Last updated: 2022-11-30

Checks: 7 0

Knit directory: ampel-leipzig-meld/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210604) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version e1aebf7. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    _targets/
    Ignored:    analysis/article.md
    Ignored:    container/
    Ignored:    logs/
    Ignored:    scripts/R.sh

Untracked files:
    Untracked:  analysis/bibliography/bibliography.bib.sav.tmp
    Untracked:  submission/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/elasticnet.Rmd) and HTML (docs/elasticnet.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd fba81f5 Sebastian Gibb 2022-11-27 feat: add MELD 3.0 score
html 65d58c4 Sebastian Gibb 2022-07-18 chore: rebuild site
html 9da49ce Sebastian Gibb 2022-06-19 chore: rebuild site
Rmd ac8a09d Sebastian Gibb 2022-06-19 feat: use plot(…, what = "path") introduced in ameld 0.0.25
html fb43d01 Sebastian Gibb 2022-06-19 chore: rebuild site
html ebe29cf Sebastian Gibb 2022-06-16 chore: rebuild site
html 8035219 Sebastian Gibb 2022-06-15 chore: rebuild site
Rmd 7ffaeb9 Sebastian Gibb 2022-06-15 feat: add analysis of complete cases
html d3e9462 Sebastian Gibb 2022-06-06 chore: rebuild site
html b20484a Sebastian Gibb 2022-06-06 chore: rebuild site
Rmd baac1e4 Sebastian Gibb 2022-06-06 fix: bootstraping elastic net
html 983ec69 Sebastian Gibb 2022-03-17 chore: rebuild site
Rmd 057f935 Sebastian Gibb 2022-03-17 feat: add elastic net bootstrap and timeROC evaluations

library("targets")
library("ameld")
library("viridisLite")
tar_load(arcvob)
tar_load(bootrcv)
tar_load(bootrcvcc)
tar_load(bootarcv)
tar_load(bootrcv.woIC)
tar_load(amelddata)
tar_load(amelddatacc)
tar_load(ameldcfg)
tar_load(zlog_data)
tar_load(zlog_data_complete_cases)

1 Tuning alpha

arcvob

Call: arcv.glmnet(x = amelddata$x, y = amelddata$y, alpha = ameldcfg$alpha,      nrepcv = ameldcfg$nrepcv, nfolds = ameldcfg$nfolds, balanced = TRUE,      family = "cox", standardize = ameldcfg$standardize, trace.it = FALSE) 

Models: 11
Alpha: 0 0.001 0.008 0.027 0.064 0.125 0.216 0.343 0.512 0.729 1
Number of CV for Lambda: 3
Number of repeated CV for Lambda: 10


Measure: Partial Likelihood Deviance 

Lambda min:
      Alpha  Lambda Index Measure     SE Nonzero
 [1,] 0.000 0.99962    72   9.016 0.3485      42
 [2,] 0.001 0.99962    72   9.016 0.3483      38
 [3,] 0.008 0.88152    51   9.013 0.3492      26
 [4,] 0.027 0.72678    40   9.014 0.3508      20
 [5,] 0.064 0.48821    35   9.027 0.3555      18
 [6,] 0.125 0.36265    31   9.046 0.3585      16
 [7,] 0.216 0.25279    29   9.064 0.3620      12
 [8,] 0.343 0.17471    28   9.079 0.3660      12
 [9,] 0.512 0.12845    27   9.093 0.3685       9
[10,] 0.729 0.09022    27   9.104 0.3725       9
[11,] 1.000 0.05993    28   9.113 0.3772      10

Lambda 1se:
      Alpha Lambda Index Measure     SE Nonzero
 [1,] 0.000 4.8608    55   9.340 0.3201      42
 [2,] 0.001 4.8608    55   9.353 0.3189      32
 [3,] 0.008 3.9057    35   9.329 0.3185      23
 [4,] 0.027 2.9340    25   9.361 0.3135      17
 [5,] 0.064 1.9709    20   9.369 0.3123      12
 [6,] 0.125 1.3340    17   9.399 0.3108      10
 [7,] 0.216 0.8472    16   9.380 0.3131       8
 [8,] 0.343 0.5856    15   9.403 0.3103       6
 [9,] 0.512 0.4305    14   9.454 0.3054       6
[10,] 0.729 0.3024    14   9.444 0.3089       6
[11,] 1.000 0.2204    14   9.441 0.3105       6
plot(arcvob)

