Last updated: 2019-02-15

Checks: 6 0

Knit directory: threeprimeseq/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.2.0). The Report tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store
    Ignored:    data/perm_QTL_trans_noMP_5percov/
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  KalistoAbundance18486.txt
    Untracked:  analysis/4suDataIGV.Rmd
    Untracked:  analysis/DirectionapaQTL.Rmd
    Untracked:  analysis/EvaleQTLs.Rmd
    Untracked:  analysis/YL_QTL_test.Rmd
    Untracked:  analysis/ncbiRefSeq_sm.sort.mRNA.bed
    Untracked:  analysis/snake.config.notes.Rmd
    Untracked:  analysis/verifyBAM.Rmd
    Untracked:  analysis/verifybam_dubs.Rmd
    Untracked:  code/PeaksToCoverPerReads.py
    Untracked:  code/strober_pc_pve_heatmap_func.R
    Untracked:  data/18486.genecov.txt
    Untracked:  data/APApeaksYL.total.inbrain.bed
    Untracked:  data/ApaQTLs/
    Untracked:  data/ChromHmmOverlap/
    Untracked:  data/DistTXN2Peak_genelocAnno/
    Untracked:  data/GM12878.chromHMM.bed
    Untracked:  data/GM12878.chromHMM.txt
    Untracked:  data/LianoglouLCL/
    Untracked:  data/LocusZoom/
    Untracked:  data/NuclearApaQTLs.txt
    Untracked:  data/PeakCounts/
    Untracked:  data/PeakCounts_noMP_5perc/
    Untracked:  data/PeakCounts_noMP_genelocanno/
    Untracked:  data/PeakUsage/
    Untracked:  data/PeakUsage_noMP/
    Untracked:  data/PeakUsage_noMP_GeneLocAnno/
    Untracked:  data/PeaksUsed/
    Untracked:  data/PeaksUsed_noMP_5percCov/
    Untracked:  data/RNAkalisto/
    Untracked:  data/RefSeq_annotations/
    Untracked:  data/TotalApaQTLs.txt
    Untracked:  data/Totalpeaks_filtered_clean.bed
    Untracked:  data/UnderstandPeaksQC/
    Untracked:  data/WASP_STAT/
    Untracked:  data/YL-SP-18486-T-combined-genecov.txt
    Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
    Untracked:  data/YL_QTL_test/
    Untracked:  data/apaExamp/
    Untracked:  data/apaQTL_examp_noMP/
    Untracked:  data/bedgraph_peaks/
    Untracked:  data/bin200.5.T.nuccov.bed
    Untracked:  data/bin200.Anuccov.bed
    Untracked:  data/bin200.nuccov.bed
    Untracked:  data/clean_peaks/
    Untracked:  data/comb_map_stats.csv
    Untracked:  data/comb_map_stats.xlsx
    Untracked:  data/comb_map_stats_39ind.csv
    Untracked:  data/combined_reads_mapped_three_prime_seq.csv
    Untracked:  data/diff_iso_GeneLocAnno/
    Untracked:  data/diff_iso_proc/
    Untracked:  data/diff_iso_trans/
    Untracked:  data/ensemble_to_genename.txt
    Untracked:  data/example_gene_peakQuant/
    Untracked:  data/explainProtVar/
    Untracked:  data/filtPeakOppstrand_cov_noMP_GeneLocAnno_5perc/
    Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
    Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
    Untracked:  data/first50lines_closest.txt
    Untracked:  data/gencov.test.csv
    Untracked:  data/gencov.test.txt
    Untracked:  data/gencov_zero.test.csv
    Untracked:  data/gencov_zero.test.txt
    Untracked:  data/gene_cov/
    Untracked:  data/joined
    Untracked:  data/leafcutter/
    Untracked:  data/merged_combined_YL-SP-threeprimeseq.bg
    Untracked:  data/molPheno_noMP/
    Untracked:  data/mol_overlap/
    Untracked:  data/mol_pheno/
    Untracked:  data/nom_QTL/
    Untracked:  data/nom_QTL_opp/
    Untracked:  data/nom_QTL_trans/
    Untracked:  data/nuc6up/
    Untracked:  data/nuc_10up/
    Untracked:  data/other_qtls/
    Untracked:  data/pQTL_otherphen/
    Untracked:  data/peakPerRefSeqGene/
    Untracked:  data/perm_QTL/
    Untracked:  data/perm_QTL_GeneLocAnno_noMP_5percov/
    Untracked:  data/perm_QTL_GeneLocAnno_noMP_5percov_3UTR/
    Untracked:  data/perm_QTL_opp/
    Untracked:  data/perm_QTL_trans/
    Untracked:  data/perm_QTL_trans_filt/
    Untracked:  data/protAndAPAAndExplmRes.Rda
    Untracked:  data/protAndAPAlmRes.Rda
    Untracked:  data/protAndExpressionlmRes.Rda
    Untracked:  data/reads_mapped_three_prime_seq.csv
    Untracked:  data/smash.cov.results.bed
    Untracked:  data/smash.cov.results.csv
    Untracked:  data/smash.cov.results.txt
    Untracked:  data/smash_testregion/
    Untracked:  data/ssFC200.cov.bed
    Untracked:  data/temp.file1
    Untracked:  data/temp.file2
    Untracked:  data/temp.gencov.test.txt
    Untracked:  data/temp.gencov_zero.test.txt
    Untracked:  data/threePrimeSeqMetaData.csv
    Untracked:  data/threePrimeSeqMetaData55Ind.txt
    Untracked:  data/threePrimeSeqMetaData55Ind.xlsx
    Untracked:  data/threePrimeSeqMetaData55Ind_noDup.txt
    Untracked:  data/threePrimeSeqMetaData55Ind_noDup.xlsx
    Untracked:  data/threePrimeSeqMetaData55Ind_noDup_WASPMAP.txt
    Untracked:  data/threePrimeSeqMetaData55Ind_noDup_WASPMAP.xlsx
    Untracked:  output/picard/
    Untracked:  output/plots/
    Untracked:  output/qual.fig2.pdf

