FALSE   8
9   FALSE   9
10  FALSE  10
11  FALSE  11
12  FALSE  12
13  FALSE  13
14  FALSE  14
15  FALSE  15
16  FALSE  16
17  FALSE  17
18  FALSE  18
19  FALSE  19
20  FALSE  20
21  FALSE  21
22  FALSE  22
23  FALSE  23
25  FALSE  25
26   TRUE   0
27   TRUE   0
28   TRUE   0
29   TRUE   0
30   TRUE   0
31   TRUE   0
32   TRUE   0
33   TRUE   0
34   TRUE   0
35   TRUE   0
36   TRUE   0
37   TRUE   0
38   TRUE   0
39   TRUE   0
40   TRUE   0
41   TRUE   0
42   TRUE   0
43   TRUE   0
44   TRUE   0
45   TRUE   0
46   TRUE   0
47   TRUE   0
48   TRUE   0
49   TRUE   0
50   TRUE   0
51   TRUE   0
52   TRUE   0
53   TRUE   0
54   TRUE   0
55   TRUE   0
56   TRUE   0
57   TRUE   0
58   TRUE   0
59   TRUE   0
60   TRUE   0
61   TRUE   0
62   TRUE   0
63   TRUE   0
64   TRUE   0
65   TRUE   0
66   TRUE   0
67   TRUE   0
68   TRUE   0
69   TRUE   0
70   TRUE   0
71   TRUE   0
72   TRUE   0
73   TRUE   0
74   TRUE   0
75   TRUE   0
76   TRUE   0
77   TRUE   0
78   TRUE   0
79   TRUE   0
80   TRUE   0
81   TRUE   0
82   TRUE   0
83   TRUE   0
84   TRUE   0
85   TRUE   0
86   TRUE   0
87   TRUE   0
88   TRUE   0
89   TRUE   0
90   TRUE   0
91   TRUE   0
92   TRUE   0
93   TRUE   0
94  FALSE  26
95   TRUE   0
96   TRUE   0
97   TRUE   0
98   TRUE   0
99   TRUE   0
100  TRUE   0
101  TRUE   0
102  TRUE   0
103  TRUE   0
104  TRUE   0
105  TRUE   0
106  TRUE   0
############################
############################
Epi_M2 
############################
############################
##Mediation Model ##
lavaan 0.6-7 ended normally after 125 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of free parameters                         26
                                                      
                                                  Used       Total
  Number of observations                            80          99
                                                                  
Model Test User Model:
                                              Standard      Robust
  Test Statistic                                 0.000       0.000
  Degrees of freedom                                 0           0

Parameter Estimates:

  Standard errors                           Robust.sem
  Information                                 Expected
  Information saturated (h1) model        Unstructured

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  Epi ~                                               
    Matsmk     (a)    0.009    0.042    0.217    0.829
    Matagg     (b)   -0.017    0.064   -0.261    0.794
    FamScore   (c)   -0.054    0.063   -0.853    0.393
    EduPar     (d)   -0.010    0.092   -0.109    0.913
    n_trauma   (e)    0.018    0.096    0.188    0.851
    Age              -0.042    0.101   -0.416    0.677
    int_dis          -0.010    0.038   -0.255    0.799
    medication        0.018    0.039    0.453    0.651
    contrcptvs        0.074    0.053    1.390    0.165
    cigday_1         -0.058    0.091   -0.641    0.522
    V8               -0.522    0.239   -2.187    0.029
  group ~                                             
    Matsmk     (f)    0.335    1.112    0.301    0.764
    Matagg     (g)    1.386    2.234    0.620    0.535
    FamScore   (h)   -0.392    1.882   -0.208    0.835
    EduPar     (i)   -3.524    2.208   -1.596    0.110
    n_trauma   (j)    2.558    1.304    1.962    0.050
    Age              -3.246    2.417   -1.343    0.179
    int_dis           1.203    0.762    1.579    0.114
    medication        1.319    0.808    1.632    0.103
    contrcptvs        0.784    0.728    1.076    0.282
    cigday_1          9.894    7.152    1.383    0.167
    V8                8.740   16.605    0.526    0.599
    Epi        (z)   -8.681    0.632  -13.736    0.000

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               0.886    0.141    6.296    0.000
   .group             0.000                           

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)
    group|t1         -1.943    8.652   -0.225    0.822

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               0.013    0.002    6.750    0.000
   .group             0.025                           

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)
    group             1.000                           

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)
    directMatsmk      0.335    1.112    0.301    0.764
    directMatagg      1.386    2.234    0.620    0.535
    directFamScore   -0.392    1.882   -0.208    0.835
    directEduPar     -3.524    2.208   -1.596    0.110
    directn_trauma    2.558    1.304    1.962    0.050
    EpiMatsmk        -0.078    0.360   -0.217    0.828
    EpiMatagg         0.144    0.549    0.262    0.793
    EpiFamScore       0.466    0.550    0.847    0.397
    EpiEduPar         0.087    0.796    0.109    0.913
    Epin_trauma      -0.158    0.837   -0.188    0.851
    total             0.823    4.116    0.200    0.842

                         npar                          fmin 
                       26.000                         0.000 
                        chisq                            df 
                        0.000                         0.000 
                       pvalue                  chisq.scaled 
                           NA                         0.000 
                    df.scaled                 pvalue.scaled 
                        0.000                            NA 
         chisq.scaling.factor                baseline.chisq 
                           NA                       171.816 
                  baseline.df               baseline.pvalue 
                        1.000                         0.000 
        baseline.chisq.scaled            baseline.df.scaled 
                      171.816                         1.000 
       baseline.pvalue.scaled baseline.chisq.scaling.factor 
                        0.000                         1.000 
                          cfi                           tli 
                        1.000                         1.000 
                         nnfi                           rfi 
                        1.000                         1.000 
                          nfi                          pnfi 
                        1.000                         0.000 
                          ifi                           rni 
                        1.000                         1.000 
                   cfi.scaled                    tli.scaled 
                        1.000                         1.000 
                   cfi.robust                    tli.robust 
                           NA                            NA 
                  nnfi.scaled                   nnfi.robust 
                        1.000                            NA 
                   rfi.scaled                    nfi.scaled 
                        1.000                         1.000 
                   ifi.scaled                    rni.scaled 
                        1.000                         1.000 
                   rni.robust                         rmsea 
                           NA                         0.000 
               rmsea.ci.lower                rmsea.ci.upper 
                        0.000                         0.000 
                 rmsea.pvalue                  rmsea.scaled 
                           NA                         0.000 
        rmsea.ci.lower.scaled         rmsea.ci.upper.scaled 
                        0.000                         0.000 
          rmsea.pvalue.scaled                  rmsea.robust 
                           NA                            NA 
        rmsea.ci.lower.robust         rmsea.ci.upper.robust 
                        0.000                         0.000 
          rmsea.pvalue.robust                           rmr 
                           NA                         3.439 
                   rmr_nomean                          srmr 
                        0.000                         0.000 
                 srmr_bentler           srmr_bentler_nomean 
                        3.439                         0.000 
                         crmr                   crmr_nomean 
                        4.440                         0.000 
                   srmr_mplus             srmr_mplus_nomean 
                           NA                            NA 
                        cn_05                         cn_01 
                        1.000                         1.000 
                          gfi                          agfi 
                        1.000                         1.000 
                         pgfi                           mfi 
                        0.000                         1.000 

