Last updated: 2020-01-13

Checks: 7 0

Knit directory: Comparative_APA/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.5.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190902) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    code/chimp_log/
    Ignored:    code/human_log/
    Ignored:    data/.DS_Store
    Ignored:    data/metadata_HCpanel.txt.sb-a5794dd2-i594qs/

Untracked files:
    Untracked:  ._.DS_Store
    Untracked:  Chimp/
    Untracked:  Human/
    Untracked:  analysis/CrossChimpThreePrime.Rmd
    Untracked:  analysis/DiffTransProtvsExpression.Rmd
    Untracked:  analysis/assessReadQual.Rmd
    Untracked:  analysis/diffExpressionPantro6.Rmd
    Untracked:  code/._ClassifyLeafviz.sh
    Untracked:  code/._Config_chimp.yaml
    Untracked:  code/._Config_chimp_full.yaml
    Untracked:  code/._Config_human.yaml
    Untracked:  code/._ConvertJunc2Bed.sh
    Untracked:  code/._CountNucleotides.py
    Untracked:  code/._CrossMapChimpRNA.sh
    Untracked:  code/._CrossMapThreeprime.sh
    Untracked:  code/._DiffSplice.sh
    Untracked:  code/._DiffSplicePlots.sh
    Untracked:  code/._DiffSplicePlots_gencode.sh
    Untracked:  code/._DiffSplice_gencode.sh
    Untracked:  code/._DiffSplice_removebad.sh
    Untracked:  code/._FindIntronForDomPAS.sh
    Untracked:  code/._GetMAPQscore.py
    Untracked:  code/._GetSecondaryMap.py
    Untracked:  code/._Lift5perPAS.sh
    Untracked:  code/._LiftFinalChimpJunc2Human.sh
    Untracked:  code/._LiftOrthoPAS2chimp.sh
    Untracked:  code/._MapBadSamples.sh
    Untracked:  code/._PAS_ATTAAA.sh
    Untracked:  code/._PASsequences.sh
    Untracked:  code/._QuantMergedClusters.sh
    Untracked:  code/._ReverseLiftFilter.R
    Untracked:  code/._RunFixLeafCluster.sh
    Untracked:  code/._Snakefile
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilePASfilt
    Untracked:  code/._SortIndexBadSamples.sh
    Untracked:  code/._bed215upbed.py
    Untracked:  code/._bed2SAF_gen.py
    Untracked:  code/._buildIndecpantro5
    Untracked:  code/._buildIndecpantro5.sh
    Untracked:  code/._buildLeafviz.sh
    Untracked:  code/._buildLeafviz_leadAnno.sh
    Untracked:  code/._buildStarIndex.sh
    Untracked:  code/._chimpChromprder.sh
    Untracked:  code/._cleanbed2saf.py
    Untracked:  code/._cluster.json
    Untracked:  code/._cluster2bed.py
    Untracked:  code/._clusterLiftReverse.sh
    Untracked:  code/._clusterLiftReverse_removebad.sh
    Untracked:  code/._clusterLiftprimary.sh
    Untracked:  code/._clusterLiftprimary_removebad.sh
    Untracked:  code/._converBam2Junc.sh
    Untracked:  code/._converBam2Junc_removeBad.sh
    Untracked:  code/._extraSnakefiltpas
    Untracked:  code/._filter5percPAS.py
    Untracked:  code/._filterNumChroms.py
    Untracked:  code/._filterPASforMP.py
    Untracked:  code/._filterPostLift.py
    Untracked:  code/._fixExonFC.py
    Untracked:  code/._fixLeafCluster.py
    Untracked:  code/._fixLiftedJunc.py
    Untracked:  code/._fixUTRexonanno.py
    Untracked:  code/._formathg38Anno.py
    Untracked:  code/._formatpantro6Anno.py
    Untracked:  code/._getRNAseqMapStats.sh
    Untracked:  code/._hg19MapStats.sh
    Untracked:  code/._humanChromorder.sh
    Untracked:  code/._intersectLiftedPAS.sh
    Untracked:  code/._liftJunctionFiles.sh
    Untracked:  code/._liftPAS19to38.sh
    Untracked:  code/._liftedchimpJunc2human.sh
    Untracked:  code/._makeSamplyGroupsHuman_TvN.py
    Untracked:  code/._mapRNAseqhg19.sh
    Untracked:  code/._mapRNAseqhg19_newPipeline.sh
    Untracked:  code/._maphg19.sh
    Untracked:  code/._maphg19_subjunc.sh
    Untracked:  code/._mergeChimp3prime_inhg38.sh
    Untracked:  code/._mergedBam2BW.sh
    Untracked:  code/._nameClusters.py
    Untracked:  code/._numMultimap.py
    Untracked:  code/._overlapapaQTLPAS.sh
    Untracked:  code/._prepareCleanLiftedFC_5perc4LC.py
    Untracked:  code/._prepareLeafvizAnno.sh
    Untracked:  code/._preparePAS4lift.py
    Untracked:  code/._primaryLift.sh
    Untracked:  code/._processhg38exons.py
    Untracked:  code/._quantJunc.sh
    Untracked:  code/._quantJunc_TEST.sh
    Untracked:  code/._quantJunc_removeBad.sh
    Untracked:  code/._quantMerged_seperatly.sh
    Untracked:  code/._recLiftchim2human.sh
    Untracked:  code/._revLiftPAShg38to19.sh
    Untracked:  code/._reverseLift.sh
    Untracked:  code/._runCheckReverseLift.sh
    Untracked:  code/._runChimpDiffIso.sh
    Untracked:  code/._runCountNucleotides.sh
    Untracked:  code/._runFilterNumChroms.sh
    Untracked:  code/._runHumanDiffIso.sh
    Untracked:  code/._runNuclearDifffIso.sh
    Untracked:  code/._runTotalDiffIso.sh
    Untracked:  code/._run_chimpverifybam.sh
    Untracked:  code/._run_verifyBam.sh
    Untracked:  code/._snakemake.batch
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakePASchimp.batch
    Untracked:  code/._snakemakePAShuman.batch
    Untracked:  code/._snakemake_chimp.batch
    Untracked:  code/._snakemake_human.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._snakemakefiltPAS_chimp
    Untracked:  code/._snakemakefiltPAS_chimp.sh
    Untracked:  code/._snakemakefiltPAS_human.sh
    Untracked:  code/._submit-snakemake-chimp.sh
    Untracked:  code/._submit-snakemake-human.sh
    Untracked:  code/._submit-snakemakePAS-chimp.sh
    Untracked:  code/._submit-snakemakePAS-human.sh
    Untracked:  code/._submit-snakemakefiltPAS-chimp.sh
    Untracked:  code/._submit-snakemakefiltPAS-human.sh
    Untracked:  code/._subset_diffisopheno_Nuclear_HvC.py
    Untracked:  code/._subset_diffisopheno_Total_HvC.py
    Untracked:  code/._transcriptDTplotsNuclear.sh
    Untracked:  code/._verifyBam4973.sh
    Untracked:  code/._verifyBam4973inHuman.sh
    Untracked:  code/._wrap_chimpverifybam.sh
    Untracked:  code/._wrap_verifyBam.sh
    Untracked:  code/._writeMergecode.py
    Untracked:  code/.snakemake/
    Untracked:  code/ClassifyLeafviz.sh
    Untracked:  code/Config_chimp.yaml
    Untracked:  code/Config_chimp_full.yaml
    Untracked:  code/Config_human.yaml
    Untracked:  code/ConvertJunc2Bed.err
    Untracked:  code/ConvertJunc2Bed.out
    Untracked:  code/ConvertJunc2Bed.sh
    Untracked:  code/CountNucleotides.py
    Untracked:  code/CrossMapChimpRNA.sh
    Untracked:  code/CrossMapThreeprime.sh
    Untracked:  code/CrossmapChimp3prime.err
    Untracked:  code/CrossmapChimp3prime.out
    Untracked:  code/CrossmapChimpRNA.err
    Untracked:  code/CrossmapChimpRNA.out
    Untracked:  code/DiffSplice.err
    Untracked:  code/DiffSplice.out
    Untracked:  code/DiffSplice.sh
    Untracked:  code/DiffSplicePlots.err
    Untracked:  code/DiffSplicePlots.out
    Untracked:  code/DiffSplicePlots.sh
    Untracked:  code/DiffSplicePlots_gencode.sh
    Untracked:  code/DiffSplice_gencode.sh
    Untracked:  code/DiffSplice_removebad.err
    Untracked:  code/DiffSplice_removebad.out
    Untracked:  code/DiffSplice_removebad.sh
    Untracked:  code/FilterReverseLift.err
    Untracked:  code/FilterReverseLift.out
    Untracked:  code/FindIntronForDomPAS.err
    Untracked:  code/FindIntronForDomPAS.out
    Untracked:  code/FindIntronForDomPAS.sh
    Untracked:  code/GencodeDiffSplice.err
    Untracked:  code/GencodeDiffSplice.out
    Untracked:  code/GetMAPQscore.py
    Untracked:  code/GetSecondaryMap.py
    Untracked:  code/HchromOrder.err
    Untracked:  code/HchromOrder.out
    Untracked:  code/JunctionLift.err
    Untracked:  code/JunctionLift.out
    Untracked:  code/JunctionLiftFinalChimp.err
    Untracked:  code/JunctionLiftFinalChimp.out
    Untracked:  code/Lift5perPAS.sh
    Untracked:  code/Lift5perPASbed.err
    Untracked:  code/Lift5perPASbed.out
    Untracked:  code/LiftClustersFirst.err
    Untracked:  code/LiftClustersFirst.out
    Untracked:  code/LiftClustersFirst_remove.err
    Untracked:  code/LiftClustersFirst_remove.out
    Untracked:  code/LiftClustersSecond.err
    Untracked:  code/LiftClustersSecond.out
    Untracked:  code/LiftClustersSecond_remove.err
    Untracked:  code/LiftClustersSecond_remove.out
    Untracked:  code/LiftFinalChimpJunc2Human.sh
    Untracked:  code/LiftOrthoPAS2chimp.sh
    Untracked:  code/LiftorthoPAS.err
    Untracked:  code/LiftorthoPASt.out
    Untracked:  code/Log.out
    Untracked:  code/MapBadSamples.err
    Untracked:  code/MapBadSamples.out
    Untracked:  code/MapBadSamples.sh
    Untracked:  code/MapStats.err
    Untracked:  code/MapStats.out
    Untracked:  code/MergeClusters.err
    Untracked:  code/MergeClusters.out
    Untracked:  code/MergeClusters.sh
    Untracked:  code/PAS_ATTAAA.err
    Untracked:  code/PAS_ATTAAA.out
    Untracked:  code/PAS_ATTAAA.sh
    Untracked:  code/PAS_sequence.err
    Untracked:  code/PAS_sequence.out
    Untracked:  code/PASsequences.sh
    Untracked:  code/QuantMergeClusters
    Untracked:  code/QuantMergeClusters.err
    Untracked:  code/QuantMergeClusters.out
    Untracked:  code/QuantMergedClusters.sh
    Untracked:  code/Rev_liftoverPAShg19to38.err
    Untracked:  code/Rev_liftoverPAShg19to38.out
    Untracked:  code/ReverseLiftFilter.R
    Untracked:  code/RunFixCluster.err
    Untracked:  code/RunFixCluster.out
    Untracked:  code/RunFixLeafCluster.sh
    Untracked:  code/SAF215upbed_gen.py
    Untracked:  code/Snakefile
    Untracked:  code/SnakefilePAS
    Untracked:  code/SnakefilePASfilt
    Untracked:  code/SortIndexBadSamples.err
    Untracked:  code/SortIndexBadSamples.out
    Untracked:  code/SortIndexBadSamples.sh
    Untracked:  code/TotalTranscriptDTplot.err
    Untracked:  code/TotalTranscriptDTplot.out
    Untracked:  code/Upstream10Bases_general.py
    Untracked:  code/apaQTLsnake.err
    Untracked:  code/apaQTLsnake.out
    Untracked:  code/apaQTLsnakePAS.err
    Untracked:  code/apaQTLsnakePAS.out
    Untracked:  code/apaQTLsnakePAShuman.err
    Untracked:  code/bam2junc.err
    Untracked:  code/bam2junc.out
    Untracked:  code/bam2junc_remove.err
    Untracked:  code/bam2junc_remove.out
    Untracked:  code/bed215upbed.py
    Untracked:  code/bed2SAF_gen.py
    Untracked:  code/bed2saf.py
    Untracked:  code/bg_to_cov.py
    Untracked:  code/buildIndecpantro5
    Untracked:  code/buildIndecpantro5.sh
    Untracked:  code/buildLeafviz.err
    Untracked:  code/buildLeafviz.out
    Untracked:  code/buildLeafviz.sh
    Untracked:  code/buildLeafviz_leadAnno.sh
    Untracked:  code/buildLeafviz_leafanno.err
    Untracked:  code/buildLeafviz_leafanno.out
    Untracked:  code/buildStarIndex.sh
    Untracked:  code/callPeaksYL.py
    Untracked:  code/chimpChromprder.sh
    Untracked:  code/chooseAnno2Bed.py
    Untracked:  code/chooseAnno2SAF.py
    Untracked:  code/chromOrder.err
    Untracked:  code/chromOrder.out
    Untracked:  code/classifyLeafviz.err
    Untracked:  code/classifyLeafviz.out
    Untracked:  code/cleanbed2saf.py
    Untracked:  code/cluster.json
    Untracked:  code/cluster2bed.py
    Untracked:  code/clusterLiftReverse.sh
    Untracked:  code/clusterLiftReverse_removebad.sh
    Untracked:  code/clusterLiftprimary.sh
    Untracked:  code/clusterLiftprimary_removebad.sh
    Untracked:  code/clusterPAS.json
    Untracked:  code/clusterfiltPAS.json
    Untracked:  code/comands2Mege.sh
    Untracked:  code/converBam2Junc.sh