Unstaged changes:
    Modified:   analysis/28ind.peak.explore.Rmd
    Modified:   analysis/CompareLianoglouData.Rmd
    Modified:   analysis/NewPeakPostMP.Rmd
    Modified:   analysis/accountMapBias.Rmd
    Modified:   analysis/apaQTLoverlapGWAS.Rmd
    Modified:   analysis/cleanupdtseq.internalpriming.Rmd
    Modified:   analysis/coloc_apaQTLs_protQTLs.Rmd
    Modified:   analysis/dif.iso.usage.leafcutter.Rmd
    Modified:   analysis/diff_iso_pipeline.Rmd
    Modified:   analysis/explainpQTLs.Rmd
    Modified:   analysis/explore.filters.Rmd
    Modified:   analysis/flash2mash.Rmd
    Modified:   analysis/mispriming_approach.Rmd
    Modified:   analysis/overlapMolQTL.Rmd
    Modified:   analysis/overlapMolQTL.opposite.Rmd
    Modified:   analysis/overlap_qtls.Rmd
    Modified:   analysis/peakOverlap_oppstrand.Rmd
    Modified:   analysis/peakQCPPlots.Rmd
    Modified:   analysis/pheno.leaf.comb.Rmd
    Modified:   analysis/pipeline_55Ind.Rmd
    Modified:   analysis/swarmPlots_QTLs.Rmd
    Modified:   analysis/test.max2.Rmd
    Modified:   analysis/test.smash.Rmd
    Modified:   analysis/understandPeaks.Rmd
    Modified:   code/Snakefile

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
html d6363e1 Briana Mittleman 2018-09-24 Build site.
Rmd ed0a1eb Briana Mittleman 2018-09-24 add fix command to full pipeline
html a0a73b5 Briana Mittleman 2018-09-24 Build site.
Rmd 6242ff6 Briana Mittleman 2018-09-24 add filter command to full pipeline
html 617d032 brimittleman 2018-08-08 Build site.
Rmd 6be219c brimittleman 2018-08-08 add final pipeline
html 5566fd6 brimittleman 2018-08-02 Build site.
Rmd 0f79304 brimittleman 2018-08-02 fix cov to peak file problem
html efad657 Briana Mittleman 2018-07-31 Build site.
Rmd 7c203e4 Briana Mittleman 2018-07-31 format files for yangs peak script
html 7fc2ce7 Briana Mittleman 2018-07-30 Build site.
Rmd 782320d Briana Mittleman 2018-07-30 look at coverage in merged bw
html e5a8da6 Briana Mittleman 2018-07-30 Build site.
Rmd 422a428 Briana Mittleman 2018-07-30 add peak cove pipeline and combined lane qc