               lhs  op                                     rhs          label
1              Epi   ~                                  Matsmk              a
2              Epi   ~                                  Matagg              b
3              Epi   ~                                FamScore              c
4              Epi   ~                                  EduPar              d
5              Epi   ~                                n_trauma              e
6              Epi   ~                                     Age               
7              Epi   ~                                 int_dis               
8              Epi   ~                              medication               
9              Epi   ~                          contraceptives               
10             Epi   ~                                cigday_1               
11             Epi   ~                                      V8               
12           group   ~                                  Matsmk              f
13           group   ~                                  Matagg              g
14           group   ~                                FamScore              h
15           group   ~                                  EduPar              i
16           group   ~                                n_trauma              j
17           group   ~                                     Age               
18           group   ~                                 int_dis               
19           group   ~                              medication               
20           group   ~                          contraceptives               
21           group   ~                                cigday_1               
22           group   ~                                      V8               
23           group   ~                                     Epi              z
24           group   |                                      t1               
25             Epi  ~~                                     Epi               
26           group  ~~                                   group               
27          Matsmk  ~~                                  Matsmk               
28          Matsmk  ~~                                  Matagg               
29          Matsmk  ~~                                FamScore               
30          Matsmk  ~~                                  EduPar               
31          Matsmk  ~~                                n_trauma               
32          Matsmk  ~~                                     Age               
33          Matsmk  ~~                                 int_dis               
34          Matsmk  ~~                              medication               
35          Matsmk  ~~                          contraceptives               
36          Matsmk  ~~                                cigday_1               
37          Matsmk  ~~                                      V8               
38          Matagg  ~~                                  Matagg               
39          Matagg  ~~                                FamScore               
40          Matagg  ~~                                  EduPar               
41          Matagg  ~~                                n_trauma               
42          Matagg  ~~                                     Age               
43          Matagg  ~~                                 int_dis               
44          Matagg  ~~                              medication               
45          Matagg  ~~                          contraceptives               
46          Matagg  ~~                                cigday_1               
47          Matagg  ~~                                      V8               
48        FamScore  ~~                                FamScore               
49        FamScore  ~~                                  EduPar               
50        FamScore  ~~                                n_trauma               
51        FamScore  ~~                                     Age               
52        FamScore  ~~                                 int_dis               
53        FamScore  ~~                              medication               
54        FamScore  ~~                          contraceptives               
55        FamScore  ~~                                cigday_1               
56        FamScore  ~~                                      V8               
57          EduPar  ~~                                  EduPar               
58          EduPar  ~~                                n_trauma               
59          EduPar  ~~                                     Age               
60          EduPar  ~~                                 int_dis               
61          EduPar  ~~                              medication               
62          EduPar  ~~                          contraceptives               
63          EduPar  ~~                                cigday_1               
64          EduPar  ~~                                      V8               
65        n_trauma  ~~                                n_trauma               
66        n_trauma  ~~                                     Age               
67        n_trauma  ~~                                 int_dis               
68        n_trauma  ~~                              medication               
69        n_trauma  ~~                          contraceptives               
70        n_trauma  ~~                                cigday_1               
71        n_trauma  ~~                                      V8               
72             Age  ~~                                     Age               
73             Age  ~~                                 int_dis               
74             Age  ~~                              medication               
75             Age  ~~                          contraceptives               
76             Age  ~~                                cigday_1               
77             Age  ~~                                      V8               
78         int_dis  ~~                                 int_dis               
79         int_dis  ~~                              medication               
80         int_dis  ~~                          contraceptives               
81         int_dis  ~~                                cigday_1               
82         int_dis  ~~                                      V8               
83      medication  ~~                              medication               
84      medication  ~~                          contraceptives               
85      medication  ~~                                cigday_1               
86      medication  ~~                                      V8               
87  contraceptives  ~~                          contraceptives               
88  contraceptives  ~~                                cigday_1               
89  contraceptives  ~~                                      V8               
90        cigday_1  ~~                                cigday_1               
91        cigday_1  ~~                                      V8               
92              V8  ~~                                      V8               
93           group ~*~                                   group               
94             Epi  ~1                                                       
95           group  ~1                                                       
96          Matsmk  ~1                                                       
97          Matagg  ~1                                                       
98        FamScore  ~1                                                       
99          EduPar  ~1                                                       
100       n_trauma  ~1                                                       
101            Age  ~1                                                       
102        int_dis  ~1                                                       
103     medication  ~1                                                       
104 contraceptives  ~1                                                       
105       cigday_1  ~1                                                       
106             V8  ~1                                                       
107   directMatsmk  :=                                       f   directMatsmk
108   directMatagg  :=                                       g   directMatagg
109 directFamScore  :=                                       h directFamScore
110   directEduPar  :=                                       i   directEduPar
111 directn_trauma  :=                                       j directn_trauma
112      EpiMatsmk  :=                                     a*z      EpiMatsmk
113      EpiMatagg  :=                                     b*z      EpiMatagg
114    EpiFamScore  :=                                     c*z    EpiFamScore
115      EpiEduPar  :=                                     d*z      EpiEduPar
116    Epin_trauma  :=                                     e*z    Epin_trauma
117          total  := f+g+h+i+j+(a*z)+(b*z)+(c*z)+(d*z)+(e*z)          total
       est     se       z pvalue ci.lower ci.upper
1    0.009  0.042   0.217  0.829   -0.073    0.091
2   -0.017  0.064  -0.261  0.794   -0.141    0.108
3   -0.054  0.063  -0.853  0.393   -0.177    0.070
4   -0.010  0.092  -0.109  0.913   -0.190    0.170
5    0.018  0.096   0.188  0.851   -0.171    0.207
6   -0.042  0.101  -0.416  0.677   -0.239    0.155
7   -0.010  0.038  -0.255  0.799   -0.083    0.064
8    0.018  0.039   0.453  0.651   -0.060    0.095
9    0.074  0.053   1.390  0.165   -0.030    0.179
10  -0.058  0.091  -0.641  0.522   -0.236    0.120
11  -0.522  0.239  -2.187  0.029   -0.990   -0.054
12   0.335  1.112   0.301  0.764   -1.845    2.515
13   1.386  2.234   0.620  0.535   -2.992    5.765
14  -0.392  1.882  -0.208  0.835   -4.080    3.296
15  -3.524  2.208  -1.596  0.110   -7.851    0.803
16   2.558  1.304   1.962  0.050    0.003    5.113
17  -3.246  2.417  -1.343  0.179   -7.984    1.493
18   1.203  0.762   1.579  0.114   -0.290    2.696
19   1.319  0.808   1.632  0.103   -0.265    2.903
20   0.784  0.728   1.076  0.282   -0.644    2.212
21   9.894  7.152   1.383  0.167   -4.125   23.912
22   8.740 16.605   0.526  0.599  -23.805   41.285
23  -8.681  0.632 -13.736  0.000   -9.920   -7.443
24  -1.943  8.652  -0.225  0.822  -18.900   15.015
25   0.013  0.002   6.750  0.000    0.009    0.017
26   0.025  0.000      NA     NA    0.025    0.025
27   0.196  0.000      NA     NA    0.196    0.196
28   0.049  0.000      NA     NA    0.049    0.049
29  -0.009  0.000      NA     NA   -0.009   -0.009
30  -0.006  0.000      NA     NA   -0.006   -0.006
31   0.007  0.000      NA     NA    0.007    0.007
32  -0.003  0.000      NA     NA   -0.003   -0.003
33   0.022  0.000      NA     NA    0.022    0.022
34   0.004  0.000      NA     NA    0.004    0.004
35   0.022  0.000      NA     NA    0.022    0.022
36   0.017  0.000      NA     NA    0.017    0.017
37   0.003  0.000      NA     NA    0.003    0.003
38   0.091  0.000      NA     NA    0.091    0.091
39   0.034  0.000      NA     NA    0.034    0.034
40  -0.017  0.000      NA     NA   -0.017   -0.017
41   0.007  0.000      NA     NA    0.007    0.007
42   0.000  0.000      NA     NA    0.000    0.000
43   0.033  0.000      NA     NA    0.033    0.033
44   0.008  0.000      NA     NA    0.008    0.008
45   0.008  0.000      NA     NA    0.008    0.008
46   0.010  0.000      NA     NA    0.010    0.010
47   0.001  0.000      NA     NA    0.001    0.001
48   0.132  0.000      NA     NA    0.132    0.132
49  -0.029  0.000      NA     NA   -0.029   -0.029
50   0.027  0.000      NA     NA    0.027    0.027
51   0.004  0.000      NA     NA    0.004    0.004
52   0.065  0.000      NA     NA    0.065    0.065
53   0.004  0.000      NA     NA    0.004    0.004
54   0.058  0.000      NA     NA    0.058    0.058
55   0.044  0.000      NA     NA    0.044    0.044
56   0.001  0.000      NA     NA    0.001    0.001
57   0.054  0.000      NA     NA    0.054    0.054
58  -0.008  0.000      NA     NA   -0.008   -0.008
59   0.003  0.000      NA     NA    0.003    0.003
60  -0.019  0.000      NA     NA   -0.019   -0.019
61   0.010  0.000      NA     NA    0.010    0.010
62  -0.013  0.000      NA     NA   -0.013   -0.013
63  -0.015  0.000      NA     NA   -0.015   -0.015
64   0.000  0.000      NA     NA    0.000    0.000
65   0.051  0.000      NA     NA    0.051    0.051
66   0.002  0.000      NA     NA    0.002    0.002
67   0.042  0.000      NA     NA    0.042    0.042
68   0.018  0.000      NA     NA    0.018    0.018
69   0.018  0.000      NA     NA    0.018    0.018
70   0.021  0.000      NA     NA    0.021    0.021
71   0.000  0.000      NA     NA    0.000    0.000
72   0.047  0.000      NA     NA    0.047    0.047
73   0.008  0.000      NA     NA    0.008    0.008
74  -0.002  0.000      NA     NA   -0.002   -0.002
75   0.035  0.000      NA     NA    0.035    0.035
76   0.009  0.000      NA     NA    0.009    0.009
77  -0.001  0.000      NA     NA   -0.001   -0.001
78   0.213  0.000      NA     NA    0.213    0.213
79   0.061  0.000      NA     NA    0.061    0.061
80   0.061  0.000      NA     NA    0.061    0.061
81   0.044  0.000      NA     NA    0.044    0.044
82   0.006  0.000      NA     NA    0.006    0.006
83   0.146  0.000      NA     NA    0.146    0.146
84   0.035  0.000      NA     NA    0.035    0.035
85   0.003  0.000      NA     NA    0.003    0.003
86   0.002  0.000      NA     NA    0.002    0.002
87   0.213  0.000      NA     NA    0.213    0.213
88   0.049  0.000      NA     NA    0.049    0.049
89   0.003  0.000      NA     NA    0.003    0.003
90   0.062  0.000      NA     NA    0.062    0.062
91   0.002  0.000      NA     NA    0.002    0.002
92   0.005  0.000      NA     NA    0.005    0.005
93   1.000  0.000      NA     NA    1.000    1.000
94   0.886  0.141   6.296  0.000    0.610    1.162
95   0.000  0.000      NA     NA    0.000    0.000
96   0.262  0.000      NA     NA    0.262    0.262
97   0.100  0.000      NA     NA    0.100    0.100
98   0.225  0.000      NA     NA    0.225    0.225
99   0.606  0.000      NA     NA    0.606    0.606
100  0.196  0.000      NA     NA    0.196    0.196
101  0.562  0.000      NA     NA    0.562    0.562
102  0.300  0.000      NA     NA    0.300    0.300
103  0.175  0.000      NA     NA    0.175    0.175
104  0.300  0.000      NA     NA    0.300    0.300
105  0.124  0.000      NA     NA    0.124    0.124
106  0.529  0.000      NA     NA    0.529    0.529
107  0.335  1.112   0.301  0.764   -1.845    2.515
108  1.386  2.234   0.620  0.535   -2.992    5.765
109 -0.392  1.882  -0.208  0.835   -4.080    3.296
110 -3.524  2.208  -1.596  0.110   -7.851    0.803
111  2.558  1.304   1.962  0.050    0.003    5.113
112 -0.078  0.360  -0.217  0.828   -0.784    0.628
113  0.144  0.549   0.262  0.793   -0.932    1.219
114  0.466  0.550   0.847  0.397   -0.612    1.543
115  0.087  0.796   0.109  0.913   -1.472    1.647
116 -0.158  0.837  -0.188  0.851   -1.799    1.483
117  0.823  4.116   0.200  0.842   -7.244    8.889