Version Author Date
ebe29cf Sebastian Gibb 2022-06-16
8035219 Sebastian Gibb 2022-06-15
b20484a Sebastian Gibb 2022-06-06
983ec69 Sebastian Gibb 2022-03-17
plot(arcvob, what = "lambda.min")

Version Author Date
ebe29cf Sebastian Gibb 2022-06-16
8035219 Sebastian Gibb 2022-06-15
b20484a Sebastian Gibb 2022-06-06
983ec69 Sebastian Gibb 2022-03-17
plot(arcvob, what = "lambda.1se")

Version Author Date
ebe29cf Sebastian Gibb 2022-06-16
8035219 Sebastian Gibb 2022-06-15
b20484a Sebastian Gibb 2022-06-06
983ec69 Sebastian Gibb 2022-03-17

2 Bootstrapping

2.1 rcv.glmnet

plot(bootrcv, what = "calibration")

ps <- lapply(
    zlog_data[paste0("SurvProbMeld", c("Unos", "NaUnos", "3", "Plus7"))],
    function(p) {
        ctpnts <- cutpoints(p, n = ameldcfg$m)
        f <- cut(p, ctpnts, include.lowest = TRUE)
        list(
            predicted = groupmean(p, f = f),
            observed = observed_survival(
                amelddata$y, f = f, times = ameldcfg$times
            )
        )
    }
)
names(ps) <- c("MELD", "MELD-Na", "MELD 3.0", "MELD-Plus7")
col <- viridisLite::viridis(7)[4:7]

for (i in seq_along(ps)) {
    lines(
        ps[[i]]$predicted, ps[[i]]$observed, col = col[i], type = "b", pch = 19
    )
}
legend("topleft", col = col, legend = names(ps), pch = 19, bty = "n")

Version Author Date
ebe29cf Sebastian Gibb 2022-06-16
8035219 Sebastian Gibb 2022-06-15
b20484a Sebastian Gibb 2022-06-06
983ec69 Sebastian Gibb 2022-03-17
plot(bootrcv, what = "selected", cex = 0.5)

Version Author Date
ebe29cf Sebastian Gibb 2022-06-16
8035219 Sebastian Gibb 2022-06-15
b20484a Sebastian Gibb 2022-06-06
983ec69 Sebastian Gibb 2022-03-17
plot(bootrcv$fit, what = "path", xvar = "norm", nlabel = 14, cex.lab = 0.5)

Version Author Date
9da49ce Sebastian Gibb 2022-06-19
ebe29cf Sebastian Gibb 2022-06-16
8035219 Sebastian Gibb 2022-06-15
983ec69 Sebastian Gibb 2022-03-17
plot(bootrcv$fit, what = "path", xvar = "lambda", nlabel = 14, cex.lab = 0.5)

Version Author Date
9da49ce Sebastian Gibb 2022-06-19
ebe29cf Sebastian Gibb 2022-06-16
8035219 Sebastian Gibb 2022-06-15
983ec69 Sebastian Gibb 2022-03-17
plot(bootrcv$fit, what = "path", xvar = "dev", nlabel = 14, cex.lab = 0.5)

Version Author Date
9da49ce Sebastian Gibb 2022-06-19
ebe29cf Sebastian Gibb 2022-06-16
8035219 Sebastian Gibb 2022-06-15
983ec69 Sebastian Gibb 2022-03-17

2.2 rcv.glmnet (complete cases only)

plot(bootrcvcc, what = "calibration")

ps <- lapply(
    zlog_data_complete_cases[paste0("SurvProbMeld", c("Unos", "NaUnos", "3", "Plus7"))],
    function(p) {
        ctpnts <- cutpoints(p, n = ameldcfg$m)
        f <- cut(p, ctpnts, include.lowest = TRUE)
        list(
            predicted = groupmean(p, f = f),
            observed = observed_survival(
                amelddatacc$y, f = f, times = ameldcfg$times
            )
        )
    }
)
names(ps) <- c("MELD", "MELD-Na", "MELD 3.0", "MELD-Plus7")
col <- viridisLite::viridis(7)[4:7]

for (i in seq_along(ps)) {
    lines(
        ps[[i]]$predicted, ps[[i]]$observed, col = col[i], type = "b", pch = 19
    )
}
legend("topleft", col = col, legend = names(ps), pch = 19, bty = "n")

Version Author Date
ebe29cf Sebastian Gibb 2022-06-16
8035219 Sebastian Gibb 2022-06-15
plot(bootrcvcc, what = "selected", cex = 0.5)