    Untracked:  code/converBam2Junc_removeBad.sh
    Untracked:  code/convertNumeric.py
    Untracked:  code/environment.yaml
    Untracked:  code/extraSnakefiltpas
    Untracked:  code/filter5perc.R
    Untracked:  code/filter5percPAS.py
    Untracked:  code/filter5percPheno.py
    Untracked:  code/filterBamforMP.pysam2_gen.py
    Untracked:  code/filterJuncChroms.err
    Untracked:  code/filterJuncChroms.out
    Untracked:  code/filterMissprimingInNuc10_gen.py
    Untracked:  code/filterNumChroms.py
    Untracked:  code/filterPASforMP.py
    Untracked:  code/filterPostLift.py
    Untracked:  code/filterSAFforMP_gen.py
    Untracked:  code/filterSortBedbyCleanedBed_gen.R
    Untracked:  code/filterpeaks.py
    Untracked:  code/fixExonFC.py
    Untracked:  code/fixFChead.py
    Untracked:  code/fixFChead_bothfrac.py
    Untracked:  code/fixLeafCluster.py
    Untracked:  code/fixLiftedJunc.py
    Untracked:  code/fixUTRexonanno.py
    Untracked:  code/formathg38Anno.py
    Untracked:  code/generateStarIndex.err
    Untracked:  code/generateStarIndex.out
    Untracked:  code/generateStarIndexHuman.err
    Untracked:  code/generateStarIndexHuman.out
    Untracked:  code/getRNAseqMapStats.sh
    Untracked:  code/hg19MapStats.err
    Untracked:  code/hg19MapStats.out
    Untracked:  code/hg19MapStats.sh
    Untracked:  code/humanChromorder.sh
    Untracked:  code/humanFiles
    Untracked:  code/intersectAnno.err
    Untracked:  code/intersectAnno.out
    Untracked:  code/intersectLiftedPAS.sh
    Untracked:  code/leafcutter_merge_regtools_redo.py
    Untracked:  code/liftJunctionFiles.sh
    Untracked:  code/liftPAS19to38.sh
    Untracked:  code/liftoverPAShg19to38.err
    Untracked:  code/liftoverPAShg19to38.out
    Untracked:  code/log/
    Untracked:  code/make5percPeakbed.py
    Untracked:  code/makeFileID.py
    Untracked:  code/makePheno.py
    Untracked:  code/makeSamplyGroupsChimp_TvN.py
    Untracked:  code/makeSamplyGroupsHuman_TvN.py
    Untracked:  code/mapRNAseqhg19.sh
    Untracked:  code/mapRNAseqhg19_newPipeline.sh
    Untracked:  code/maphg19.err
    Untracked:  code/maphg19.out
    Untracked:  code/maphg19.sh
    Untracked:  code/maphg19_new.err
    Untracked:  code/maphg19_new.out
    Untracked:  code/maphg19_sub.err
    Untracked:  code/maphg19_sub.out
    Untracked:  code/maphg19_subjunc.sh
    Untracked:  code/merge.err
    Untracked:  code/mergeChimp3prime_inhg38.sh
    Untracked:  code/merge_leafcutter_clusters_redo.py
    Untracked:  code/mergeandsort_ChimpinHuman.err
    Untracked:  code/mergeandsort_ChimpinHuman.out
    Untracked:  code/mergedBam2BW.sh
    Untracked:  code/mergedbam2bw.err
    Untracked:  code/mergedbam2bw.out
    Untracked:  code/nameClusters.py
    Untracked:  code/namePeaks.py
    Untracked:  code/nuclearTranscriptDTplot.err
    Untracked:  code/nuclearTranscriptDTplot.out
    Untracked:  code/numMultimap.py
    Untracked:  code/overlapPAS.err
    Untracked:  code/overlapPAS.out
    Untracked:  code/overlapapaQTLPAS.sh
    Untracked:  code/peak2PAS.py
    Untracked:  code/pheno2countonly.R
    Untracked:  code/prepareAnnoLeafviz.err
    Untracked:  code/prepareAnnoLeafviz.out
    Untracked:  code/prepareCleanLiftedFC_5perc4LC.py
    Untracked:  code/prepareLeafvizAnno.sh
    Untracked:  code/preparePAS4lift.py
    Untracked:  code/prepare_phenotype_table.py
    Untracked:  code/primaryLift.err
    Untracked:  code/primaryLift.out
    Untracked:  code/primaryLift.sh
    Untracked:  code/processhg38exons.py
    Untracked:  code/quantJunc.sh
    Untracked:  code/quantJunc_TEST.sh
    Untracked:  code/quantJunc_removeBad.sh
    Untracked:  code/quantLiftedPAS.err
    Untracked:  code/quantLiftedPAS.out
    Untracked:  code/quantLiftedPAS.sh
    Untracked:  code/quatJunc.err
    Untracked:  code/quatJunc.out
    Untracked:  code/recChimpback2Human.err
    Untracked:  code/recChimpback2Human.out
    Untracked:  code/recLiftchim2human.sh
    Untracked:  code/revLift.err
    Untracked:  code/revLift.out
    Untracked:  code/revLiftPAShg38to19.sh
    Untracked:  code/reverseLift.sh
    Untracked:  code/runCheckReverseLift.sh
    Untracked:  code/runChimpDiffIso.sh
    Untracked:  code/runCountNucleotides.err
    Untracked:  code/runCountNucleotides.out
    Untracked:  code/runCountNucleotides.sh
    Untracked:  code/runCountNucleotidesPantro6.err
    Untracked:  code/runCountNucleotidesPantro6.out
    Untracked:  code/runCountNucleotides_pantro6.sh
    Untracked:  code/runFilterNumChroms.sh
    Untracked:  code/runHumanDiffIso.sh
    Untracked:  code/runNuclearDifffIso.sh
    Untracked:  code/runTotalDiffIso.sh
    Untracked:  code/run_Chimpleafcutter_ds.err
    Untracked:  code/run_Chimpleafcutter_ds.out
    Untracked:  code/run_Chimpverifybam.err
    Untracked:  code/run_Chimpverifybam.out
    Untracked:  code/run_Humanleafcutter_ds.err
    Untracked:  code/run_Humanleafcutter_ds.out
    Untracked:  code/run_Nuclearleafcutter_ds.err
    Untracked:  code/run_Nuclearleafcutter_ds.out
    Untracked:  code/run_Totalleafcutter_ds.err
    Untracked:  code/run_Totalleafcutter_ds.out
    Untracked:  code/run_chimpverifybam.sh
    Untracked:  code/run_verifyBam.sh
    Untracked:  code/run_verifybam.err
    Untracked:  code/run_verifybam.out
    Untracked:  code/slurm-62824013.out
    Untracked:  code/slurm-62825841.out
    Untracked:  code/slurm-62826116.out
    Untracked:  code/slurm-64108209.out
    Untracked:  code/slurm-64108521.out
    Untracked:  code/slurm-64108557.out
    Untracked:  code/snakePASChimp.err
    Untracked:  code/snakePASChimp.out
    Untracked:  code/snakePAShuman.out
    Untracked:  code/snakemake.batch
    Untracked:  code/snakemakeChimp.err
    Untracked:  code/snakemakeChimp.out
    Untracked:  code/snakemakeHuman.err
    Untracked:  code/snakemakeHuman.out
    Untracked:  code/snakemakePAS.batch
    Untracked:  code/snakemakePASFiltChimp.err
    Untracked:  code/snakemakePASFiltChimp.out
    Untracked:  code/snakemakePASFiltHuman.err
    Untracked:  code/snakemakePASFiltHuman.out
    Untracked:  code/snakemakePASchimp.batch
    Untracked:  code/snakemakePAShuman.batch
    Untracked:  code/snakemake_chimp.batch
    Untracked:  code/snakemake_human.batch
    Untracked:  code/snakemakefiltPAS.batch
    Untracked:  code/snakemakefiltPAS_chimp.sh
    Untracked:  code/snakemakefiltPAS_human.sh
    Untracked:  code/submit-snakemake-chimp.sh
    Untracked:  code/submit-snakemake-human.sh
    Untracked:  code/submit-snakemakePAS-chimp.sh
    Untracked:  code/submit-snakemakePAS-human.sh
    Untracked:  code/submit-snakemakefiltPAS-chimp.sh
    Untracked:  code/submit-snakemakefiltPAS-human.sh
    Untracked:  code/subset_diffisopheno.py
    Untracked:  code/subset_diffisopheno_Chimp_tvN.py
    Untracked:  code/subset_diffisopheno_Huma_tvN.py
    Untracked:  code/subset_diffisopheno_Nuclear_HvC.py
    Untracked:  code/subset_diffisopheno_Total_HvC.py
    Untracked:  code/test
    Untracked:  code/transcriptDTplotsNuclear.sh
    Untracked:  code/transcriptDTplotsTotal.sh
    Untracked:  code/verifyBam4973.sh
    Untracked:  code/verifyBam4973inHuman.sh
    Untracked:  code/verifybam4973.err
    Untracked:  code/verifybam4973.out
    Untracked:  code/verifybam4973HumanMap.err
    Untracked:  code/verifybam4973HumanMap.out
    Untracked:  code/wrap_Chimpverifybam.err
    Untracked:  code/wrap_Chimpverifybam.out
    Untracked:  code/wrap_chimpverifybam.sh
    Untracked:  code/wrap_verifyBam.sh
    Untracked:  code/wrap_verifybam.err
    Untracked:  code/wrap_verifybam.out
    Untracked:  code/writeMergecode.py
    Untracked:  data/._.DS_Store
    Untracked:  data/._HC_filenames.txt
    Untracked:  data/._HC_filenames.txt.sb-4426323c-IKIs0S
    Untracked:  data/._HC_filenames.xlsx
    Untracked:  data/._MapPantro6_meta.txt
    Untracked:  data/._MapPantro6_meta.txt.sb-a5794dd2-Cskmlm
    Untracked:  data/._MapPantro6_meta.xlsx
    Untracked:  data/._OppositeSpeciesMap.txt
    Untracked:  data/._OppositeSpeciesMap.txt.sb-a5794dd2-mayWJf
    Untracked:  data/._OppositeSpeciesMap.xlsx
    Untracked:  data/._RNASEQ_metadata.txt
    Untracked:  data/._RNASEQ_metadata.txt.sb-4426323c-TE4ns3
    Untracked:  data/._RNASEQ_metadata.txt.sb-51f67ae1-HXp7Gq
    Untracked:  data/._RNASEQ_metadata_2Removed.txt
    Untracked:  data/._RNASEQ_metadata_2Removed.txt.sb-4426323c-a4lBwx
    Untracked:  data/._RNASEQ_metadata_2Removed.xlsx
    Untracked:  data/._RNASEQ_metadata_stranded.txt
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-a5794dd2-D659m2
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-a5794dd2-ImNMoY
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-e4bf31f0-ZGnGgl
    Untracked:  data/._RNASEQ_metadata_stranded.xlsx
    Untracked:  data/._metadata_HCpanel.txt
    Untracked:  data/._metadata_HCpanel.txt.sb-a3d92a2d-b9cYoF
    Untracked:  data/._metadata_HCpanel.txt.sb-a5794dd2-i594qs
    Untracked:  data/._metadata_HCpanel.txt.sb-f4823d1e-qihGek
    Untracked:  data/._metadata_HCpanel.xlsx
    Untracked:  data/._metadata_HCpanel_frompantro5.xlsx
    Untracked:  data/._~$RNASEQ_metadata.xlsx
    Untracked:  data/._~$metadata_HCpanel.xlsx
    Untracked:  data/._.xlsx
    Untracked:  data/CompapaQTLpas/
    Untracked:  data/DTmatrix/
    Untracked:  data/DiffExpression/
    Untracked:  data/DiffIso_Nuclear/
    Untracked:  data/DiffIso_Total/
    Untracked:  data/DiffSplice/
    Untracked:  data/DiffSplice_liftedJunc/
    Untracked:  data/DiffSplice_removeBad/
    Untracked:  data/DominantPAS/
    Untracked:  data/EvalPantro5/
    Untracked:  data/HC_filenames.txt
    Untracked:  data/HC_filenames.xlsx
    Untracked:  data/Khan_prot/
    Untracked:  data/Li_eqtls/
    Untracked:  data/MapPantro6_meta.txt
    Untracked:  data/MapPantro6_meta.xlsx
    Untracked:  data/MapStats/
    Untracked:  data/NuclearHvC/
    Untracked:  data/OppositeSpeciesMap.txt
    Untracked:  data/OppositeSpeciesMap.xlsx
    Untracked:  data/PAS/
    Untracked:  data/Peaks_5perc/
    Untracked:  data/Pheno_5perc/
    Untracked:  data/Pheno_5perc_nuclear/
    Untracked:  data/Pheno_5perc_total/
    Untracked:  data/RNASEQ_metadata.txt
    Untracked:  data/RNASEQ_metadata_2Removed.txt
    Untracked:  data/RNASEQ_metadata_2Removed.xlsx
    Untracked:  data/RNASEQ_metadata_stranded.txt
    Untracked:  data/RNASEQ_metadata_stranded.txt.sb-e4bf31f0-ZGnGgl/
    Untracked:  data/RNASEQ_metadata_stranded.xlsx
    Untracked:  data/SignalSites/
    Untracked:  data/TotalHvC/
    Untracked:  data/TwoBadSampleAnalysis/
    Untracked:  data/Wang_ribo/
    Untracked:  data/chainFiles/
    Untracked:  data/cleanPeaks_anno/
    Untracked:  data/cleanPeaks_byspecies/
    Untracked:  data/cleanPeaks_lifted/
    Untracked:  data/leafviz/
    Untracked:  data/liftover_files/
    Untracked:  data/metadata_HCpanel.txt
    Untracked:  data/metadata_HCpanel.xlsx
    Untracked:  data/metadata_HCpanel_frompantro5.txt
    Untracked:  data/metadata_HCpanel_frompantro5.xlsx
    Untracked:  data/primaryLift/
    Untracked:  data/reverseLift/
    Untracked:  data/~$RNASEQ_metadata.xlsx
    Untracked:  data/~$metadata_HCpanel.xlsx
    Untracked:  data/.xlsx
    Untracked:  output/dtPlots/
    Untracked:  projectNotes.Rmd