    label            lhs edge            rhs           est           std group
1       a         Matsmk   ~>            Epi  9.021715e-03  0.0322271117      
2       b         Matagg   ~>            Epi -1.656132e-02 -0.0403369374      
3       c       FamScore   ~>            Epi -5.363064e-02 -0.1573666703      
4       d         EduPar   ~>            Epi -1.003047e-02 -0.0187689362      
5       e       n_trauma   ~>            Epi  1.817114e-02  0.0332184436      
6                    Age   ~>            Epi -4.183866e-02 -0.0735576520      
7                int_dis   ~>            Epi -9.609875e-03 -0.0357531231      
8             medication   ~>            Epi  1.786833e-02  0.0551209256      
9         contraceptives   ~>            Epi  7.415668e-02  0.2758966954      
10              cigday_1   ~>            Epi -5.823697e-02 -0.1165352062      
11                    V8   ~>            Epi -5.220008e-01 -0.2867721968      
12      f         Matsmk   ~>          group  3.345784e-01  0.0368272908      
13      g         Matagg   ~>          group  1.386144e+00  0.1040293437      
14      h       FamScore   ~>          group -3.919697e-01 -0.0354398486      
15      i         EduPar   ~>          group -3.524309e+00 -0.2032038294      
16      j       n_trauma   ~>          group  2.557950e+00  0.1440883623      
17                   Age   ~>          group -3.245643e+00 -0.1758289888      
18               int_dis   ~>          group  1.202936e+00  0.1379045202      
19            medication   ~>          group  1.319145e+00  0.1253905485      
20        contraceptives   ~>          group  7.840853e-01  0.0898874779      
21              cigday_1   ~>          group  9.893837e+00  0.6100462328      
22                    V8   ~>          group  8.739550e+00  0.1479430498      
23      z            Epi   ~>          group -8.681300e+00 -0.2675003892      
25                   Epi  <->            Epi  1.294098e-02  0.8423209205      
26                 group  <->          group  2.470311e-02  0.0015266561      
27                Matsmk  <->         Matsmk  1.960443e-01  1.0000000000      
28                Matsmk  <->         Matagg  4.936709e-02  0.3693241433      
29                Matsmk  <->       FamScore -9.177215e-03 -0.0569887592      
30                Matsmk  <->         EduPar -5.564346e-03 -0.0541843459      
31                Matsmk  <->       n_trauma  7.459313e-03  0.0743497863      
32                Matsmk  <->            Age -3.217300e-03 -0.0333441329      
33                Matsmk  <->        int_dis  2.151899e-02  0.1053910232      
34                Matsmk  <->     medication  4.113924e-03  0.0242997446      
35                Matsmk  <-> contraceptives  2.151899e-02  0.1053910232      
36                Matsmk  <->       cigday_1  1.693829e-02  0.1542372547      
37                Matsmk  <->             V8  2.928139e-03  0.0971189320      
38                Matagg  <->         Matagg  9.113924e-02  1.0000000000      
39                Matagg  <->       FamScore  3.417722e-02  0.3112715087      
40                Matagg  <->         EduPar -1.656118e-02 -0.2365241196      
41                Matagg  <->       n_trauma  7.233273e-03  0.1057402114      
42                Matagg  <->            Age  3.118694e-04  0.0047405101      
43                Matagg  <->        int_dis  3.291139e-02  0.2364027144      
44                Matagg  <->     medication  7.594937e-03  0.0657951695      
45                Matagg  <-> contraceptives  7.594937e-03  0.0545544726      
46                Matagg  <->       cigday_1  1.018987e-02  0.1360858260      
47                Matagg  <->             V8  8.272067e-04  0.0402393217      
48              FamScore  <->       FamScore  1.322785e-01  1.0000000000      
49              FamScore  <->         EduPar -2.948312e-02 -0.3495149022      
50              FamScore  <->       n_trauma  2.667269e-02  0.3236534989      
51              FamScore  <->            Age  3.636947e-03  0.0458878230      
52              FamScore  <->        int_dis  6.455696e-02  0.3849084009      
53              FamScore  <->     medication  4.430380e-03  0.0318580293      
54              FamScore  <-> contraceptives  5.822785e-02  0.3471722832      
55              FamScore  <->       cigday_1  4.381329e-02  0.4856887960      
56              FamScore  <->             V8  7.814844e-04  0.0315547719      
57                EduPar  <->         EduPar  5.379307e-02  1.0000000000      
58                EduPar  <->       n_trauma -8.024412e-03 -0.1526891136      
59                EduPar  <->            Age  2.762108e-03  0.0546490350      
60                EduPar  <->        int_dis -1.909283e-02 -0.1785114035      
61                EduPar  <->     medication  1.017932e-02  0.1147832062      
62                EduPar  <-> contraceptives -1.329114e-02 -0.1242676068      
63                EduPar  <->       cigday_1 -1.493803e-02 -0.2596730517      
64                EduPar  <->             V8 -8.860887e-06 -0.0005610523      
65              n_trauma  <->       n_trauma  5.134332e-02  1.0000000000      
66              n_trauma  <->            Age  1.582278e-03  0.0320439451      
67              n_trauma  <->        int_dis  4.159132e-02  0.3980335009      
68              n_trauma  <->     medication  1.763110e-02  0.2034979577      
69              n_trauma  <-> contraceptives  1.808318e-02  0.1730580439      
70              n_trauma  <->       cigday_1  2.128165e-02  0.3786692420      
71              n_trauma  <->             V8 -4.694340e-04 -0.0304243917      
72                   Age  <->            Age  4.748866e-02  1.0000000000      
73                   Age  <->        int_dis  8.090259e-03  0.0805056484      
74                   Age  <->     medication -1.655660e-03 -0.0198700345      
75                   Age  <-> contraceptives  3.524124e-02  0.3506833348      
76                   Age  <->       cigday_1  8.542355e-03  0.1580445206      
77                   Age  <->             V8 -1.333633e-03 -0.0898732659      
78               int_dis  <->        int_dis  2.126582e-01  1.0000000000      
79               int_dis  <->     medication  6.075949e-02  0.3445843938      
80               int_dis  <-> contraceptives  6.075949e-02  0.2857142857      
81               int_dis  <->       cigday_1  4.449367e-02  0.3890038953      
82               int_dis  <->             V8  5.645344e-03  0.1797788722      
83            medication  <->     medication  1.462025e-01  1.0000000000      
84            medication  <-> contraceptives  3.544304e-02  0.2010075631      
85            medication  <->       cigday_1  3.275316e-03  0.0345360471      
86            medication  <->             V8  2.084232e-03  0.0800493604      
87        contraceptives  <-> contraceptives  2.126582e-01  1.0000000000      
88        contraceptives  <->       cigday_1  4.892405e-02  0.4277382803      
89        contraceptives  <->             V8  2.688833e-03  0.0856272484      
90              cigday_1  <->       cigday_1  6.151859e-02  1.0000000000      
91              cigday_1  <->             V8  1.509276e-03  0.0893623867      
92                    V8  <->             V8  4.636832e-03  1.0000000000      
93                 group  <->          group  1.000000e+00  1.0000000000      
94                        int            Epi  8.859017e-01  7.1472786192      
95                        int          group  0.000000e+00  0.0000000000      
96                        int         Matsmk  2.625000e-01  0.5928600601      
97                        int         Matagg  1.000000e-01  0.3312434486      
98                        int       FamScore  2.250000e-01  0.6186398880      
99                        int         EduPar  6.062500e-01  2.6138976225      
100                       int       n_trauma  1.964286e-01  0.8668873691      
101                       int            Age  5.621377e-01  2.5795724974      
102                       int        int_dis  3.000000e-01  0.6505492185      
103                       int     medication  1.750000e-01  0.4576785957      
104                       int contraceptives  3.000000e-01  0.6505492185      
105                       int       cigday_1  1.243750e-01  0.5014526157      
106                       int             V8  5.286908e-01  7.7640983340      
    fixed par
1   FALSE   1
2   FALSE   2
3   FALSE   3
4   FALSE   4
5   FALSE   5
6   FALSE   6
7   FALSE   7
8   FALSE   8
9   FALSE   9
10  FALSE  10
11  FALSE  11
12  FALSE  12
13  FALSE  13
14  FALSE  14
15  FALSE  15
16  FALSE  16
17  FALSE  17
18  FALSE  18
19  FALSE  19
20  FALSE  20
21  FALSE  21
22  FALSE  22
23  FALSE  23
25  FALSE  25
26   TRUE   0
27   TRUE   0
28   TRUE   0
29   TRUE   0
30   TRUE   0
31   TRUE   0
32   TRUE   0
33   TRUE   0
34   TRUE   0
35   TRUE   0
36   TRUE   0
37   TRUE   0
38   TRUE   0
39   TRUE   0
40   TRUE   0
41   TRUE   0
42   TRUE   0
43   TRUE   0
44   TRUE   0
45   TRUE   0
46   TRUE   0
47   TRUE   0
48   TRUE   0
49   TRUE   0
50   TRUE   0
51   TRUE   0
52   TRUE   0
53   TRUE   0
54   TRUE   0
55   TRUE   0
56   TRUE   0
57   TRUE   0
58   TRUE   0
59   TRUE   0
60   TRUE   0
61   TRUE   0
62   TRUE   0
63   TRUE   0
64   TRUE   0
65   TRUE   0
66   TRUE   0
67   TRUE   0
68   TRUE   0
69   TRUE   0
70   TRUE   0
71   TRUE   0
72   TRUE   0
73   TRUE   0
74   TRUE   0
75   TRUE   0
76   TRUE   0
77   TRUE   0
78   TRUE   0
79   TRUE   0
80   TRUE   0
81   TRUE   0
82   TRUE   0
83   TRUE   0
84   TRUE   0
85   TRUE   0
86   TRUE   0
87   TRUE   0
88   TRUE   0
89   TRUE   0
90   TRUE   0
91   TRUE   0
92   TRUE   0
93   TRUE   0
94  FALSE  26
95   TRUE   0
96   TRUE   0
97   TRUE   0
98   TRUE   0
99   TRUE   0
100  TRUE   0
101  TRUE   0
102  TRUE   0
103  TRUE   0
104  TRUE   0
105  TRUE   0
106  TRUE   0
############################
############################
Epi_M15 
############################
############################
##Mediation Model ##
lavaan 0.6-7 ended normally after 128 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of free parameters                         26
                                                      
                                                  Used       Total
  Number of observations                            80          99
                                                                  
Model Test User Model:
                                              Standard      Robust
  Test Statistic                                 0.000       0.000
  Degrees of freedom                                 0           0

Parameter Estimates:

  Standard errors                           Robust.sem
  Information                                 Expected
  Information saturated (h1) model        Unstructured

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  Epi ~                                               
    Matsmk     (a)   -0.055    0.057   -0.964    0.335
    Matagg     (b)    0.074    0.106    0.695    0.487
    FamScore   (c)    0.113    0.082    1.378    0.168
    EduPar     (d)    0.229    0.104    2.213    0.027
    n_trauma   (e)   -0.062    0.089   -0.701    0.483
    Age              -0.088    0.121   -0.727    0.467
    int_dis          -0.065    0.047   -1.378    0.168
    medication       -0.024    0.056   -0.433    0.665
    contrcptvs        0.032    0.055    0.579    0.562
    cigday_1         -0.052    0.113   -0.458    0.647
    V8                0.007    0.271    0.026    0.979
  group ~                                             
    Matsmk     (f)   -0.073    1.061   -0.069    0.945
    Matagg     (g)    1.971    2.351    0.838    0.402
    FamScore   (h)    0.746    1.901    0.392    0.695
    EduPar     (i)   -2.071    2.241   -0.924    0.355
    n_trauma   (j)    2.029    1.289    1.574    0.115
    Age              -3.407    2.353   -1.448    0.148
    int_dis           0.899    0.769    1.169    0.242
    medication        1.021    0.729    1.400    0.161
    contrcptvs        0.331    0.694    0.476    0.634
    cigday_1         10.090    7.086    1.424    0.154
    V8               13.314   16.711    0.797    0.426
    Epi        (z)   -5.965    1.303   -4.578    0.000

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               0.597    0.171    3.490    0.000
   .group             0.000                           

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)
    group|t1          2.189    8.807    0.249    0.804

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               0.025    0.005    5.557    0.000
   .group             0.102                           

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)
    group             1.000                           

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)
    directMatsmk     -0.073    1.061   -0.069    0.945
    directMatagg      1.971    2.351    0.838    0.402
    directFamScore    0.746    1.901    0.392    0.695
    directEduPar     -2.071    2.241   -0.924    0.355
    directn_trauma    2.029    1.289    1.574    0.115
    EpiMatsmk         0.329    0.338    0.976    0.329
    EpiMatagg        -0.441    0.632   -0.697    0.486
    EpiFamScore      -0.673    0.538   -1.249    0.212
    EpiEduPar        -1.367    0.653   -2.093    0.036
    Epin_trauma       0.371    0.547    0.679    0.497
    total             0.823    4.116    0.200    0.842

                         npar                          fmin 
                       26.000                         0.000 
                        chisq                            df 
                        0.000                         0.000 
                       pvalue                  chisq.scaled 
                           NA                         0.000 
                    df.scaled                 pvalue.scaled 
                        0.000                            NA 
         chisq.scaling.factor                baseline.chisq 
                           NA                        30.016 
                  baseline.df               baseline.pvalue 
                        1.000                         0.000 
        baseline.chisq.scaled            baseline.df.scaled 
                       30.016                         1.000 
       baseline.pvalue.scaled baseline.chisq.scaling.factor 
                        0.000                         1.000 
                          cfi                           tli 
                        1.000                         1.000 
                         nnfi                           rfi 
                        1.000                         1.000 
                          nfi                          pnfi 
                        1.000                         0.000 
                          ifi                           rni 
                        1.000                         1.000 
                   cfi.scaled                    tli.scaled 
                        1.000                         1.000 
                   cfi.robust                    tli.robust 
                           NA                            NA 
                  nnfi.scaled                   nnfi.robust 
                        1.000                            NA 
                   rfi.scaled                    nfi.scaled 
                        1.000                         1.000 
                   ifi.scaled                    rni.scaled 
                        1.000                         1.000 
                   rni.robust                         rmsea 
                           NA                         0.000 
               rmsea.ci.lower                rmsea.ci.upper 
                        0.000                         0.000 
                 rmsea.pvalue                  rmsea.scaled 
                           NA                         0.000 
        rmsea.ci.lower.scaled         rmsea.ci.upper.scaled 
                        0.000                         0.000 
          rmsea.pvalue.scaled                  rmsea.robust 
                           NA                            NA 
        rmsea.ci.lower.robust         rmsea.ci.upper.robust 
                        0.000                         0.000 
          rmsea.pvalue.robust                           rmr 
                           NA                         1.592 
                   rmr_nomean                          srmr 
                        0.000                         0.000 
                 srmr_bentler           srmr_bentler_nomean 
                        1.592                         0.000 
                         crmr                   crmr_nomean 
                        2.055                         0.000 
                   srmr_mplus             srmr_mplus_nomean 
                           NA                            NA 
                        cn_05                         cn_01 
                        1.000                         1.000 
                          gfi                          agfi 
                        1.000                         1.000 
                         pgfi                           mfi 
                        0.000                         1.000 