Version Author Date
ebe29cf Sebastian Gibb 2022-06-16
8035219 Sebastian Gibb 2022-06-15
plot(bootrcvcc$fit, what = "path", xvar = "norm", nlabel = 14, cex.lab = 0.5)

Version Author Date
9da49ce Sebastian Gibb 2022-06-19
ebe29cf Sebastian Gibb 2022-06-16
8035219 Sebastian Gibb 2022-06-15
plot(bootrcvcc$fit, what = "path", xvar = "lambda", nlabel = 14, cex.lab = 0.5)

Version Author Date
9da49ce Sebastian Gibb 2022-06-19
ebe29cf Sebastian Gibb 2022-06-16
8035219 Sebastian Gibb 2022-06-15
plot(bootrcvcc$fit, what = "path", xvar = "dev", nlabel = 14, cex.lab = 0.5)

Version Author Date
9da49ce Sebastian Gibb 2022-06-19
ebe29cf Sebastian Gibb 2022-06-16
8035219 Sebastian Gibb 2022-06-15

2.3 bootrcv.woIC

Exclude IL-6 and CYSC columns from the data set.

plot(bootrcv.woIC, what = "calibration")

Version Author Date
ebe29cf Sebastian Gibb 2022-06-16
8035219 Sebastian Gibb 2022-06-15
plot(bootrcv.woIC, what = "selected", cex = 0.5)

Version Author Date
ebe29cf Sebastian Gibb 2022-06-16
8035219 Sebastian Gibb 2022-06-15

2.4 arcv.glmnet

a <- c(table(sapply(bootarcv$models, function(m)m$fit$alpha)))
plot(bootarcv, what = "calibration")

Version Author Date
ebe29cf Sebastian Gibb 2022-06-16
8035219 Sebastian Gibb 2022-06-15
b20484a Sebastian Gibb 2022-06-06
983ec69 Sebastian Gibb 2022-03-17
plot(bootarcv, what = "selected")

Version Author Date
ebe29cf Sebastian Gibb 2022-06-16
8035219 Sebastian Gibb 2022-06-15
b20484a Sebastian Gibb 2022-06-06
983ec69 Sebastian Gibb 2022-03-17
plot_dots(a, main = "Selected Alpha Values")

Version Author Date
ebe29cf Sebastian Gibb 2022-06-16
8035219 Sebastian Gibb 2022-06-15
b20484a Sebastian Gibb 2022-06-06
983ec69 Sebastian Gibb 2022-03-17

sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-unknown-linux-gnu (64-bit)

Matrix products: default
BLAS/LAPACK: /gnu/store/ras6dprsw3wm3swk23jjp8ww5dwxj333-openblas-0.3.18/lib/libopenblasp-r0.3.18.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] viridisLite_0.4.0 ameld_0.0.30      survival_3.3-1    glmnet_4.1-4     
[5] Matrix_1.4-1      targets_0.12.1   

loaded via a namespace (and not attached):
 [1] shape_1.4.6       tidyselect_1.1.2  xfun_0.31         bslib_0.3.1      
 [5] purrr_0.3.4       splines_4.2.0     lattice_0.20-45   vctrs_0.4.1      
 [9] htmltools_0.5.2   yaml_2.3.5        utf8_1.2.2        rlang_1.0.2      
[13] jquerylib_0.1.4   later_1.3.0       pillar_1.7.0      glue_1.6.2       
[17] withr_2.5.0       foreach_1.5.2     lifecycle_1.0.1   stringr_1.4.0    
[21] workflowr_1.7.0   codetools_0.2-18  evaluate_0.15     knitr_1.39       
[25] callr_3.7.0       fastmap_1.1.0     httpuv_1.6.5      ps_1.7.0         
[29] fansi_1.0.3       highr_0.9         Rcpp_1.0.8.3      promises_1.2.0.1 
[33] backports_1.4.1   jsonlite_1.8.0    fs_1.5.2          digest_0.6.29    
[37] stringi_1.7.6     bookdown_0.26     processx_3.5.3    rprojroot_2.0.3  
[41] grid_4.2.0        cli_3.3.0         tools_4.2.0       magrittr_2.0.3   
[45] base64url_1.4     sass_0.4.1        tibble_3.1.7      crayon_1.5.1     
[49] whisker_0.4       pkgconfig_2.0.3   ellipsis_0.3.2    data.table_1.14.2
[53] rmarkdown_2.14    iterators_1.0.14  R6_2.5.1          igraph_1.3.1     
[57] git2r_0.30.1      compiler_4.2.0