Unstaged changes:
    Modified:   analysis/OppositeMap.Rmd
    Modified:   analysis/annotationInfo.Rmd
    Modified:   analysis/investigatePantro5.Rmd
    Modified:   analysis/multiMap.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 1121102 brimittleman 2020-01-13 add dpau and de overlap with dom intronic
html 326f6e2 brimittleman 2020-01-10 Build site.
Rmd 61bcd28 brimittleman 2020-01-10 prepare DE volcano
html e5dff29 brimittleman 2020-01-06 Build site.
Rmd 767ca26 brimittleman 2020-01-06 add eQTL enrichment for eQTLs
html c453931 brimittleman 2020-01-05 Build site.
Rmd 894a755 brimittleman 2020-01-05 update DE new Orthoexon file
html 3ee8382 brimittleman 2019-12-08 Build site.
Rmd f04a804 brimittleman 2019-12-08 add DE vs DS analysis
html 2c9b5b4 brimittleman 2019-12-06 Build site.
Rmd 6d93e4d brimittleman 2019-12-06 update stranded
html a288a29 brimittleman 2019-12-04 Build site.
Rmd 558b39f brimittleman 2019-12-04 add current error for splice and write out DE genes
html 8fca47f brimittleman 2019-11-22 Build site.
Rmd f13781e brimittleman 2019-11-22 fixed mapping and indivs
html 25971ed brimittleman 2019-11-21 Build site.
Rmd db0484c brimittleman 2019-11-21 add PC corr
html 712106e brimittleman 2019-11-19 Build site.
Rmd 8dc9ea0 brimittleman 2019-11-19 first pipeline for de
html 586c9ec brimittleman 2019-11-13 Build site.
Rmd bedfa41 brimittleman 2019-11-13 question PCA methods
html a22bae9 brimittleman 2019-11-13 Build site.
Rmd a52c26d brimittleman 2019-11-13 look at pca and tech factors
html da4bab0 brimittleman 2019-11-12 Build site.
Rmd 98d7f9b brimittleman 2019-11-12 add cpm pca
html 32b435b brimittleman 2019-11-12 Build site.
Rmd 1ce8433 brimittleman 2019-11-12 start normalization
html 2c02d70 brimittleman 2019-11-12 Build site.
Rmd 53642f7 brimittleman 2019-11-12 add mapp stats
html dc91b0a brimittleman 2019-11-11 Build site.
Rmd b5ba82e brimittleman 2019-11-11 add diff expression and diff splicing