               lhs  op                                     rhs          label
1              Epi   ~                                  Matsmk              a
2              Epi   ~                                  Matagg              b
3              Epi   ~                                FamScore              c
4              Epi   ~                                  EduPar              d
5              Epi   ~                                n_trauma              e
6              Epi   ~                                     Age               
7              Epi   ~                                 int_dis               
8              Epi   ~                              medication               
9              Epi   ~                          contraceptives               
10             Epi   ~                                cigday_1               
11             Epi   ~                                      V8               
12           group   ~                                  Matsmk              f
13           group   ~                                  Matagg              g
14           group   ~                                FamScore              h
15           group   ~                                  EduPar              i
16           group   ~                                n_trauma              j
17           group   ~                                     Age               
18           group   ~                                 int_dis               
19           group   ~                              medication               
20           group   ~                          contraceptives               
21           group   ~                                cigday_1               
22           group   ~                                      V8               
23           group   ~                                     Epi              z
24           group   |                                      t1               
25             Epi  ~~                                     Epi               
26           group  ~~                                   group               
27          Matsmk  ~~                                  Matsmk               
28          Matsmk  ~~                                  Matagg               
29          Matsmk  ~~                                FamScore               
30          Matsmk  ~~                                  EduPar               
31          Matsmk  ~~                                n_trauma               
32          Matsmk  ~~                                     Age               
33          Matsmk  ~~                                 int_dis               
34          Matsmk  ~~                              medication               
35          Matsmk  ~~                          contraceptives               
36          Matsmk  ~~                                cigday_1               
37          Matsmk  ~~                                      V8               
38          Matagg  ~~                                  Matagg               
39          Matagg  ~~                                FamScore               
40          Matagg  ~~                                  EduPar               
41          Matagg  ~~                                n_trauma               
42          Matagg  ~~                                     Age               
43          Matagg  ~~                                 int_dis               
44          Matagg  ~~                              medication               
45          Matagg  ~~                          contraceptives               
46          Matagg  ~~                                cigday_1               
47          Matagg  ~~                                      V8               
48        FamScore  ~~                                FamScore               
49        FamScore  ~~                                  EduPar               
50        FamScore  ~~                                n_trauma               
51        FamScore  ~~                                     Age               
52        FamScore  ~~                                 int_dis               
53        FamScore  ~~                              medication               
54        FamScore  ~~                          contraceptives               
55        FamScore  ~~                                cigday_1               
56        FamScore  ~~                                      V8               
57          EduPar  ~~                                  EduPar               
58          EduPar  ~~                                n_trauma               
59          EduPar  ~~                                     Age               
60          EduPar  ~~                                 int_dis               
61          EduPar  ~~                              medication               
62          EduPar  ~~                          contraceptives               
63          EduPar  ~~                                cigday_1               
64          EduPar  ~~                                      V8               
65        n_trauma  ~~                                n_trauma               
66        n_trauma  ~~                                     Age               
67        n_trauma  ~~                                 int_dis               
68        n_trauma  ~~                              medication               
69        n_trauma  ~~                          contraceptives               
70        n_trauma  ~~                                cigday_1               
71        n_trauma  ~~                                      V8               
72             Age  ~~                                     Age               
73             Age  ~~                                 int_dis               
74             Age  ~~                              medication               
75             Age  ~~                          contraceptives               
76             Age  ~~                                cigday_1               
77             Age  ~~                                      V8               
78         int_dis  ~~                                 int_dis               
79         int_dis  ~~                              medication               
80         int_dis  ~~                          contraceptives               
81         int_dis  ~~                                cigday_1               
82         int_dis  ~~                                      V8               
83      medication  ~~                              medication               
84      medication  ~~                          contraceptives               
85      medication  ~~                                cigday_1               
86      medication  ~~                                      V8               
87  contraceptives  ~~                          contraceptives               
88  contraceptives  ~~                                cigday_1               
89  contraceptives  ~~                                      V8               
90        cigday_1  ~~                                cigday_1               
91        cigday_1  ~~                                      V8               
92              V8  ~~                                      V8               
93           group ~*~                                   group               
94             Epi  ~1                                                       
95           group  ~1                                                       
96          Matsmk  ~1                                                       
97          Matagg  ~1                                                       
98        FamScore  ~1                                                       
99          EduPar  ~1                                                       
100       n_trauma  ~1                                                       
101            Age  ~1                                                       
102        int_dis  ~1                                                       
103     medication  ~1                                                       
104 contraceptives  ~1                                                       
105       cigday_1  ~1                                                       
106             V8  ~1                                                       
107   directMatsmk  :=                                       f   directMatsmk
108   directMatagg  :=                                       g   directMatagg
109 directFamScore  :=                                       h directFamScore
110   directEduPar  :=                                       i   directEduPar
111 directn_trauma  :=                                       j directn_trauma
112      EpiMatsmk  :=                                     a*z      EpiMatsmk
113      EpiMatagg  :=                                     b*z      EpiMatagg
114    EpiFamScore  :=                                     c*z    EpiFamScore
115      EpiEduPar  :=                                     d*z      EpiEduPar
116    Epin_trauma  :=                                     e*z    Epin_trauma
117          total  := f+g+h+i+j+(a*z)+(b*z)+(c*z)+(d*z)+(e*z)          total
       est     se      z pvalue ci.lower ci.upper
1   -0.055  0.057 -0.964  0.335   -0.168    0.057
2    0.074  0.106  0.695  0.487   -0.134    0.282
3    0.113  0.082  1.378  0.168   -0.048    0.273
4    0.229  0.104  2.213  0.027    0.026    0.432
5   -0.062  0.089 -0.701  0.483   -0.236    0.112
6   -0.088  0.121 -0.727  0.467   -0.325    0.149
7   -0.065  0.047 -1.378  0.168   -0.157    0.027
8   -0.024  0.056 -0.433  0.665   -0.133    0.085
9    0.032  0.055  0.579  0.562   -0.076    0.140
10  -0.052  0.113 -0.458  0.647   -0.274    0.170
11   0.007  0.271  0.026  0.979   -0.524    0.539
12  -0.073  1.061 -0.069  0.945   -2.152    2.006
13   1.971  2.351  0.838  0.402   -2.637    6.579
14   0.746  1.901  0.392  0.695   -2.980    4.472
15  -2.071  2.241 -0.924  0.355   -6.462    2.321
16   2.029  1.289  1.574  0.115   -0.498    4.556
17  -3.407  2.353 -1.448  0.148   -8.018    1.204
18   0.899  0.769  1.169  0.242   -0.608    2.406
19   1.021  0.729  1.400  0.161   -0.408    2.449
20   0.331  0.694  0.476  0.634   -1.030    1.691
21  10.090  7.086  1.424  0.154   -3.798   23.979
22  13.314 16.711  0.797  0.426  -19.439   46.066
23  -5.965  1.303 -4.578  0.000   -8.519   -3.411
24   2.189  8.807  0.249  0.804  -15.072   19.450
25   0.025  0.005  5.557  0.000    0.016    0.034
26   0.102  0.000     NA     NA    0.102    0.102
27   0.196  0.000     NA     NA    0.196    0.196
28   0.049  0.000     NA     NA    0.049    0.049
29  -0.009  0.000     NA     NA   -0.009   -0.009
30  -0.006  0.000     NA     NA   -0.006   -0.006
31   0.007  0.000     NA     NA    0.007    0.007
32  -0.003  0.000     NA     NA   -0.003   -0.003
33   0.022  0.000     NA     NA    0.022    0.022
34   0.004  0.000     NA     NA    0.004    0.004
35   0.022  0.000     NA     NA    0.022    0.022
36   0.017  0.000     NA     NA    0.017    0.017
37   0.003  0.000     NA     NA    0.003    0.003
38   0.091  0.000     NA     NA    0.091    0.091
39   0.034  0.000     NA     NA    0.034    0.034
40  -0.017  0.000     NA     NA   -0.017   -0.017
41   0.007  0.000     NA     NA    0.007    0.007
42   0.000  0.000     NA     NA    0.000    0.000
43   0.033  0.000     NA     NA    0.033    0.033
44   0.008  0.000     NA     NA    0.008    0.008
45   0.008  0.000     NA     NA    0.008    0.008
46   0.010  0.000     NA     NA    0.010    0.010
47   0.001  0.000     NA     NA    0.001    0.001
48   0.132  0.000     NA     NA    0.132    0.132
49  -0.029  0.000     NA     NA   -0.029   -0.029
50   0.027  0.000     NA     NA    0.027    0.027
51   0.004  0.000     NA     NA    0.004    0.004
52   0.065  0.000     NA     NA    0.065    0.065
53   0.004  0.000     NA     NA    0.004    0.004
54   0.058  0.000     NA     NA    0.058    0.058
55   0.044  0.000     NA     NA    0.044    0.044
56   0.001  0.000     NA     NA    0.001    0.001
57   0.054  0.000     NA     NA    0.054    0.054
58  -0.008  0.000     NA     NA   -0.008   -0.008
59   0.003  0.000     NA     NA    0.003    0.003
60  -0.019  0.000     NA     NA   -0.019   -0.019
61   0.010  0.000     NA     NA    0.010    0.010
62  -0.013  0.000     NA     NA   -0.013   -0.013
63  -0.015  0.000     NA     NA   -0.015   -0.015
64   0.000  0.000     NA     NA    0.000    0.000
65   0.051  0.000     NA     NA    0.051    0.051
66   0.002  0.000     NA     NA    0.002    0.002
67   0.042  0.000     NA     NA    0.042    0.042
68   0.018  0.000     NA     NA    0.018    0.018
69   0.018  0.000     NA     NA    0.018    0.018
70   0.021  0.000     NA     NA    0.021    0.021
71   0.000  0.000     NA     NA    0.000    0.000
72   0.047  0.000     NA     NA    0.047    0.047
73   0.008  0.000     NA     NA    0.008    0.008
74  -0.002  0.000     NA     NA   -0.002   -0.002
75   0.035  0.000     NA     NA    0.035    0.035
76   0.009  0.000     NA     NA    0.009    0.009
77  -0.001  0.000     NA     NA   -0.001   -0.001
78   0.213  0.000     NA     NA    0.213    0.213
79   0.061  0.000     NA     NA    0.061    0.061
80   0.061  0.000     NA     NA    0.061    0.061
81   0.044  0.000     NA     NA    0.044    0.044
82   0.006  0.000     NA     NA    0.006    0.006
83   0.146  0.000     NA     NA    0.146    0.146
84   0.035  0.000     NA     NA    0.035    0.035
85   0.003  0.000     NA     NA    0.003    0.003
86   0.002  0.000     NA     NA    0.002    0.002
87   0.213  0.000     NA     NA    0.213    0.213
88   0.049  0.000     NA     NA    0.049    0.049
89   0.003  0.000     NA     NA    0.003    0.003
90   0.062  0.000     NA     NA    0.062    0.062
91   0.002  0.000     NA     NA    0.002    0.002
92   0.005  0.000     NA     NA    0.005    0.005
93   1.000  0.000     NA     NA    1.000    1.000
94   0.597  0.171  3.490  0.000    0.262    0.932
95   0.000  0.000     NA     NA    0.000    0.000
96   0.262  0.000     NA     NA    0.262    0.262
97   0.100  0.000     NA     NA    0.100    0.100
98   0.225  0.000     NA     NA    0.225    0.225
99   0.606  0.000     NA     NA    0.606    0.606
100  0.196  0.000     NA     NA    0.196    0.196
101  0.562  0.000     NA     NA    0.562    0.562
102  0.300  0.000     NA     NA    0.300    0.300
103  0.175  0.000     NA     NA    0.175    0.175
104  0.300  0.000     NA     NA    0.300    0.300
105  0.124  0.000     NA     NA    0.124    0.124
106  0.529  0.000     NA     NA    0.529    0.529
107 -0.073  1.061 -0.069  0.945   -2.152    2.006
108  1.971  2.351  0.838  0.402   -2.637    6.579
109  0.746  1.901  0.392  0.695   -2.980    4.472
110 -2.071  2.241 -0.924  0.355   -6.462    2.321
111  2.029  1.289  1.574  0.115   -0.498    4.556
112  0.329  0.338  0.976  0.329   -0.332    0.991
113 -0.441  0.632 -0.697  0.486   -1.680    0.799
114 -0.673  0.538 -1.249  0.212   -1.728    0.383
115 -1.367  0.653 -2.093  0.036   -2.647   -0.087
116  0.371  0.547  0.679  0.497   -0.700    1.442
117  0.823  4.116  0.200  0.842   -7.244    8.889