I need to create a processing pipeline that I can run each time I get more individuals that will do the following:

  • combine all total and nuclear libraries (as a bigwig/genome coverage)

  • call peaks with Yang’s script

  • filter peaks with Yang’s script

  • clean peaks

  • run feature counts on these peaks for all fo the individuals

Create bedgraph and bigwig:

I can do this step in my snakefile. First, I added the following to my environemnt.

  • ucsc-bedgraphtobigwig
  • ucsc-bigwigmerge
  • ucsc-wigtobigwig
  • ucsc-bigwigtobedgraph

I want to create bedgraph for each file. I will add a rule to my snakefile that does this and puts them in the bedgraph directory.

I want to add more memory for this rule in the cluster.json

"bedgraph" :
    {
            "mem": 16000
    },
"bedgraph_5" :
    {
            "mem": 16000
    }

I will use the bedgraphtobigwig tool.

#add to directory
dir_bedgraph= dir_data + "bedgraph/"
dir_bigwig= dir_data + "bigwig/"
dir_sortbg= dir_data + "bedgraph_sort/"
dir_bedgraph_5= dir_data + "bedgraph_5prime/"

#add to rule_all  

expand(dir_bedgraph + "{samples}.split.bg", samples=samples)
expand(dir_sortbg + "{samples}.sort.bg", samples=samples)
expand(dir_bigwig + "{samples}.bw", samples=samples)
expand(dir_bedgraph_5 + "{samples}.5.bg", samples=samples)

#rule
rule bedgraph_5: 
  input:
    bam = dir_sort + "{samples}-sort.bam"
  output: dir_bedgraph_5 + "{samples}.5.bg"
  shell: "bedtools genomecov -ibam {input.bam} -bg -5 > {output}"
  
rule bedgraph: 
  input:
    bam = dir_sort + "{samples}-sort.bam"
  output: dir_bedgraph + "{samples}.split.bg"
  shell: "bedtools genomecov -ibam {input.bam} -bg -split > {output}"

rule sort_bg:
    input: dir_bedgraph + "{samples}.split.bg"
    output: dir_sortbg + "{samples}.sort.bg"
    shell: "sort -k1,1 -k2,2n {input} > {output}"

rule bg_to_bw:
    input: 
        bg=dir_sortbg + "{samples}.sort.bg"
        len= chrom_length 
    output: dir_bigwig + "{samples}.bw"
    shell: "bedGraphToBigWig {input.bg} {input.len} {output}"

Merge BW

This next step will take all of the files in the bigwig directory and merge them. To do this I will create a script that creates a list of all of the files then uses this list in the merge script.

mergeBW.sh

#!/bin/bash

#SBATCH --job-name=mergeBW
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=mergeBW.out
#SBATCH --error=mergeBW.err
#SBATCH --partition=broadwl
#SBATCH --mem=40G
#SBATCH --mail-type=END

module load Anaconda3
source activate three-prime-env

ls -d -1 /project2/gilad/briana/threeprimeseq/data/bigwig/* | tail -n +2 > /project2/gilad/briana/threeprimeseq/data/list_bw/list_of_bigwig.txt

bigWigMerge -inList /project2/gilad/briana/threeprimeseq/data/list_bw/list_of_bigwig.txt /project2/gilad/briana/threeprimeseq/data/mergedBW/merged_combined_YL-SP-threeprimeseq.bg

The result of this script will be a merged bedgraph of all of the files.