library(workflowr)
This is workflowr version 1.5.0
Run ?workflowr for help getting started
library(tidyverse)
── Attaching packages ────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1       ✔ purrr   0.3.2  
✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.3.1  
✔ readr   1.3.1       ✔ forcats 0.3.0  
── Conflicts ───────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library("scales")

Attaching package: 'scales'
The following object is masked from 'package:purrr':

    discard
The following object is masked from 'package:readr':

    col_factor
library("gplots")

Attaching package: 'gplots'
The following object is masked from 'package:stats':

    lowess
library("edgeR")
Loading required package: limma
library("R.utils")
Loading required package: R.oo
Loading required package: R.methodsS3
R.methodsS3 v1.7.1 (2016-02-15) successfully loaded. See ?R.methodsS3 for help.
R.oo v1.22.0 (2018-04-21) successfully loaded. See ?R.oo for help.

Attaching package: 'R.oo'
The following objects are masked from 'package:methods':

    getClasses, getMethods
The following objects are masked from 'package:base':

    attach, detach, gc, load, save
R.utils v2.7.0 successfully loaded. See ?R.utils for help.

Attaching package: 'R.utils'
The following object is masked from 'package:tidyr':

    extract
The following object is masked from 'package:utils':

    timestamp
The following objects are masked from 'package:base':

    cat, commandArgs, getOption, inherits, isOpen, parse, warnings
library("limma")
library("VennDiagram")
Loading required package: grid
Loading required package: futile.logger
library("RColorBrewer")
library(reshape2)

Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':

    smiths

For this analysis I do preprocessing with the Snakemake pipeline. The snakemake will map the RNA seq and quantify orthologous exons.