    label            lhs edge            rhs           est           std group
1       a         Matsmk   ~>            Epi -5.522110e-02 -0.1398958713      
2       b         Matagg   ~>            Epi  7.387035e-02  0.1275985011      
3       c       FamScore   ~>            Epi  1.127425e-01  0.2346145133      
4       d         EduPar   ~>            Epi  2.291129e-01  0.3040432768      
5       e       n_trauma   ~>            Epi -6.219035e-02 -0.0806283393      
6                    Age   ~>            Epi -8.796430e-02 -0.1096791548      
7                int_dis   ~>            Epi -6.492648e-02 -0.1713111722      
8             medication   ~>            Epi -2.404003e-02 -0.0525938795      
9         contraceptives   ~>            Epi  3.188492e-02  0.0841296697      
10              cigday_1   ~>            Epi -5.184015e-02 -0.0735685389      
11                    V8   ~>            Epi  7.148729e-03  0.0027852375      
12      f         Matsmk   ~>          group -7.313453e-02 -0.0080499725      
13      g         Matagg   ~>          group  1.970553e+00  0.1478888978      
14      h       FamScore   ~>          group  7.461203e-01  0.0674603007      
15      i         EduPar   ~>          group -2.070577e+00 -0.1193849131      
16      j       n_trauma   ~>          group  2.029237e+00  0.1143061573      
17                   Age   ~>          group -3.407134e+00 -0.1845775805      
18               int_dis   ~>          group  8.990774e-01  0.1030701679      
19            medication   ~>          group  1.020627e+00  0.0970150471      
20        contraceptives   ~>          group  3.305022e-01  0.0378887435      
21              cigday_1   ~>          group  1.009018e+01  0.6221528685      
22                    V8   ~>          group  1.331384e+01  0.2253765130      
23      z            Epi   ~>          group -5.964978e+00 -0.2591677250      
25                   Epi  <->            Epi  2.524032e-02  0.8263046934      
26                 group  <->          group  1.019253e-01  0.0062989979      
27                Matsmk  <->         Matsmk  1.960443e-01  1.0000000000      
28                Matsmk  <->         Matagg  4.936709e-02  0.3693241433      
29                Matsmk  <->       FamScore -9.177215e-03 -0.0569887592      
30                Matsmk  <->         EduPar -5.564346e-03 -0.0541843459      
31                Matsmk  <->       n_trauma  7.459313e-03  0.0743497863      
32                Matsmk  <->            Age -3.217300e-03 -0.0333441329      
33                Matsmk  <->        int_dis  2.151899e-02  0.1053910232      
34                Matsmk  <->     medication  4.113924e-03  0.0242997446      
35                Matsmk  <-> contraceptives  2.151899e-02  0.1053910232      
36                Matsmk  <->       cigday_1  1.693829e-02  0.1542372547      
37                Matsmk  <->             V8  2.928139e-03  0.0971189320      
38                Matagg  <->         Matagg  9.113924e-02  1.0000000000      
39                Matagg  <->       FamScore  3.417722e-02  0.3112715087      
40                Matagg  <->         EduPar -1.656118e-02 -0.2365241196      
41                Matagg  <->       n_trauma  7.233273e-03  0.1057402114      
42                Matagg  <->            Age  3.118694e-04  0.0047405101      
43                Matagg  <->        int_dis  3.291139e-02  0.2364027144      
44                Matagg  <->     medication  7.594937e-03  0.0657951695      
45                Matagg  <-> contraceptives  7.594937e-03  0.0545544726      
46                Matagg  <->       cigday_1  1.018987e-02  0.1360858260      
47                Matagg  <->             V8  8.272067e-04  0.0402393217      
48              FamScore  <->       FamScore  1.322785e-01  1.0000000000      
49              FamScore  <->         EduPar -2.948312e-02 -0.3495149022      
50              FamScore  <->       n_trauma  2.667269e-02  0.3236534989      
51              FamScore  <->            Age  3.636947e-03  0.0458878230      
52              FamScore  <->        int_dis  6.455696e-02  0.3849084009      
53              FamScore  <->     medication  4.430380e-03  0.0318580293      
54              FamScore  <-> contraceptives  5.822785e-02  0.3471722832      
55              FamScore  <->       cigday_1  4.381329e-02  0.4856887960      
56              FamScore  <->             V8  7.814844e-04  0.0315547719      
57                EduPar  <->         EduPar  5.379307e-02  1.0000000000      
58                EduPar  <->       n_trauma -8.024412e-03 -0.1526891136      
59                EduPar  <->            Age  2.762108e-03  0.0546490350      
60                EduPar  <->        int_dis -1.909283e-02 -0.1785114035      
61                EduPar  <->     medication  1.017932e-02  0.1147832062      
62                EduPar  <-> contraceptives -1.329114e-02 -0.1242676068      
63                EduPar  <->       cigday_1 -1.493803e-02 -0.2596730517      
64                EduPar  <->             V8 -8.860887e-06 -0.0005610523      
65              n_trauma  <->       n_trauma  5.134332e-02  1.0000000000      
66              n_trauma  <->            Age  1.582278e-03  0.0320439451      
67              n_trauma  <->        int_dis  4.159132e-02  0.3980335009      
68              n_trauma  <->     medication  1.763110e-02  0.2034979577      
69              n_trauma  <-> contraceptives  1.808318e-02  0.1730580439      
70              n_trauma  <->       cigday_1  2.128165e-02  0.3786692420      
71              n_trauma  <->             V8 -4.694340e-04 -0.0304243917      
72                   Age  <->            Age  4.748866e-02  1.0000000000      
73                   Age  <->        int_dis  8.090259e-03  0.0805056484      
74                   Age  <->     medication -1.655660e-03 -0.0198700345      
75                   Age  <-> contraceptives  3.524124e-02  0.3506833348      
76                   Age  <->       cigday_1  8.542355e-03  0.1580445206      
77                   Age  <->             V8 -1.333633e-03 -0.0898732659      
78               int_dis  <->        int_dis  2.126582e-01  1.0000000000      
79               int_dis  <->     medication  6.075949e-02  0.3445843938      
80               int_dis  <-> contraceptives  6.075949e-02  0.2857142857      
81               int_dis  <->       cigday_1  4.449367e-02  0.3890038953      
82               int_dis  <->             V8  5.645344e-03  0.1797788722      
83            medication  <->     medication  1.462025e-01  1.0000000000      
84            medication  <-> contraceptives  3.544304e-02  0.2010075631      
85            medication  <->       cigday_1  3.275316e-03  0.0345360471      
86            medication  <->             V8  2.084232e-03  0.0800493604      
87        contraceptives  <-> contraceptives  2.126582e-01  1.0000000000      
88        contraceptives  <->       cigday_1  4.892405e-02  0.4277382803      
89        contraceptives  <->             V8  2.688833e-03  0.0856272484      
90              cigday_1  <->       cigday_1  6.151859e-02  1.0000000000      
91              cigday_1  <->             V8  1.509276e-03  0.0893623867      
92                    V8  <->             V8  4.636832e-03  1.0000000000      
93                 group  <->          group  1.000000e+00  1.0000000000      
94                        int            Epi  5.966198e-01  3.4136605955      
95                        int          group  0.000000e+00  0.0000000000      
96                        int         Matsmk  2.625000e-01  0.5928600601      
97                        int         Matagg  1.000000e-01  0.3312434486      
98                        int       FamScore  2.250000e-01  0.6186398880      
99                        int         EduPar  6.062500e-01  2.6138976225      
100                       int       n_trauma  1.964286e-01  0.8668873691      
101                       int            Age  5.621377e-01  2.5795724974      
102                       int        int_dis  3.000000e-01  0.6505492185      
103                       int     medication  1.750000e-01  0.4576785957      
104                       int contraceptives  3.000000e-01  0.6505492185      
105                       int       cigday_1  1.243750e-01  0.5014526157      
106                       int             V8  5.286908e-01  7.7640983340      
    fixed par
1   FALSE   1
2   FALSE   2
3   FALSE   3
4   FALSE   4
5   FALSE   5
6   FALSE   6
7   FALSE   7
8   FALSE   8
9   FALSE   9
10  FALSE  10
11  FALSE  11
12  FALSE  12
13  FALSE  13
14  FALSE  14
15  FALSE  15
16  FALSE  16
17  FALSE  17
18  FALSE  18
19  FALSE  19
20  FALSE  20
21  FALSE  21
22  FALSE  22
23  FALSE  23
25  FALSE  25
26   TRUE   0
27   TRUE   0
28   TRUE   0
29   TRUE   0
30   TRUE   0
31   TRUE   0
32   TRUE   0
33   TRUE   0
34   TRUE   0
35   TRUE   0
36   TRUE   0
37   TRUE   0
38   TRUE   0
39   TRUE   0
40   TRUE   0
41   TRUE   0
42   TRUE   0
43   TRUE   0
44   TRUE   0
45   TRUE   0
46   TRUE   0
47   TRUE   0
48   TRUE   0
49   TRUE   0
50   TRUE   0
51   TRUE   0
52   TRUE   0
53   TRUE   0
54   TRUE   0
55   TRUE   0
56   TRUE   0
57   TRUE   0
58   TRUE   0
59   TRUE   0
60   TRUE   0
61   TRUE   0
62   TRUE   0
63   TRUE   0
64   TRUE   0
65   TRUE   0
66   TRUE   0
67   TRUE   0
68   TRUE   0
69   TRUE   0
70   TRUE   0
71   TRUE   0
72   TRUE   0
73   TRUE   0
74   TRUE   0
75   TRUE   0
76   TRUE   0
77   TRUE   0
78   TRUE   0
79   TRUE   0
80   TRUE   0
81   TRUE   0
82   TRUE   0
83   TRUE   0
84   TRUE   0
85   TRUE   0
86   TRUE   0
87   TRUE   0
88   TRUE   0
89   TRUE   0
90   TRUE   0
91   TRUE   0
92   TRUE   0
93   TRUE   0
94  FALSE  26
95   TRUE   0
96   TRUE   0
97   TRUE   0
98   TRUE   0
99   TRUE   0
100  TRUE   0
101  TRUE   0
102  TRUE   0
103  TRUE   0
104  TRUE   0
105  TRUE   0
106  TRUE   0
Warning in lav_samplestats_step2(UNI = FIT, wt = wt, ov.names = ov.names, :
lavaan WARNING: correlation between variables group and Epi is (nearly) 1.0
############################
############################
Epi_M_all 
############################
############################
##Mediation Model ##
lavaan 0.6-7 ended normally after 136 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of free parameters                         26
                                                      
                                                  Used       Total
  Number of observations                            80          99
                                                                  
Model Test User Model:
                                              Standard      Robust
  Test Statistic                                 0.000       0.000
  Degrees of freedom                                 0           0