Convert to coverage

library(workflowr)
This is workflowr version 1.2.0
Run ?workflowr for help getting started
library(ggplot2)
library(dplyr)

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union
#!/usr/bin/env python


main(inFile, outFile):
    fout = open(outFile,'w')
    for ind,ln in enumerate(open(inFile)):
      print(ind)
      chrom, start, end, count = ln.split()
      i2=int(start)
      while i2 < int(end):
        fout.write("%s\t%d\t%s\n"%(chrom, i2 + 1, count))
        fout.flush()
        i2 += 1
    fout.close()    
    

if __name__ == "__main__":
    import numpy as np
    from misc_helper import *
    import sys
    inFile = sys.argv[1]
    outFile = sys.argv[2]
    main(inFile, outFile)

Create a bash script to run this. I want the input and output files to be arguments in the python script.

#!/bin/bash

#SBATCH --job-name=run_bgtocov
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=run_bgtocov.out
#SBATCH --error=run_bgtocov.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END

module load Anaconda3
source activate three-prime-env 

python bg_to_cov.py "/project2/gilad/briana/threeprimeseq/data/mergedBW/merged_combined_YL-SP-threeprimeseq.bg" "/project2/gilad/briana/threeprimeseq/data/mergedBW/merged_combined_YL-SP-threeprimeseq.coverage.txt"

Sort result with:

sort -k1,1 -k2,2n merged_combined_YL-SP-threeprimeseq.coverage.txt > merged_combined_YL-SP-threeprimeseq.coverage.sort.txt 

Call Peaks


def main(inFile, outFile, ctarget):
    fout = open(outFile,'w')
    mincount = 10
    ov = 20
    current_peak = []
    
    currentChrom = None
    prevPos = 0
    for ln in open(inFile):
        chrom, pos, count = ln.split()
        if chrom != ctarget: continue
        count = float(count)

        if currentChrom == None:
            currentChrom = chrom
            
        if count == 0 or currentChrom != chrom or int(pos) > prevPos + 1:
            if len(current_peak) > 0:
                print (current_peak)
                M = max([x[1] for x in current_peak])
                if M > mincount:
                    all_peaks = refine_peak(current_peak, M, M*0.1,M*0.05)
                    #refined_peaks = [(x[0][0],x[-1][0], np.mean([y[1] for y in x])) for x in all_peaks]  
                    rpeaks = [(int(x[0][0])-ov,int(x[-1][0])+ov, np.mean([y[1] for y in x])) for x in all_peaks]
                    if len(rpeaks) > 1:
                        for clu in cluster_intervals(rpeaks)[0]:
                            M = max([x[2] for x in clu])
                            merging = []
                            for x in clu:
                                if x[2] > M *0.5:
                                    #print x, M
                                    merging.append(x)
                            c, s,e,mean =  chrom, min([x[0] for x in merging])+ov, max([x[1] for x in merging])-ov, np.mean([x[2] for x in merging])
                            #print c,s,e,mean
                            fout.write("chr%s\t%d\t%d\t%d\t+\t.\n"%(c,s,e,mean))
                            fout.flush()
                    elif len(rpeaks) == 1:
                        s,e,mean = rpeaks[0]
                        fout.write("chr%s\t%d\t%d\t%f\t+\t.\n"%(chrom,s+ov,e-ov,mean))
                        print("chr%s"%chrom+"\t%d\t%d\t%f\t+\t.\n"%rpeaks[0])
                    #print refined_peaks
            current_peak = [(pos,count)]
        else:
            current_peak.append((pos,count))
        currentChrom = chrom
        prevPos = int(pos)

def refine_peak(current_peak, M, thresh, noise, minpeaksize=30):
    
    cpeak = []
    opeak = []
    allcpeaks = []
    allopeaks = []

    for pos, count in current_peak:
        if count > thresh:
            cpeak.append((pos,count))
            opeak = []
            continue
        elif count > noise: 
            opeak.append((pos,count))
        else:
            if len(opeak) > minpeaksize:
                allopeaks.append(opeak) 
            opeak = []

        if len(cpeak) > minpeaksize:
            allcpeaks.append(cpeak)
            cpeak = []
        
    if len(cpeak) > minpeaksize:
        allcpeaks.append(cpeak)
    if len(opeak) > minpeaksize:
        allopeaks.append(opeak)

    allpeaks = allcpeaks
    for opeak in allopeaks:
        M = max([x[1] for x in opeak])
        allpeaks += refine_peak(opeak, M, M*0.3, noise)