From FastQC:

  • Does not look like there is adapter contamination

  • No reads tagged as bad quality

Assess mapping:

metaData=read.table("../data/RNASEQ_metadata_stranded.txt", header = T, stringsAsFactors = F)
metaData$Species=as.factor(metaData$Species)
metaData$Collection=as.factor(metaData$Collection)
readInfo=metaData %>% mutate(AAUnMapped= Reads-Mapped, ABNotOrtho= Mapped-AssignedOrtho) %>% dplyr::select(Line, Species, AAUnMapped, ABNotOrtho, AssignedOrtho) %>%  gather(key="Category", value="Number", -Line, -Species)


ggplot(readInfo, aes(x=Line,y=Number, fill=Category)) + geom_bar(stat="identity") + scale_fill_brewer(palette = "Dark2",name = "Type", labels = c("Unmapped", "Mapped not ortho", "Assigned Ortho Exon"))+theme(axis.text.x = element_text( hjust = 0,vjust = 1, size = 6, angle = 90)) + labs(y="Reads", title="Human and chimp read statistics") 

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
32b435b brimittleman 2019-11-12
2c02d70 brimittleman 2019-11-12

Proportion of reads.

readProp=metaData %>% mutate(Aunmapped=1-percentMapped, MappednotOrtho=percentMapped-percentOrtho) %>% dplyr::select(Line,Species, percentOrtho, MappednotOrtho, Aunmapped) %>%  gather(key="Category", value="Proportion", -Line, -Species)

ggplot(readProp, aes(x=Line,y=Proportion, fill=Category)) + geom_bar(stat="identity") + scale_fill_brewer(palette = "Dark2", name="", labels = c("Unmapped", "Mapped not ortho", "Assigned Ortho Exon"))+theme(axis.text.x = element_text( hjust = 0,vjust = 1, size = 6, angle = 90)) + labs(y="Reads", title="Human and chimp read proportions") 

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
32b435b brimittleman 2019-11-12
2c02d70 brimittleman 2019-11-12

By species:

ggplot(readInfo,aes(x=Category, y=Number, by=Species, fill=Species)) + geom_boxplot() +scale_x_discrete( breaks=c("AAUnMapped","ABNotOrtho","AssignedOrtho"),labels=c("Unmapped", "Not in OrthoExon", "Assigned to OrthoExon")) + scale_fill_brewer(palette = "Dark2") + labs(title="Mapped reads by Species", y="Reads", x="")

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
2c02d70 brimittleman 2019-11-12
ggplot(readProp,aes(x=Category, y=Proportion, by=Species, fill=Species)) + geom_boxplot() + scale_fill_brewer(palette = "Dark2") + labs(title="Map Proportion by Species", y="Proportion", x="") + scale_x_discrete( breaks=c("Aunmapped","MappedNotOrtho","percentOrtho"),labels=c("Unmapped", "Not in OrthoExon", "Assigned to OrthoExon"))

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
2c02d70 brimittleman 2019-11-12

Diffferential Expression

Code originally from Lauren Blake (http://lauren-blake.github.io/Reg_Evo_Primates/analysis/Normalization_plots.html)

Raw Counts

Fix header for fc files:

python fixExonFC.py /project2/gilad/briana/Comparative_APA/Human/data/RNAseq/ExonCounts/RNAseqOrthoExon.fc /project2/gilad/briana/Comparative_APA/Human/data/RNAseq/ExonCounts/RNAseqOrthoExon.fixed.fc

python fixExonFC.py /project2/gilad/briana/Comparative_APA/Chimp/data/RNAseq/ExonCounts/RNAseqOrthoExon.fc /project2/gilad/briana/Comparative_APA/Chimp/data/RNAseq/ExonCounts/RNAseqOrthoExon.fixed.fc
HumanCounts=read.table("../Human/data/RNAseq/ExonCounts/RNAseqOrthoExon.fixed.fc", header = T, stringsAsFactors = F) %>% dplyr::select(-Chr,-Start,-End,-Strand, -Length)

ChimpCounts=read.table("../Chimp/data/RNAseq/ExonCounts/RNAseqOrthoExon.fixed.fc", header = T, stringsAsFactors = F) %>% dplyr::select(-Chr,-Start,-End,-Strand, -Length)


counts_genes=HumanCounts %>% inner_join(ChimpCounts,by="Geneid") %>% column_to_rownames(var="Geneid")

head(counts_genes)
                NA18498 NA18504 NA18510 NA18523 NA18499 NA18502 NA4973
ENSG00000000003       0       3       4       1       2       2     13
ENSG00000000005       0       0       0       0       0       0      0
ENSG00000000419     911     742    1202     867     979    1023    580
ENSG00000000457     529     421     613     408     623     555    716
ENSG00000000460     448     287     545     159     560     481    546
ENSG00000000938    5186    3676    7197   12054    2916    3675   2865
                NAPT30 NAPT91 NA3622 NA3659 NA18358
ENSG00000000003      3      1     18     13       0
ENSG00000000005      0      0      0      0       0
ENSG00000000419    451    533    530    563     501
ENSG00000000457    656    905    712    727     531
ENSG00000000460    410    237    510    526     245
ENSG00000000938    230    369    427   2307    3742
# Load colors 

colors <- colorRampPalette(c(brewer.pal(9, "Blues")[1],brewer.pal(9, "Blues")[9]))(100)

pal <- c(brewer.pal(9, "Set1"), brewer.pal(8, "Set2"), brewer.pal(12, "Set3"))
labels <- paste(metaData$Species,metaData$Line, sep=" ")
#PCA function (original code from Julien Roux)
#Load in the plot_scores function
plot_scores <- function(pca, scores, n, m, cols, points=F, pchs =20, legend=F){
  xmin <- min(scores[,n]) - (max(scores[,n]) - min(scores[,n]))*0.05
  if (legend == T){ ## let some room (35%) for a legend                                                                                                                                                 
    xmax <- max(scores[,n]) + (max(scores[,n]) - min(scores[,n]))*0.50
  }
  else {
    xmax <- max(scores[,n]) + (max(scores[,n]) - min(scores[,n]))*0.05
  }
  ymin <- min(scores[,m]) - (max(scores[,m]) - min(scores[,m]))*0.05
  ymax <- max(scores[,m]) + (max(scores[,m]) - min(scores[,m]))*0.05
  plot(scores[,n], scores[,m], xlab=paste("PC", n, ": ", round(summary(pca)$importance[2,n],3)*100, "% variance explained", sep=""), ylab=paste("PC", m, ": ", round(summary(pca)$importance[2,m],3)*100, "% variance explained", sep=""), xlim=c(xmin, xmax), ylim=c(ymin, ymax), type="n")
  if (points == F){
    text(scores[,n],scores[,m], rownames(scores), col=cols, cex=1)
  }
  else {
    points(scores[,n],scores[,m], col=cols, pch=pchs, cex=1.3)
  }
}
# Clustering (original code from Julien Roux)
cors <- cor(counts_genes, method="spearman", use="pairwise.complete.obs")


heatmap.2( cors, scale="none", col = colors, margins = c(12, 12), trace='none', denscol="white", labCol=labels, ColSideColors=pal[as.integer(as.factor(metaData$Species))], RowSideColors=pal[as.integer(as.factor(metaData$Collection))+9], cexCol = 0.2 + 1/log10(15), cexRow = 0.2 + 1/log10(15))

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
32b435b brimittleman 2019-11-12
select <- counts_genes
summary(apply(select, 1, var) == 0) 
   Mode   FALSE    TRUE 
logical   18209    1164 
# Perform PCA

pca_genes <- prcomp(t(counts_genes), scale = F)
scores <- pca_genes$x


#Make PCA plots with the factors colored by species

### PCs 1 and 2 Raw Data
for (n in 1:1){
  col.v <- pal[as.integer(metaData$Species)]
  plot_scores(pca_genes, scores, n, n+1, col.v)
}

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
32b435b brimittleman 2019-11-12
### PCs 3 and 4 Raw Data

for (n in 3:3){
  col.v <- pal[as.integer(metaData$Species)]
  plot_scores(pca_genes, scores, n, n+1, col.v)
}

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
32b435b brimittleman 2019-11-12

Plot density for raw data:

density_plot_18504 <- ggplot(counts_genes, aes(x = NA18504)) + geom_density() + labs(title = "Density plot of raw gene counts of NA18504") + labs(x = "Raw counts for each gene")

density_plot_18504

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
32b435b brimittleman 2019-11-12