Parameter Estimates:

  Standard errors                           Robust.sem
  Information                                 Expected
  Information saturated (h1) model        Unstructured

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  Epi ~                                               
    Matsmk     (a)    0.025    0.082    0.301    0.764
    Matagg     (b)    0.132    0.124    1.068    0.285
    FamScore   (c)   -0.102    0.109   -0.934    0.350
    EduPar     (d)   -0.281    0.169   -1.658    0.097
    n_trauma   (e)    0.074    0.126    0.589    0.556
    Age               0.122    0.179    0.679    0.497
    int_dis           0.085    0.074    1.148    0.251
    medication        0.050    0.080    0.623    0.533
    contrcptvs       -0.074    0.084   -0.872    0.383
    cigday_1          0.168    0.140    1.205    0.228
    V8                0.285    1.060    0.268    0.788
  group ~                                             
    Matsmk     (f)    0.161    1.017    0.158    0.874
    Matagg     (g)    1.018    2.327    0.437    0.662
    FamScore   (h)    0.468    1.959    0.239    0.811
    EduPar     (i)   -2.348    2.257   -1.040    0.298
    n_trauma   (j)    2.111    1.316    1.604    0.109
    Age              -3.354    2.203   -1.523    0.128
    int_dis           0.955    0.779    1.227    0.220
    medication        0.970    0.728    1.333    0.183
    contrcptvs        0.426    0.665    0.641    0.522
    cigday_1          9.746    7.183    1.357    0.175
    V8               12.167   14.326    0.849    0.396
    Epi        (z)    3.880    1.952    1.988    0.047

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               0.288    0.585    0.493    0.622
   .group             0.000                           

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)
    group|t1          6.865    7.336    0.936    0.349

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               0.065    0.018    3.666    0.000
   .group             0.016                           

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)
    group             1.000                           

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)
    directMatsmk      0.161    1.017    0.158    0.874
    directMatagg      1.018    2.327    0.437    0.662
    directFamScore    0.468    1.959    0.239    0.811
    directEduPar     -2.348    2.257   -1.040    0.298
    directn_trauma    2.111    1.316    1.604    0.109
    EpiMatsmk         0.095    0.322    0.296    0.767
    EpiMatagg         0.512    0.526    0.973    0.330
    EpiFamScore      -0.394    0.458   -0.861    0.389
    EpiEduPar        -1.089    0.818   -1.332    0.183
    Epin_trauma       0.289    0.512    0.564    0.573
    total             0.823    4.116    0.200    0.842

                         npar                          fmin 
                       26.000                         0.000 
                        chisq                            df 
                        0.000                         0.000 
                       pvalue                  chisq.scaled 
                           NA                         0.000 
                    df.scaled                 pvalue.scaled 
                        0.000                            NA 
         chisq.scaling.factor                baseline.chisq 
                           NA                         5.965 
                  baseline.df               baseline.pvalue 
                        1.000                         0.015 
        baseline.chisq.scaled            baseline.df.scaled 
                        5.965                         1.000 
       baseline.pvalue.scaled baseline.chisq.scaling.factor 
                        0.015                         1.000 
                          cfi                           tli 
                        1.000                         1.000 
                         nnfi                           rfi 
                        1.000                         1.000 
                          nfi                          pnfi 
                        1.000                         0.000 
                          ifi                           rni 
                        1.000                         1.000 
                   cfi.scaled                    tli.scaled 
                        1.000                         1.000 
                   cfi.robust                    tli.robust 
                           NA                            NA 
                  nnfi.scaled                   nnfi.robust 
                        1.000                            NA 
                   rfi.scaled                    nfi.scaled 
                        1.000                         1.000 
                   ifi.scaled                    rni.scaled 
                        1.000                         1.000 
                   rni.robust                         rmsea 
                           NA                         0.000 
               rmsea.ci.lower                rmsea.ci.upper 
                        0.000                         0.000 
                 rmsea.pvalue                  rmsea.scaled 
                           NA                         0.000 
        rmsea.ci.lower.scaled         rmsea.ci.upper.scaled 
                        0.000                         0.000 
          rmsea.pvalue.scaled                  rmsea.robust 
                           NA                            NA 
        rmsea.ci.lower.robust         rmsea.ci.upper.robust 
                        0.000                         0.000 
          rmsea.pvalue.robust                           rmr 
                           NA                         0.500 
                   rmr_nomean                          srmr 
                        0.000                         0.000 
                 srmr_bentler           srmr_bentler_nomean 
                        0.500                         0.000 
                         crmr                   crmr_nomean 
                        0.645                         0.000 
                   srmr_mplus             srmr_mplus_nomean 
                           NA                            NA 
                        cn_05                         cn_01 
                        1.000                         1.000 
                          gfi                          agfi 
                        1.000                         1.000 
                         pgfi                           mfi 
                        0.000                         1.000 

               lhs  op                                     rhs          label
1              Epi   ~                                  Matsmk              a
2              Epi   ~                                  Matagg              b
3              Epi   ~                                FamScore              c
4              Epi   ~                                  EduPar              d
5              Epi   ~                                n_trauma              e
6              Epi   ~                                     Age               
7              Epi   ~                                 int_dis               
8              Epi   ~                              medication               
9              Epi   ~                          contraceptives               
10             Epi   ~                                cigday_1               
11             Epi   ~                                      V8               
12           group   ~                                  Matsmk              f
13           group   ~                                  Matagg              g
14           group   ~                                FamScore              h
15           group   ~                                  EduPar              i
16           group   ~                                n_trauma              j
17           group   ~                                     Age               
18           group   ~                                 int_dis               
19           group   ~                              medication               
20           group   ~                          contraceptives               
21           group   ~                                cigday_1               
22           group   ~                                      V8               
23           group   ~                                     Epi              z
24           group   |                                      t1               
25             Epi  ~~                                     Epi               
26           group  ~~                                   group               
27          Matsmk  ~~                                  Matsmk               
28          Matsmk  ~~                                  Matagg               
29          Matsmk  ~~                                FamScore               
30          Matsmk  ~~                                  EduPar               
31          Matsmk  ~~                                n_trauma               
32          Matsmk  ~~                                     Age               
33          Matsmk  ~~                                 int_dis               
34          Matsmk  ~~                              medication               
35          Matsmk  ~~                          contraceptives               
36          Matsmk  ~~                                cigday_1               
37          Matsmk  ~~                                      V8               
38          Matagg  ~~                                  Matagg               
39          Matagg  ~~                                FamScore               
40          Matagg  ~~                                  EduPar               
41          Matagg  ~~                                n_trauma               
42          Matagg  ~~                                     Age               
43          Matagg  ~~                                 int_dis               
44          Matagg  ~~                              medication               
45          Matagg  ~~                          contraceptives               
46          Matagg  ~~                                cigday_1               
47          Matagg  ~~                                      V8               
48        FamScore  ~~                                FamScore               
49        FamScore  ~~                                  EduPar               
50        FamScore  ~~                                n_trauma               
51        FamScore  ~~                                     Age               
52        FamScore  ~~                                 int_dis               
53        FamScore  ~~                              medication               
54        FamScore  ~~                          contraceptives               
55        FamScore  ~~                                cigday_1               
56        FamScore  ~~                                      V8               
57          EduPar  ~~                                  EduPar               
58          EduPar  ~~                                n_trauma               
59          EduPar  ~~                                     Age               
60          EduPar  ~~                                 int_dis               
61          EduPar  ~~                              medication               
62          EduPar  ~~                          contraceptives               
63          EduPar  ~~                                cigday_1               
64          EduPar  ~~                                      V8               
65        n_trauma  ~~                                n_trauma               
66        n_trauma  ~~                                     Age               
67        n_trauma  ~~                                 int_dis               
68        n_trauma  ~~                              medication               
69        n_trauma  ~~                          contraceptives               
70        n_trauma  ~~                                cigday_1               
71        n_trauma  ~~                                      V8               
72             Age  ~~                                     Age               
73             Age  ~~                                 int_dis               
74             Age  ~~                              medication               
75             Age  ~~                          contraceptives               
76             Age  ~~                                cigday_1               
77             Age  ~~                                      V8               
78         int_dis  ~~                                 int_dis               
79         int_dis  ~~                              medication               
80         int_dis  ~~                          contraceptives               
81         int_dis  ~~                                cigday_1               
82         int_dis  ~~                                      V8               
83      medication  ~~                              medication               
84      medication  ~~                          contraceptives               
85      medication  ~~                                cigday_1               
86      medication  ~~                                      V8               
87  contraceptives  ~~                          contraceptives               
88  contraceptives  ~~                                cigday_1               
89  contraceptives  ~~                                      V8               
90        cigday_1  ~~                                cigday_1               
91        cigday_1  ~~                                      V8               
92              V8  ~~                                      V8               
93           group ~*~                                   group               
94             Epi  ~1                                                       
95           group  ~1                                                       
96          Matsmk  ~1                                                       
97          Matagg  ~1                                                       
98        FamScore  ~1                                                       
99          EduPar  ~1                                                       
100       n_trauma  ~1                                                       
101            Age  ~1                                                       
102        int_dis  ~1                                                       
103     medication  ~1                                                       
104 contraceptives  ~1                                                       
105       cigday_1  ~1                                                       
106             V8  ~1                                                       
107   directMatsmk  :=                                       f   directMatsmk
108   directMatagg  :=                                       g   directMatagg
109 directFamScore  :=                                       h directFamScore
110   directEduPar  :=                                       i   directEduPar
111 directn_trauma  :=                                       j directn_trauma
112      EpiMatsmk  :=                                     a*z      EpiMatsmk
113      EpiMatagg  :=                                     b*z      EpiMatagg
114    EpiFamScore  :=                                     c*z    EpiFamScore
115      EpiEduPar  :=                                     d*z      EpiEduPar
116    Epin_trauma  :=                                     e*z    Epin_trauma
117          total  := f+g+h+i+j+(a*z)+(b*z)+(c*z)+(d*z)+(e*z)          total
       est     se      z pvalue ci.lower ci.upper
1    0.025  0.082  0.301  0.764   -0.136    0.185
2    0.132  0.124  1.068  0.285   -0.110    0.374
3   -0.102  0.109 -0.934  0.350   -0.315    0.112
4   -0.281  0.169 -1.658  0.097   -0.613    0.051
5    0.074  0.126  0.589  0.556   -0.173    0.322
6    0.122  0.179  0.679  0.497   -0.230    0.473
7    0.085  0.074  1.148  0.251   -0.060    0.231
8    0.050  0.080  0.623  0.533   -0.107    0.207
9   -0.074  0.084 -0.872  0.383   -0.239    0.092
10   0.168  0.140  1.205  0.228   -0.105    0.442
11   0.285  1.060  0.268  0.788   -1.793    2.362
12   0.161  1.017  0.158  0.874   -1.833    2.155
13   1.018  2.327  0.437  0.662   -3.543    5.578
14   0.468  1.959  0.239  0.811   -3.372    4.307
15  -2.348  2.257 -1.040  0.298   -6.772    2.076
16   2.111  1.316  1.604  0.109   -0.469    4.691
17  -3.354  2.203 -1.523  0.128   -7.671    0.963
18   0.955  0.779  1.227  0.220   -0.571    2.482
19   0.970  0.728  1.333  0.183   -0.457    2.396
20   0.426  0.665  0.641  0.522   -0.877    1.729
21   9.746  7.183  1.357  0.175   -4.333   23.825
22  12.167 14.326  0.849  0.396  -15.911   40.245
23   3.880  1.952  1.988  0.047    0.054    7.706
24   6.865  7.336  0.936  0.349   -7.514   21.244
25   0.065  0.018  3.666  0.000    0.030    0.100
26   0.016  0.000     NA     NA    0.016    0.016
27   0.196  0.000     NA     NA    0.196    0.196
28   0.049  0.000     NA     NA    0.049    0.049
29  -0.009  0.000     NA     NA   -0.009   -0.009
30  -0.006  0.000     NA     NA   -0.006   -0.006
31   0.007  0.000     NA     NA    0.007    0.007
32  -0.003  0.000     NA     NA   -0.003   -0.003
33   0.022  0.000     NA     NA    0.022    0.022
34   0.004  0.000     NA     NA    0.004    0.004
35   0.022  0.000     NA     NA    0.022    0.022
36   0.017  0.000     NA     NA    0.017    0.017
37   0.003  0.000     NA     NA    0.003    0.003
38   0.091  0.000     NA     NA    0.091    0.091
39   0.034  0.000     NA     NA    0.034    0.034
40  -0.017  0.000     NA     NA   -0.017   -0.017
41   0.007  0.000     NA     NA    0.007    0.007
42   0.000  0.000     NA     NA    0.000    0.000
43   0.033  0.000     NA     NA    0.033    0.033
44   0.008  0.000     NA     NA    0.008    0.008
45   0.008  0.000     NA     NA    0.008    0.008
46   0.010  0.000     NA     NA    0.010    0.010
47   0.001  0.000     NA     NA    0.001    0.001
48   0.132  0.000     NA     NA    0.132    0.132
49  -0.029  0.000     NA     NA   -0.029   -0.029
50   0.027  0.000     NA     NA    0.027    0.027
51   0.004  0.000     NA     NA    0.004    0.004
52   0.065  0.000     NA     NA    0.065    0.065
53   0.004  0.000     NA     NA    0.004    0.004
54   0.058  0.000     NA     NA    0.058    0.058
55   0.044  0.000     NA     NA    0.044    0.044
56   0.001  0.000     NA     NA    0.001    0.001
57   0.054  0.000     NA     NA    0.054    0.054
58  -0.008  0.000     NA     NA   -0.008   -0.008
59   0.003  0.000     NA     NA    0.003    0.003
60  -0.019  0.000     NA     NA   -0.019   -0.019
61   0.010  0.000     NA     NA    0.010    0.010
62  -0.013  0.000     NA     NA   -0.013   -0.013
63  -0.015  0.000     NA     NA   -0.015   -0.015
64   0.000  0.000     NA     NA    0.000    0.000
65   0.051  0.000     NA     NA    0.051    0.051
66   0.002  0.000     NA     NA    0.002    0.002
67   0.042  0.000     NA     NA    0.042    0.042
68   0.018  0.000     NA     NA    0.018    0.018
69   0.018  0.000     NA     NA    0.018    0.018
70   0.021  0.000     NA     NA    0.021    0.021
71   0.000  0.000     NA     NA    0.000    0.000
72   0.047  0.000     NA     NA    0.047    0.047
73   0.008  0.000     NA     NA    0.008    0.008
74  -0.002  0.000     NA     NA   -0.002   -0.002
75   0.035  0.000     NA     NA    0.035    0.035
76   0.009  0.000     NA     NA    0.009    0.009
77  -0.001  0.000     NA     NA   -0.001   -0.001
78   0.213  0.000     NA     NA    0.213    0.213
79   0.061  0.000     NA     NA    0.061    0.061
80   0.061  0.000     NA     NA    0.061    0.061
81   0.044  0.000     NA     NA    0.044    0.044
82   0.006  0.000     NA     NA    0.006    0.006
83   0.146  0.000     NA     NA    0.146    0.146
84   0.035  0.000     NA     NA    0.035    0.035
85   0.003  0.000     NA     NA    0.003    0.003
86   0.002  0.000     NA     NA    0.002    0.002
87   0.213  0.000     NA     NA    0.213    0.213
88   0.049  0.000     NA     NA    0.049    0.049
89   0.003  0.000     NA     NA    0.003    0.003
90   0.062  0.000     NA     NA    0.062    0.062
91   0.002  0.000     NA     NA    0.002    0.002
92   0.005  0.000     NA     NA    0.005    0.005
93   1.000  0.000     NA     NA    1.000    1.000
94   0.288  0.585  0.493  0.622   -0.858    1.434
95   0.000  0.000     NA     NA    0.000    0.000
96   0.262  0.000     NA     NA    0.262    0.262
97   0.100  0.000     NA     NA    0.100    0.100
98   0.225  0.000     NA     NA    0.225    0.225
99   0.606  0.000     NA     NA    0.606    0.606
100  0.196  0.000     NA     NA    0.196    0.196
101  0.562  0.000     NA     NA    0.562    0.562
102  0.300  0.000     NA     NA    0.300    0.300
103  0.175  0.000     NA     NA    0.175    0.175
104  0.300  0.000     NA     NA    0.300    0.300
105  0.124  0.000     NA     NA    0.124    0.124
106  0.529  0.000     NA     NA    0.529    0.529
107  0.161  1.017  0.158  0.874   -1.833    2.155
108  1.018  2.327  0.437  0.662   -3.543    5.578
109  0.468  1.959  0.239  0.811   -3.372    4.307
110 -2.348  2.257 -1.040  0.298   -6.772    2.076
111  2.111  1.316  1.604  0.109   -0.469    4.691
112  0.095  0.322  0.296  0.767   -0.536    0.727
113  0.512  0.526  0.973  0.330   -0.519    1.544
114 -0.394  0.458 -0.861  0.389   -1.292    0.503
115 -1.089  0.818 -1.332  0.183   -2.692    0.514
116  0.289  0.512  0.564  0.573   -0.715    1.293
117  0.823  4.116  0.200  0.842   -7.244    8.889