    #print [(x[0],x[-1]) for x in allcpeaks], [(x[0],x[-1]) for x in allopeaks], [(x[0],x[-1]) for x in allpeaks]
    #print '---\n'
    return(allpeaks)

if __name__ == "__main__":
    import numpy as np
    from misc_helper import *
    import sys

    chrom = sys.argv[1]
    inFile = "/project2/gilad/briana/threeprimeseq/data/mergedBW/merged_combined_YL-SP-threeprimeseq.coverage.sort.txt" # "/project2/yangili1/threeprimeseq/gencov/TotalBamFiles.split.genomecov.bed"
    outFile = "/project2/gilad/briana/threeprimeseq/data/mergedPeaks/APApeaks_chr%s.bed"%chrom
    main(inFile, outFile, chrom)
#!/bin/bash

#SBATCH --job-name=w_getpeakYLgen
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=w_getpeakYLgen.out
#SBATCH --error=w_getpeakYLgen.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END

module load Anaconda3
source activate three-prime-env


for i in $(seq 1 22); do 
  python callPeaksYL_GEN.py $i
done

Run the file with : sbatch w_getpeakYLGEN.sh

After I have the peaks I will need to use Yangs filter peak function.

Filter peaks

Update each of the following scripts:

  1. Combine the peaks from all of the chromosome peak files.
cat /project2/gilad/briana/threeprimeseq/data/mergedPeaks/*.bed > /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb/APApeaks_merged_allchrom.bed

bed2saf.py

  • input: peaks bed file
  • output: peaks saf file

fout = file("/project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb/APApeaks_merged_allchrom.SAF",'w')
fout.write("GeneID\tChr\tStart\tEnd\tStrand\n")
for ln in open("/project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb/APApeaks_merged_allchrom.bed"):
    chrom, start, end, score, strand, score2 = ln.split()
    ID = "peak_%s_%s_%s"%(chrom,start, end)
    fout.write("%s\t%s\t%s\t%s\t+\n"%(ID+"_+", chrom.replace("chr",""), start, end))
    fout.write("%s\t%s\t%s\t%s\t-\n"%(ID+"_-", chrom.replace("chr",""), start, end))
fout.close()

Run this with run_bed2saf.sh. I did this because I need to load python2 rather than using the environment,

  • featureCounts -a PEAK.saf -F SAF -o APAquant.fc /project2/gilad/briana/threeprimeseq/data/sort/*-sort.bam -s 1
#!/bin/bash

#SBATCH --job-name=peak_fc
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=peak_fc.out
#SBATCH --error=peak_fc.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END

module load Anaconda3
source activate three-prime-env


featureCounts -a /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb/APApeaks_merged_allchrom.SAF -F SAF -o /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb/APAquant.fc /project2/gilad/briana/threeprimeseq/data/sort/*-sort.bam -s 1

This script is peak_fc.sh

filter_peaks.py

  • input: /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb/APAquant.fc
  • output: project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb/filtered_APApeaks_merged_allchrom.bed

I should run this in a bash script with python 2 as well.

#!/bin/bash

#SBATCH --job-name=filter_peak
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=filet_peak.out
#SBATCH --error=filter_peak.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END

module load python  


python filter_peaks.py

Name the peaks for the cleanup:


x = wc -l /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb/filtered_APApeaks_merged_allchrom.bed 

seq 1 x > peak.num.txt

paste /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb/filtered_APApeaks_merged_allchrom.bed peak.num.txt | column -s $'\t' -t > temp
awk '{print $1 "\t" $2 "\t" $3 "\t" $7  "\t"  $4 "\t"  $5 "\t" $6}' temp >   /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb/filtered_APApeaks_merged_allchrom.named.bed

Clean peaks

#!/bin/rscripts

# usage: ./cleanupdtseq.R in_bedfile, outfile, cuttoff

#this script takes a putative peak file, and output file name and a cuttoff for classification and outputs the file with all of the seqs classified. 