Convert to log2

log_counts_genes <- as.data.frame(log2(counts_genes))
head(log_counts_genes)
                  NA18498   NA18504   NA18510   NA18523   NA18499
ENSG00000000003      -Inf  1.584963  2.000000  0.000000  1.000000
ENSG00000000005      -Inf      -Inf      -Inf      -Inf      -Inf
ENSG00000000419  9.831307  9.535275 10.231221  9.759888  9.935165
ENSG00000000457  9.047124  8.717676  9.259743  8.672425  9.283088
ENSG00000000460  8.807355  8.164907  9.090112  7.312883  9.129283
ENSG00000000938 12.340406 11.843921 12.813180 13.557224 11.509775
                  NA18502    NA4973   NAPT30   NAPT91   NA3622    NA3659
ENSG00000000003  1.000000  3.700440 1.584963 0.000000 4.169925  3.700440
ENSG00000000005      -Inf      -Inf     -Inf     -Inf     -Inf      -Inf
ENSG00000000419  9.998590  9.179909 8.816984 9.057992 9.049849  9.136991
ENSG00000000457  9.116344  9.483816 9.357552 9.821774 9.475733  9.505812
ENSG00000000460  8.909893  9.092757 8.679480 7.888743 8.994353  9.038919
ENSG00000000938 11.843529 11.484319 7.845490 8.527477 8.738092 11.171802
                  NA18358
ENSG00000000003      -Inf
ENSG00000000005      -Inf
ENSG00000000419  8.968667
ENSG00000000457  9.052568
ENSG00000000460  7.936638
ENSG00000000938 11.869594
density_plot_18504 <- ggplot(log_counts_genes, aes(x = 18504)) + geom_density()

density_plot_18504 + labs(title = "Density plot of log2 counts of 18504") + labs(x = "Log2 counts for each gene") + geom_vline(xintercept = 1) 

Version Author Date
c453931 brimittleman 2020-01-05
32b435b brimittleman 2019-11-12
plotDensities(log_counts_genes, col=pal[as.numeric(metaData$Species)], legend="topright")

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
32b435b brimittleman 2019-11-12

Convert to CPM

cpm <- cpm(counts_genes, log=TRUE)
head(cpm)
                  NA18498   NA18504   NA18510   NA18523   NA18499
ENSG00000000003 -3.214119 -1.687803 -1.678332 -2.557786 -2.259918
ENSG00000000005 -3.214119 -3.214119 -3.214119 -3.214119 -3.214119
ENSG00000000419  5.579570  5.650403  5.945220  5.752976  5.631088
ENSG00000000457  4.797732  4.835162  4.976165  4.668752  4.980802
ENSG00000000460  4.558974  4.284933  4.807150  3.318750  4.827551
ENSG00000000938  8.085987  7.956576  8.525076  9.547634  7.203612
                  NA18502    NA4973    NAPT30    NAPT91      NA3622
ENSG00000000003 -2.244077 -0.508794 -1.907969 -2.610028  0.08159357
ENSG00000000005 -3.214119 -3.214119 -3.214119 -3.214119 -3.21411905
ENSG00000000419  5.726859  4.736398  4.582972  4.905709  4.81211618
ENSG00000000457  4.847086  5.039196  5.121512  5.667358  5.23658578
ENSG00000000460  4.641466  4.649609  4.446117  3.742924  4.75683807
ENSG00000000938  7.569677  7.036149  3.617698  4.377498  4.50169416
                    NA3659   NA18358
ENSG00000000003 -0.4625636 -3.214119
ENSG00000000005 -3.2141190 -3.214119
ENSG00000000419  4.7478795  5.024297
ENSG00000000457  5.1153942  5.107928
ENSG00000000460  4.6502143  3.997251
ENSG00000000938  6.7783101  7.921081
plotDensities(cpm, col=pal[as.numeric(metaData$Species)], legend="topright")

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
32b435b brimittleman 2019-11-12

Log2 CPM

TMM/log2(CPM)

## Create edgeR object (dge) to calculate TMM normalization  
dge_original <- DGEList(counts=as.matrix(counts_genes), genes=rownames(counts_genes), group = as.character(t(labels)))
dge_original <- calcNormFactors(dge_original)

tmm_cpm <- cpm(dge_original, normalized.lib.sizes=TRUE, log=TRUE, prior.count = 0.25)
head(cpm)
                  NA18498   NA18504   NA18510   NA18523   NA18499
ENSG00000000003 -3.214119 -1.687803 -1.678332 -2.557786 -2.259918
ENSG00000000005 -3.214119 -3.214119 -3.214119 -3.214119 -3.214119
ENSG00000000419  5.579570  5.650403  5.945220  5.752976  5.631088
ENSG00000000457  4.797732  4.835162  4.976165  4.668752  4.980802
ENSG00000000460  4.558974  4.284933  4.807150  3.318750  4.827551
ENSG00000000938  8.085987  7.956576  8.525076  9.547634  7.203612
                  NA18502    NA4973    NAPT30    NAPT91      NA3622
ENSG00000000003 -2.244077 -0.508794 -1.907969 -2.610028  0.08159357
ENSG00000000005 -3.214119 -3.214119 -3.214119 -3.214119 -3.21411905
ENSG00000000419  5.726859  4.736398  4.582972  4.905709  4.81211618
ENSG00000000457  4.847086  5.039196  5.121512  5.667358  5.23658578
ENSG00000000460  4.641466  4.649609  4.446117  3.742924  4.75683807
ENSG00000000938  7.569677  7.036149  3.617698  4.377498  4.50169416
                    NA3659   NA18358
ENSG00000000003 -0.4625636 -3.214119
ENSG00000000005 -3.2141190 -3.214119
ENSG00000000419  4.7478795  5.024297
ENSG00000000457  5.1153942  5.107928
ENSG00000000460  4.6502143  3.997251
ENSG00000000938  6.7783101  7.921081
pca_genes <- prcomp(t(tmm_cpm), scale = F)
scores <- pca_genes$x

for (n in 1:2){
  col.v <- pal[as.integer(metaData$Species)]
  plot_scores(pca_genes, scores, n, n+1, col.v)
}

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
da4bab0 brimittleman 2019-11-12
32b435b brimittleman 2019-11-12

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
da4bab0 brimittleman 2019-11-12
# Plot library size

boxplot_library_size <- ggplot(dge_original$samples, aes(x=metaData$Species, y = dge_original$samples$lib.size, fill = metaData$Species)) + geom_boxplot()
 
boxplot_library_size + labs(title = "Library size by Species") + labs(y = "Library size") + labs(x = "Species") + guides(fill=guide_legend(title="Species"))

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
da4bab0 brimittleman 2019-11-12
32b435b brimittleman 2019-11-12
plotDensities(tmm_cpm, col=pal[as.numeric(metaData$Species)], legend="topright")

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
da4bab0 brimittleman 2019-11-12
32b435b brimittleman 2019-11-12

Filter low expressed gene

Filter based on log2 cpm

filter log2(cpm >1) in at least 10 of the samples (2/3)

#filter counts
keep.exprs=rowSums(tmm_cpm>1) >8

counts_filtered= counts_genes[keep.exprs,]




plotDensities(counts_filtered, col=pal[as.numeric(metaData$Species)], legend="topright")

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
da4bab0 brimittleman 2019-11-12
labels <- paste(metaData$Species, metaData$Line, sep=" ")
dge_in_cutoff <- DGEList(counts=as.matrix(counts_filtered), genes=rownames(counts_filtered), group = as.character(t(labels)))
dge_in_cutoff <- calcNormFactors(dge_in_cutoff)

cpm_in_cutoff <- cpm(dge_in_cutoff, normalized.lib.sizes=TRUE, log=TRUE, prior.count = 0.25)
head(cpm_in_cutoff)
                 NA18498  NA18504  NA18510  NA18523  NA18499  NA18502
ENSG00000000419 5.605914 5.653296 5.916152 5.845268 5.644714 5.728449
ENSG00000000457 4.822027 4.836001 4.944992 4.758197 4.992866 4.846521
ENSG00000000460 4.582386 4.283559 4.775443 3.399813 4.839132 4.640177
ENSG00000000938 8.114674 7.961624 8.497834 9.642281 7.219058 7.573114
ENSG00000001036 5.888276 5.743706 5.726636 5.927711 5.758006 5.063235
ENSG00000001084 4.763617 4.061338 4.530956 5.004519 3.991180 4.092598
                  NA4973   NAPT30   NAPT91   NA3622   NA3659  NA18358
ENSG00000000419 4.776243 4.670620 5.016289 4.838002 4.798818 5.096826
ENSG00000000457 5.080011 5.210943 5.779817 5.263708 5.167477 5.180694
ENSG00000000460 4.689137 4.533195 3.847813 4.782534 4.700797 4.065408
ENSG00000000938 7.080071 3.699882 4.486049 4.526414 6.833086 7.997246
ENSG00000001036 4.068473 3.761218 4.405707 3.489676 4.878534 5.234014
ENSG00000001084 5.065843 4.396833 4.623827 4.751093 4.730640 4.640130
hist(cpm_in_cutoff, xlab = "Log2(CPM)", main = "Log2(CPM) values for genes meeting the filtering criteria", breaks = 100 )