    label            lhs edge            rhs           est           std group
1       a         Matsmk   ~>            Epi  2.458187e-02  0.0385922838      
2       b         Matagg   ~>            Epi  1.320288e-01  0.1413284937      
3       c       FamScore   ~>            Epi -1.016065e-01 -0.1310311340      
4       d         EduPar   ~>            Epi -2.807576e-01 -0.2308889324      
5       e       n_trauma   ~>            Epi  7.446007e-02  0.0598237817      
6                    Age   ~>            Epi  1.216014e-01  0.0939597533      
7                int_dis   ~>            Epi  8.529375e-02  0.1394654866      
8             medication   ~>            Epi  5.004596e-02  0.0678507993      
9         contraceptives   ~>            Epi -7.362480e-02 -0.1203853562      
10              cigday_1   ~>            Epi  1.683722e-01  0.1480751015      
11                    V8   ~>            Epi  2.846111e-01  0.0687180812      
12      f         Matsmk   ~>          group  1.608809e-01  0.0177082752      
13      g         Matagg   ~>          group  1.017648e+00  0.0763739054      
14      h       FamScore   ~>          group  4.678460e-01  0.0423001876      
15      i         EduPar   ~>          group -2.347896e+00 -0.1353744772      
16      j       n_trauma   ~>          group  2.111297e+00  0.1189285637      
17                   Age   ~>          group -3.354240e+00 -0.1817121416      
18               int_dis   ~>          group  9.554240e-01  0.1095297311      
19            medication   ~>          group  9.698471e-01  0.0921882416      
20        contraceptives   ~>          group  4.259721e-01  0.0488334116      
21              cigday_1   ~>          group  9.746129e+00  0.6009386284      
22                    V8   ~>          group  1.216691e+01  0.2059612926      
23      z            Epi   ~>          group  3.879985e+00  0.2720297673      
25                   Epi  <->            Epi  6.534223e-02  0.8215062257      
26                 group  <->          group  1.631934e-02  0.0010085380      
27                Matsmk  <->         Matsmk  1.960443e-01  1.0000000000      
28                Matsmk  <->         Matagg  4.936709e-02  0.3693241433      
29                Matsmk  <->       FamScore -9.177215e-03 -0.0569887592      
30                Matsmk  <->         EduPar -5.564346e-03 -0.0541843459      
31                Matsmk  <->       n_trauma  7.459313e-03  0.0743497863      
32                Matsmk  <->            Age -3.217300e-03 -0.0333441329      
33                Matsmk  <->        int_dis  2.151899e-02  0.1053910232      
34                Matsmk  <->     medication  4.113924e-03  0.0242997446      
35                Matsmk  <-> contraceptives  2.151899e-02  0.1053910232      
36                Matsmk  <->       cigday_1  1.693829e-02  0.1542372547      
37                Matsmk  <->             V8  2.928139e-03  0.0971189320      
38                Matagg  <->         Matagg  9.113924e-02  1.0000000000      
39                Matagg  <->       FamScore  3.417722e-02  0.3112715087      
40                Matagg  <->         EduPar -1.656118e-02 -0.2365241196      
41                Matagg  <->       n_trauma  7.233273e-03  0.1057402114      
42                Matagg  <->            Age  3.118694e-04  0.0047405101      
43                Matagg  <->        int_dis  3.291139e-02  0.2364027144      
44                Matagg  <->     medication  7.594937e-03  0.0657951695      
45                Matagg  <-> contraceptives  7.594937e-03  0.0545544726      
46                Matagg  <->       cigday_1  1.018987e-02  0.1360858260      
47                Matagg  <->             V8  8.272067e-04  0.0402393217      
48              FamScore  <->       FamScore  1.322785e-01  1.0000000000      
49              FamScore  <->         EduPar -2.948312e-02 -0.3495149022      
50              FamScore  <->       n_trauma  2.667269e-02  0.3236534989      
51              FamScore  <->            Age  3.636947e-03  0.0458878230      
52              FamScore  <->        int_dis  6.455696e-02  0.3849084009      
53              FamScore  <->     medication  4.430380e-03  0.0318580293      
54              FamScore  <-> contraceptives  5.822785e-02  0.3471722832      
55              FamScore  <->       cigday_1  4.381329e-02  0.4856887960      
56              FamScore  <->             V8  7.814844e-04  0.0315547719      
57                EduPar  <->         EduPar  5.379307e-02  1.0000000000      
58                EduPar  <->       n_trauma -8.024412e-03 -0.1526891136      
59                EduPar  <->            Age  2.762108e-03  0.0546490350      
60                EduPar  <->        int_dis -1.909283e-02 -0.1785114035      
61                EduPar  <->     medication  1.017932e-02  0.1147832062      
62                EduPar  <-> contraceptives -1.329114e-02 -0.1242676068      
63                EduPar  <->       cigday_1 -1.493803e-02 -0.2596730517      
64                EduPar  <->             V8 -8.860887e-06 -0.0005610523      
65              n_trauma  <->       n_trauma  5.134332e-02  1.0000000000      
66              n_trauma  <->            Age  1.582278e-03  0.0320439451      
67              n_trauma  <->        int_dis  4.159132e-02  0.3980335009      
68              n_trauma  <->     medication  1.763110e-02  0.2034979577      
69              n_trauma  <-> contraceptives  1.808318e-02  0.1730580439      
70              n_trauma  <->       cigday_1  2.128165e-02  0.3786692420      
71              n_trauma  <->             V8 -4.694340e-04 -0.0304243917      
72                   Age  <->            Age  4.748866e-02  1.0000000000      
73                   Age  <->        int_dis  8.090259e-03  0.0805056484      
74                   Age  <->     medication -1.655660e-03 -0.0198700345      
75                   Age  <-> contraceptives  3.524124e-02  0.3506833348      
76                   Age  <->       cigday_1  8.542355e-03  0.1580445206      
77                   Age  <->             V8 -1.333633e-03 -0.0898732659      
78               int_dis  <->        int_dis  2.126582e-01  1.0000000000      
79               int_dis  <->     medication  6.075949e-02  0.3445843938      
80               int_dis  <-> contraceptives  6.075949e-02  0.2857142857      
81               int_dis  <->       cigday_1  4.449367e-02  0.3890038953      
82               int_dis  <->             V8  5.645344e-03  0.1797788722      
83            medication  <->     medication  1.462025e-01  1.0000000000      
84            medication  <-> contraceptives  3.544304e-02  0.2010075631      
85            medication  <->       cigday_1  3.275316e-03  0.0345360471      
86            medication  <->             V8  2.084232e-03  0.0800493604      
87        contraceptives  <-> contraceptives  2.126582e-01  1.0000000000      
88        contraceptives  <->       cigday_1  4.892405e-02  0.4277382803      
89        contraceptives  <->             V8  2.688833e-03  0.0856272484      
90              cigday_1  <->       cigday_1  6.151859e-02  1.0000000000      
91              cigday_1  <->             V8  1.509276e-03  0.0893623867      
92                    V8  <->             V8  4.636832e-03  1.0000000000      
93                 group  <->          group  1.000000e+00  1.0000000000      
94                        int            Epi  2.878933e-01  1.0207984706      
95                        int          group  0.000000e+00  0.0000000000      
96                        int         Matsmk  2.625000e-01  0.5928600601      
97                        int         Matagg  1.000000e-01  0.3312434486      
98                        int       FamScore  2.250000e-01  0.6186398880      
99                        int         EduPar  6.062500e-01  2.6138976225      
100                       int       n_trauma  1.964286e-01  0.8668873691      
101                       int            Age  5.621377e-01  2.5795724974      
102                       int        int_dis  3.000000e-01  0.6505492185      
103                       int     medication  1.750000e-01  0.4576785957      
104                       int contraceptives  3.000000e-01  0.6505492185      
105                       int       cigday_1  1.243750e-01  0.5014526157      
106                       int             V8  5.286908e-01  7.7640983340      
    fixed par
1   FALSE   1
2   FALSE   2
3   FALSE   3
4   FALSE   4
5   FALSE   5
6   FALSE   6
7   FALSE   7
8   FALSE   8
9   FALSE   9
10  FALSE  10
11  FALSE  11
12  FALSE  12
13  FALSE  13
14  FALSE  14
15  FALSE  15
16  FALSE  16
17  FALSE  17
18  FALSE  18
19  FALSE  19
20  FALSE  20
21  FALSE  21
22  FALSE  22
23  FALSE  23
25  FALSE  25
26   TRUE   0
27   TRUE   0
28   TRUE   0
29   TRUE   0
30   TRUE   0
31   TRUE   0
32   TRUE   0
33   TRUE   0
34   TRUE   0
35   TRUE   0
36   TRUE   0
37   TRUE   0
38   TRUE   0
39   TRUE   0
40   TRUE   0
41   TRUE   0
42   TRUE   0
43   TRUE   0
44   TRUE   0
45   TRUE   0
46   TRUE   0
47   TRUE   0
48   TRUE   0
49   TRUE   0
50   TRUE   0
51   TRUE   0
52   TRUE   0
53   TRUE   0
54   TRUE   0
55   TRUE   0
56   TRUE   0
57   TRUE   0
58   TRUE   0
59   TRUE   0
60   TRUE   0
61   TRUE   0
62   TRUE   0
63   TRUE   0
64   TRUE   0
65   TRUE   0
66   TRUE   0
67   TRUE   0
68   TRUE   0
69   TRUE   0
70   TRUE   0
71   TRUE   0
72   TRUE   0
73   TRUE   0
74   TRUE   0
75   TRUE   0
76   TRUE   0
77   TRUE   0
78   TRUE   0
79   TRUE   0
80   TRUE   0
81   TRUE   0
82   TRUE   0
83   TRUE   0
84   TRUE   0
85   TRUE   0
86   TRUE   0
87   TRUE   0
88   TRUE   0
89   TRUE   0
90   TRUE   0
91   TRUE   0
92   TRUE   0
93   TRUE   0
94  FALSE  26
95   TRUE   0
96   TRUE   0
97   TRUE   0
98   TRUE   0
99   TRUE   0
100  TRUE   0
101  TRUE   0
102  TRUE   0
103  TRUE   0
104  TRUE   0
105  TRUE   0
106  TRUE   0
rmd_paths <-paste0(tempfile(c(names(Netlist))),".Rmd")
names(rmd_paths) <- names(Netlist)