#use optparse for management of input arguments I want to be able to imput the 6up nuc file and write out a filter file  

#script needs to run outside of conda env. should module load R in bash script when I submit it 
library(optparse)
library(dplyr)
library(tidyr)
library(ggplot2)
library(cleanUpdTSeq)
library(GenomicRanges)
library(BSgenome.Hsapiens.UCSC.hg19)


option_list = list(
  make_option(c("-f", "--file"), action="store", default=NA, type='character',
              help="input file"),
  make_option(c("-o", "--output"), action="store", default=NA, type='character',
              help="output file"),
  make_option(c("-c", "--cutoff"), action="store", default=NA, type='double',
              help="assignment cuttoff")
)
  

opt_parser <- OptionParser(option_list=option_list)
opt <- parse_args(opt_parser)


#interrupt execution if no file is  supplied
if (is.null(opt$file)){
  print_help(opt_parser)
  stop("Need input file", call.=FALSE)
}

#imput file for test data 
testSet <- read.table(file = opt$file, sep="\t", col.names =c("chr", "start", "end", "PeakName", "Cov", "Strand", "score"))
peaks <- BED2GRangesSeq(testSet, withSeq=FALSE)

#build vector with human genome  

testSet.NaiveBayes <- buildFeatureVector(peaks, BSgenomeName=Hsapiens,
                                         upstream=40, downstream=30, 
                                         wordSize=6, alphabet=c("ACGT"),
                                         sampleType="unknown", 
                                         replaceNAdistance=30, 
                                         method="NaiveBayes",
                                         ZeroBasedIndex=1, fetchSeq=TRUE)

#classfy sites with built in classsifer

data(classifier)
testResults <- predictTestSet(testSet.NaiveBayes=testSet.NaiveBayes,
                              classifier=classifier,
                              outputFile=NULL, 
                              assignmentCutoff=opt$cutoff)
true_peaks=testResults %>% filter(pred.class==1) 


#write results  

write.table(true_peaks, file=opt$output, quote = F, row.names = F, col.names = T)  

I will create a bash script to run the cleanupdtseq.R code.

#!/bin/bash

#SBATCH --job-name=cleanup_comb
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=cleanup_comb.out
#SBATCH --error=cleanup_comb.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END


module load R



Rscript cleanupdtseq.R  -f /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb/filtered_APApeaks_merged_allchrom.named.bed -o /project2/gilad/briana/threeprimeseq/data/clean.peaks_comb/truePeaks_clean.bed -c .5

Do this after. filter_peaksClean.R, run with run_filter_peaksClean.sh

library(dplyr)

clean=read.table("/project2/gilad/briana/threeprimeseq/data/clean.peaks_comb/truePeaks_clean.bed", header=F, col.names=c("PeakName", "probFalse", "probTrue", "predClass", "UP", "Down"), skip=1)


peaks=read.table("/project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb/filtered_APApeaks_merged_allchrom.named.bed", header=F, col.names=c("Chr", "Start", "End", "PeakName", "Cov", "Strand", "Score"))
  
true_peaks=clean %>% filter(predClass==1) 

true_peak_bed=semi_join(peaks, clean, by="PeakName")

write.table(true_peak_bed, file="/project2/gilad/briana/threeprimeseq/data/clean.peaks_comb/APApeaks_combined_clean.bed", row.names = F, col.names = F, quote = F)
#!/bin/bash

#SBATCH --job-name=filter_clean
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=filter_clean.out
#SBATCH --error=filter_clean.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END


module load R


Rscript filter_peaksClean.R

may have to run bed to SAF again. bed2saf.peaks.py

from misc_helper import *

fout = file("/project2/gilad/briana/threeprimeseq/data/clean.peaks_comb/APApeaks_combined_clean.saf",'w')
fout.write("GeneID\tChr\tStart\tEnd\tStrand\n")
for ln in open("/project2/gilad/briana/threeprimeseq/data/clean.peaks_comb/APApeaks_combined_clean.bed"):
    chrom, start, end, name, score, strand, score2 = ln.split()
    ID = "peak_%s_%s_%s"%(chrom,start, end)
    fout.write("%s\t%s\t%s\t%s\t+\n"%(ID+"_+", chrom.replace("chr",""), start, end))
    fout.write("%s\t%s\t%s\t%s\t-\n"%(ID+"_-", chrom.replace("chr",""), start, end))
fout.close()
#!/bin/bash