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
da4bab0 brimittleman 2019-11-12

Voom transformation:

Species <- factor(metaData$Species)
design <- model.matrix(~ 0 + Species)
head(design)
  SpeciesChimp SpeciesHuman
1            1            0
2            1            0
3            1            0
4            1            0
5            1            0
6            1            0
colnames(design) <- gsub("Species", "", dput(colnames(design)))
c("SpeciesChimp", "SpeciesHuman")

Voom creates a random effect.

# Voom with individual as a random variable

cpm.voom<- voom(counts_filtered, design, normalize.method="quantile", plot=T)

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
da4bab0 brimittleman 2019-11-12
32b435b brimittleman 2019-11-12
boxplot(cpm.voom$E, col = pal[as.numeric(metaData$Species)],las=2)

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
da4bab0 brimittleman 2019-11-12
32b435b brimittleman 2019-11-12
plotDensities(cpm.voom, col =  pal[as.numeric(metaData$Species)], legend = "topleft") 

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
da4bab0 brimittleman 2019-11-12
32b435b brimittleman 2019-11-12

Looks like i still have a skew on the lower side of the distribution.

# PCA 

pca_genes <- prcomp(t(cpm.voom$E), scale = T)
scores <- pca_genes$x


eigsGene <- pca_genes$sdev^2
proportionG = eigsGene/sum(eigsGene)

plot(proportionG)

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
a22bae9 brimittleman 2019-11-13
da4bab0 brimittleman 2019-11-12
32b435b brimittleman 2019-11-12
for (n in 1:2){
  col.v <- pal[as.integer(metaData$Species)]
  plot_scores(pca_genes, scores, n, n+1, col.v)
}

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
a22bae9 brimittleman 2019-11-13
da4bab0 brimittleman 2019-11-12

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
a22bae9 brimittleman 2019-11-13
#Clustering (original code from Julien Roux)
cors <- cor(cpm.voom$E, method="spearman", use="pairwise.complete.obs")


heatmap.2( cors, scale="none", col = colors, margins = c(12, 12), trace='none', denscol="white", labCol=labels, ColSideColors=pal[as.integer(as.factor(metaData$Species))], RowSideColors=pal[as.integer(as.factor(metaData$Species))+9], cexCol = 0.2 + 1/log10(15), cexRow = 0.2 + 1/log10(15))

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
da4bab0 brimittleman 2019-11-12

One thing I can do is look at the correlation between the PCs and other factors in the data.

# PCA 

pca_genes <- prcomp(t(cpm.voom$E), scale = F)
scores <- pca_genes$x

for (n in 1:2){
  col.v <- pal[as.integer(metaData$Collection)]
  plot_scores(pca_genes, scores, n, n+1, col.v)
}

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
a22bae9 brimittleman 2019-11-13

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
a22bae9 brimittleman 2019-11-13
metaData$Extraction=as.factor(metaData$Extraction)

for (n in 1:2){
  col.v <- pal[as.integer(metaData$Extraction)]
  plot_scores(pca_genes, scores, n, n+1, col.v)
}

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
a22bae9 brimittleman 2019-11-13

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
a22bae9 brimittleman 2019-11-13

It does not look like batch (who collected or extraction date batch)

cols = brewer.pal(9, "Blues")
palC = colorRampPalette(cols)


metaData$UndilutedAverageorder = findInterval(metaData$UndilutedAverage, sort(metaData$UndilutedAverage))
for (n in 1:2){
  col.v <- palC(nrow(metaData))[metaData$UndilutedAverageorder]
  plot_scores(pca_genes, scores, n, n+1, col.v)
}

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
a22bae9 brimittleman 2019-11-13

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
a22bae9 brimittleman 2019-11-13
metaData$BioAConcorder = findInterval(metaData$BioAConc, sort(metaData$BioAConc))
for (n in 1:2){
  col.v <- palC(nrow(metaData))[metaData$BioAConcorder]
  plot_scores(pca_genes, scores, n, n+1, col.v)
}

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
a22bae9 brimittleman 2019-11-13

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
a22bae9 brimittleman 2019-11-13
metaData$RinConcorder = findInterval(metaData$Rin, sort(metaData$Rin))
for (n in 1:2){
  col.v <- palC(nrow(metaData))[metaData$RinConcorder]
  plot_scores(pca_genes, scores, n, n+1, col.v)
}

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
a22bae9 brimittleman 2019-11-13

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
a22bae9 brimittleman 2019-11-13

The samples do not cluster by collection concentration, RNA rin score or RNA concentration.

metaData$AssignedOrthoorder = findInterval(metaData$AssignedOrtho, sort(metaData$AssignedOrtho))
for (n in 1:2){
  col.v <- palC(nrow(metaData))[metaData$AssignedOrthoorder]
  plot_scores(pca_genes, scores, n, n+1, col.v)
}

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
a22bae9 brimittleman 2019-11-13

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
a22bae9 brimittleman 2019-11-13

They also do not cluster by number of reads mapping to ortho exons.

PCA heatmap: Code from Michelle Ward:

x.pca <- pca_genes

tech_factors <- metaData
tech_factors_sum <- tech_factors[,c(2:15)] %>% dplyr::select(-CollectionDate)

p_comps <- 1:6
pc_cov_cor <- matrix(nrow = ncol(tech_factors_sum), ncol = length(p_comps),
                     dimnames = list(colnames(tech_factors_sum), colnames(x.pca$x)[p_comps]))
for (pc in p_comps) {
  for (covariate in 1:ncol(tech_factors_sum)) {
    lm_result <- lm(x.pca$x[, pc] ~ tech_factors_sum[, covariate])
    r2 <- summary(lm_result)$r.squared
    pc_cov_cor[covariate, pc] <- r2
  }
}

pc_cov_pval <- matrix(nrow = ncol(tech_factors_sum), ncol = length(p_comps),
                      dimnames = list(colnames(tech_factors_sum), colnames(x.pca$x)[p_comps]))

for (pc in p_comps) {
  for (covariate_2 in 1:ncol(tech_factors_sum)) {
    lm_result_2 <- lm(x.pca$x[, pc] ~ tech_factors_sum[, covariate_2])
    pval <- anova(lm_result_2)$'Pr(>F)'[1]
    pc_cov_pval[covariate_2, pc] <- pval
  }
}

PCs <- c("PC1", "PC2", "PC3", "PC4", "PC5", "PC6")
Tech_fac <- colnames(tech_factors_sum)
#Tech_fac <- c("Species",   "Individual", "O2.",  "Condition" , "Sex", "RIN" , "CO2", "Purity_high", "Purity_med" ,
              #"Expt_Batch", "RNA_Batch", "Library_Batch", "Seq_pool", "Episomal_integration" )

heatmap.2(as.matrix(pc_cov_cor[Tech_fac,PCs]),col=brewer.pal(4, "Greens"), trace="none",
          Rowv=FALSE, Colv=FALSE, key=T, main="Cor. PCs & tech factors", dendrogram="none",
          key.title=NA, cexRow=0.9, cexCol=0.9)

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21
a22bae9 brimittleman 2019-11-13
log10_pc_cov_pval <- -log(pc_cov_pval)
heatmap.2(as.matrix(log10_pc_cov_pval[Tech_fac,PCs]), col=brewer.pal(9, "Greens"), trace="none",
          Rowv=FALSE, Colv=FALSE, key=T, main="-log10 pval of cor. PCs & tech factors", dendrogram="none",
          key.title=NA, cexRow=0.9, cexCol=0.9)