for (n in names(rmd_paths)) {
    sink(file = rmd_paths[n])
    cat("  \n",
        "```{r, echo = FALSE}",
            "Netlist[[n]]",
        "```",
        sep = "  \n")
    sink()
}

Interactive SEM plots

Only direct effects with a significant standardized effect of p<0.05 are shown.

    for (n in names(rmd_paths)) {
        cat(knitr::knit_child(rmd_paths[[n]],
                              quiet= TRUE))
        file.remove(rmd_paths[[n]])
    }

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19042)

Matrix products: default

Random number generation:
 RNG:     Mersenne-Twister 
 Normal:  Inversion 
 Sample:  Rounding 
 
locale:
[1] LC_COLLATE=German_Germany.1252  LC_CTYPE=German_Germany.1252   
[3] LC_MONETARY=German_Germany.1252 LC_NUMERIC=C                   
[5] LC_TIME=German_Germany.1252    

attached base packages:
 [1] grid      parallel  stats4    stats     graphics  grDevices utils    
 [8] datasets  methods   base     

other attached packages:
 [1] plyr_1.8.6                  scales_1.1.1               
 [3] RCircos_1.2.1               compareGroups_4.4.6        
 [5] readxl_1.3.1                RRHO_1.28.0                
 [7] webshot_0.5.2               visNetwork_2.0.9           
 [9] org.Hs.eg.db_3.12.0         AnnotationDbi_1.52.0       
[11] xlsx_0.6.5                  gprofiler2_0.2.0           
[13] BiocParallel_1.24.1         kableExtra_1.3.1           
[15] glmpca_0.2.0                knitr_1.30                 
[17] DESeq2_1.30.0               SummarizedExperiment_1.20.0
[19] Biobase_2.50.0              MatrixGenerics_1.2.0       
[21] matrixStats_0.57.0          GenomicRanges_1.42.0       
[23] GenomeInfoDb_1.26.2         IRanges_2.24.1             
[25] S4Vectors_0.28.1            BiocGenerics_0.36.0        
[27] forcats_0.5.0               stringr_1.4.0              
[29] dplyr_1.0.2                 purrr_0.3.4                
[31] readr_1.4.0                 tidyr_1.1.2                
[33] tibble_3.0.4                tidyverse_1.3.0            
[35] semPlot_1.1.2               lavaan_0.6-7               
[37] viridis_0.5.1               viridisLite_0.3.0          
[39] WGCNA_1.69                  fastcluster_1.1.25         
[41] dynamicTreeCut_1.63-1       ggplot2_3.3.3              
[43] gplots_3.1.1                corrplot_0.84              
[45] RColorBrewer_1.1-2          workflowr_1.6.2            

loaded via a namespace (and not attached):
  [1] coda_0.19-4            bit64_4.0.5            DelayedArray_0.16.0   
  [4] data.table_1.13.6      rpart_4.1-15           RCurl_1.98-1.2        
  [7] doParallel_1.0.16      generics_0.1.0         preprocessCore_1.52.1 
 [10] callr_3.5.1            lambda.r_1.2.4         RSQLite_2.2.2         
 [13] mice_3.12.0            chron_2.3-56           bit_4.0.4             
 [16] xml2_1.3.2             lubridate_1.7.9.2      httpuv_1.5.5          
 [19] assertthat_0.2.1       d3Network_0.5.2.1      xfun_0.20             
 [22] hms_1.0.0              rJava_0.9-13           evaluate_0.14         
 [25] promises_1.1.1         fansi_0.4.1            caTools_1.18.1        
 [28] dbplyr_2.0.0           igraph_1.2.6           DBI_1.1.1             
 [31] geneplotter_1.68.0     tmvnsim_1.0-2          Rsolnp_1.16           
 [34] htmlwidgets_1.5.3      futile.logger_1.4.3    ellipsis_0.3.1        
 [37] crosstalk_1.1.1        backports_1.2.0        pbivnorm_0.6.0        
 [40] annotate_1.68.0        vctrs_0.3.6            abind_1.4-5           
 [43] cachem_1.0.1           withr_2.4.1            HardyWeinberg_1.7.1   
 [46] checkmate_2.0.0        fdrtool_1.2.16         mnormt_2.0.2          
 [49] cluster_2.1.0          mi_1.0                 lazyeval_0.2.2        
 [52] crayon_1.3.4           genefilter_1.72.0      pkgconfig_2.0.3       
 [55] nlme_3.1-151           nnet_7.3-15            rlang_0.4.10          
 [58] lifecycle_0.2.0        kutils_1.70            modelr_0.1.8          
 [61] VennDiagram_1.6.20     cellranger_1.1.0       rprojroot_2.0.2       
 [64] flextable_0.6.2        Matrix_1.2-18          regsem_1.6.2          
 [67] carData_3.0-4          boot_1.3-26            reprex_1.0.0          
 [70] base64enc_0.1-3        processx_3.4.5         whisker_0.4           
 [73] png_0.1-7              rjson_0.2.20           bitops_1.0-6          
 [76] KernSmooth_2.23-18     blob_1.2.1             arm_1.11-2            
 [79] jpeg_0.1-8.1           rockchalk_1.8.144      memoise_2.0.0         
 [82] magrittr_2.0.1         zlibbioc_1.36.0        compiler_4.0.3        
 [85] lme4_1.1-26            cli_2.2.0              XVector_0.30.0        
 [88] pbapply_1.4-3          ps_1.5.0               htmlTable_2.1.0       
 [91] formatR_1.7            Formula_1.2-4          MASS_7.3-53           
 [94] tidyselect_1.1.0       stringi_1.5.3          lisrelToR_0.1.4       
 [97] sem_3.1-11             yaml_2.2.1             OpenMx_2.18.1         
[100] locfit_1.5-9.4         latticeExtra_0.6-29    tools_4.0.3           
[103] matrixcalc_1.0-3       rstudioapi_0.13        uuid_0.1-4            
[106] foreach_1.5.1          foreign_0.8-81         git2r_0.28.0          
[109] gridExtra_2.3          farver_2.0.3           BDgraph_2.63          
[112] digest_0.6.27          shiny_1.6.0            Rcpp_1.0.5            
[115] broom_0.7.3            later_1.1.0.1          writexl_1.3.1         
[118] gdtools_0.2.3          httr_1.4.2             psych_2.0.12          
[121] colorspace_2.0-0       rvest_0.3.6            XML_3.99-0.5          
[124] fs_1.5.0               truncnorm_1.0-8        splines_4.0.3         
[127] statmod_1.4.35         xlsxjars_0.6.1         systemfonts_0.3.2     
[130] plotly_4.9.3           xtable_1.8-4           jsonlite_1.7.2        
[133] nloptr_1.2.2.2         futile.options_1.0.1   corpcor_1.6.9         
[136] glasso_1.11            R6_2.5.0               Hmisc_4.4-2           
[139] mime_0.9               pillar_1.4.7           htmltools_0.5.1.1     
[142] glue_1.4.2             fastmap_1.1.0          minqa_1.2.4           
[145] codetools_0.2-18       lattice_0.20-41        huge_1.3.4.1          
[148] gtools_3.8.2           officer_0.3.16         zip_2.1.1             
[151] GO.db_3.12.1           openxlsx_4.2.3         survival_3.2-7        
[154] rmarkdown_2.6          qgraph_1.6.5           munsell_0.5.0         
[157] GenomeInfoDbData_1.2.4 iterators_1.0.13       impute_1.64.0         
[160] haven_2.3.1            reshape2_1.4.4         gtable_0.3.0