#SBATCH --job-name=bed2saf_peaks
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=bed2saf_peak.out
#SBATCH --error=bed2saf_peak.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END

module load python

python bed2saf.peaks.py

Ind. Coverage with feature counts

#!/bin/bash

#SBATCH --job-name=clean_peak_fc
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=clean_peak_fc.out
#SBATCH --error=clean_peak_fc.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END

module load Anaconda3
source activate three-prime-env


featureCounts -a /project2/gilad/briana/threeprimeseq/data/clean.peaks_comb/APApeaks_combined_clean.saf -F SAF -o /project2/gilad/briana/threeprimeseq/data/clean_peaks_comb_quant/APAquant.fc.cleanpeaks.fc /project2/gilad/briana/threeprimeseq/data/sort/*-sort.bam -s 1

Full pipeline of scripts:

Should make this a snake file!!!

  • mergeBW.sh

  • run_bgtocov.sh

  • sort -k1,1 -k2,2n /project2/gilad/briana/threeprimeseq/data/mergedBW/merged_combined_YL-SP-threeprimeseq.coverage.txt > /project2/gilad/briana/threeprimeseq/data/mergedBW/merged_combined_YL-SP-threeprimeseq.coverage.sort.txt

  • w_getpeakYLGEN.sh

  • cat /project2/gilad/briana/threeprimeseq/data/mergedPeaks/*.bed > /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb/APApeaks_merged_allchrom.bed

  • run_bed2saf.sh

  • peak_fc.sh

  • run_filterPeak.sh

x = wc -l /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb/filtered_APApeaks_merged_allchrom.bed 

seq 1 x > /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb/peak.num.txt

paste /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb/filtered_APApeaks_merged_allchrom.bed /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb/peak.num.txt | column -s $'\t' -t > /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb/temp
awk '{print $1 "\t" $2 "\t" $3 "\t" $7  "\t"  $4 "\t"  $5 "\t" $6}' /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb/temp >   /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb/filtered_APApeaks_merged_allchrom.named.bed
  • if no cleanning:

  • cleanup_comb.sh

  • run_filter_peaksClean.sh

  • run_bed2saf_peaks.sh

  • clean_peak_fc.sh

Extra stuff not used

Problem with peak script : try with bam merge

#!/bin/bash

#SBATCH --job-name=comb_gencov
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=comb_gencov.out
#SBATCH --error=comb_gencov.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END


module load Anaconda3
source activate three-prime-env 


samtools merge /project2/gilad/briana/threeprimeseq/data/comb_bam/all_total.nuc_comb.bam  /project2/gilad/briana/threeprimeseq/data/sort/*.bam


bedtools genomecov -ibam /project2/gilad/briana/threeprimeseq/data/comb_bam/all_total.nuc_comb.bam -d -split > /project2/gilad/briana/threeprimeseq/data/comb_bam/all_total.nuc_comb.split.genomecov.bed

Will need to run mergeBW.sh and run_bgtocov.sh then sort with

sort -k1,1 -k2,2n merged_combined_YL-SP-threeprimeseq.coverage.txt > merged_combined_YL-SP-threeprimeseq.coverage.sort.txt 

then call peaks with the updated callpeaks script from yang (get_APA_peaks.py) I run this with w_getpeakYLGEN.sh.



sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14.1

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] dplyr_0.7.6     ggplot2_3.0.0   workflowr_1.2.0

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.19     bindr_0.1.1      knitr_1.20       whisker_0.3-2   
 [5] magrittr_1.5     tidyselect_0.2.4 munsell_0.5.0    colorspace_1.3-2
 [9] R6_2.3.0         rlang_0.2.2      stringr_1.4.0    plyr_1.8.4      
[13] tools_3.5.1      grid_3.5.1       gtable_0.2.0     withr_2.1.2     
[17] git2r_0.24.0     htmltools_0.3.6  assertthat_0.2.0 yaml_2.2.0      
[21] lazyeval_0.2.1   rprojroot_1.3-2  digest_0.6.17    tibble_1.4.2    
[25] crayon_1.3.4     bindrcpp_0.2.2   purrr_0.2.5      fs_1.2.6        
[29] glue_1.3.0       evaluate_0.13    rmarkdown_1.11   stringi_1.2.4   
[33] pillar_1.3.0     compiler_3.5.1   scales_1.0.0     backports_1.1.2 
[37] pkgconfig_2.0.2