Version Author Date
c453931 brimittleman 2020-01-05
2c9b5b4 brimittleman 2019-12-06
8fca47f brimittleman 2019-11-22
25971ed brimittleman 2019-11-21

Plot PVE by each PC:

eigs <- pca_genes$sdev^2
proportion = eigs/sum(eigs)

plot(proportion, main="PVE by each PC", xlab="PC")

Version Author Date
c453931 brimittleman 2020-01-05
proportion[4]
[1] 0.09109573

Test for DE

fit.cpm.voom = lmFit(cpm.voom, design, plot=T)
head(coef(fit.cpm.voom))
                   Chimp    Human
ENSG00000000419 5.729563 4.863479
ENSG00000000457 4.862504 5.280516
ENSG00000000460 4.452581 4.461012
ENSG00000000938 8.146155 5.749239
ENSG00000001036 5.682363 4.278239
ENSG00000001084 4.398539 4.711799
testgenes= rownames(coef(fit.cpm.voom))
contr <- makeContrasts(Chimp - Human, levels = colnames(coef(fit.cpm.voom)))
contr
       Contrasts
Levels  Chimp - Human
  Chimp             1
  Human            -1
tmp <- contrasts.fit(fit.cpm.voom, contr)
tmp <- eBayes(tmp)
top.table <- topTable(tmp, sort.by = "P", n = Inf)
head(top.table, 20)
                    logFC  AveExpr         t      P.Value    adj.P.Val
ENSG00000105372  5.630358 8.110130  59.52351 1.485694e-16 1.508722e-12
ENSG00000204463 -6.197558 5.041060 -45.74372 3.777266e-15 1.142820e-11
ENSG00000205531 -5.940439 5.011790 -45.62134 3.903519e-15 1.142820e-11
ENSG00000142937  5.589075 8.074735  45.09454 4.501505e-15 1.142820e-11
ENSG00000137818  7.114468 6.794576  43.68229 6.651200e-15 1.350859e-11
ENSG00000071082  5.413729 7.296312  35.45376 8.574484e-14 1.451231e-10
ENSG00000186298  3.352417 6.680918  32.22943 2.748792e-13 3.974110e-10
ENSG00000148303  4.640610 7.595442  31.88765 3.130762e-13 3.974110e-10
ENSG00000116478  3.694113 6.385183  30.76256 4.852201e-13 5.474900e-10
ENSG00000147604 -7.064441 5.783547 -30.38644 5.637299e-13 5.724678e-10
ENSG00000088038 -4.999454 3.948451 -29.72131 7.382438e-13 6.815333e-10
ENSG00000072864 -6.857923 4.399064 -29.44551 8.270260e-13 6.998707e-10
ENSG00000183020 -5.130305 4.151035 -29.13161 9.423275e-13 7.361028e-10
ENSG00000128731 -3.587995 5.679996 -28.54326 1.207989e-12 8.762231e-10
ENSG00000161654 -3.666330 4.603805 -27.92183 1.578929e-12 1.040331e-09
ENSG00000179950 -5.983934 4.402584 -27.78236 1.678068e-12 1.040331e-09
ENSG00000167615 -6.313264 4.881549 -27.69762 1.741569e-12 1.040331e-09
ENSG00000145741  2.897300 7.633998  26.95215 2.426347e-12 1.368864e-09
ENSG00000105640 -2.953215 8.019379 -25.12854 5.677714e-12 2.925081e-09
ENSG00000049656 -2.675713 5.440187 -25.09842 5.760868e-12 2.925081e-09
                       B
ENSG00000105372 27.35947
ENSG00000204463 22.47175
ENSG00000205531 22.58641
ENSG00000142937 24.66798
ENSG00000137818 23.42239
ENSG00000071082 21.98589
ENSG00000186298 20.97083
ENSG00000148303 20.85556
ENSG00000116478 20.39436
ENSG00000147604 19.44754
ENSG00000088038 18.72823
ENSG00000072864 18.27882
ENSG00000183020 18.65049
ENSG00000128731 19.44355
ENSG00000161654 18.88385
ENSG00000179950 18.10333
ENSG00000167615 18.27649
ENSG00000145741 18.88448
ENSG00000105640 18.03812
ENSG00000049656 17.99535
length(which(top.table$adj.P.Val < 0.05))
[1] 3796

Make a table to plot:

-log10(bh adjusted pval) vs logFC (log3 fold change)

top.table2=top.table %>% mutate(Species=ifelse(logFC > 1 & adj.P.Val<.05, "Chimp", ifelse(logFC < -1 & adj.P.Val< .05, "Human", "Neither")))
ggplot(top.table2, aes(x=logFC, y= -log10(adj.P.Val))) + geom_point(aes(col=Species), alpha=.3) + scale_color_brewer(palette = "Dark2") + labs(title="LCL differential Expression")

Version Author Date
326f6e2 brimittleman 2020-01-10
summary(decideTests(tmp))
       Chimp - Human
Down            1895
NotSig          6359
Up              1901
deGenes=as.data.frame(row.names(top.table[top.table$adj.P.Val < 0.05,]))
#mkdir ../data/DiffExpression

geneNames=as.data.frame(row.names(top.table))
colnames(geneNames)="genes"
deGenes_witheffect= cbind(geneNames,top.table) %>% filter(adj.P.Val < 0.05)
tested_witheffect=cbind(geneNames,top.table)

write.table(deGenes,"../data/DiffExpression/DE_genes.txt", col.names = F, row.names = F, quote = F)
write.table(tested_witheffect,"../data/DiffExpression/DEtested_allres.txt", col.names = F, row.names = F, quote = F)
write.table(deGenes_witheffect,"../data/DiffExpression/DE_results5fdr.txt", col.names = T, row.names = F, quote = F)
write.table(testgenes,"../data/DiffExpression/DE_Testedgenes.txt", col.names = F, row.names = F, quote = F)

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] reshape2_1.4.3      RColorBrewer_1.1-2  VennDiagram_1.6.20 
 [4] futile.logger_1.4.3 R.utils_2.7.0       R.oo_1.22.0        
 [7] R.methodsS3_1.7.1   edgeR_3.24.0        limma_3.38.2       
[10] gplots_3.0.1        scales_1.0.0        forcats_0.3.0      
[13] stringr_1.3.1       dplyr_0.8.0.1       purrr_0.3.2        
[16] readr_1.3.1         tidyr_0.8.3         tibble_2.1.1       
[19] ggplot2_3.1.1       tidyverse_1.2.1     workflowr_1.5.0    

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.2           locfit_1.5-9.1       lubridate_1.7.4     
 [4] lattice_0.20-38      gtools_3.8.1         assertthat_0.2.0    
 [7] rprojroot_1.3-2      digest_0.6.18        R6_2.3.0            
[10] cellranger_1.1.0     plyr_1.8.4           futile.options_1.0.1
[13] backports_1.1.2      evaluate_0.12        httr_1.3.1          
[16] pillar_1.3.1         rlang_0.4.0          lazyeval_0.2.1      
[19] readxl_1.1.0         rstudioapi_0.10      gdata_2.18.0        
[22] whisker_0.3-2        rmarkdown_1.10       labeling_0.3        
[25] munsell_0.5.0        broom_0.5.1          compiler_3.5.1      
[28] httpuv_1.4.5         modelr_0.1.2         pkgconfig_2.0.2     
[31] htmltools_0.3.6      tidyselect_0.2.5     crayon_1.3.4        
[34] withr_2.1.2          later_0.7.5          bitops_1.0-6        
[37] nlme_3.1-137         jsonlite_1.6         gtable_0.2.0        
[40] formatR_1.5          git2r_0.26.1         magrittr_1.5        
[43] KernSmooth_2.23-15   cli_1.1.0            stringi_1.2.4       
[46] fs_1.3.1             promises_1.0.1       xml2_1.2.0          
[49] generics_0.0.2       lambda.r_1.2.3       tools_3.5.1         
[52] glue_1.3.0           hms_0.4.2            yaml_2.2.0          
[55] colorspace_1.3-2     caTools_1.17.1.1     rvest_0.3.2         
[58] knitr_1.20           haven_1.1.2