Last updated: 2021-09-30

Checks: 7 0

Knit directory: Test/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210926) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version d5d884c. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store
    Ignored:    data/json/
    Ignored:    data/plan/
    Ignored:    fig/
    Ignored:    workflowr.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/09-25.Rmd) and HTML (docs/09-25.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 9105b39 cfcforever 2021-09-30 Build site.
html 8cd6144 cfcforever 2021-09-29 Build site.
Rmd 3ebdc7c cfcforever 2021-09-28 some changes
html 6289c69 cfcforever 2021-09-28 Build site.
html f8288b3 cfcforever 2021-09-28 Build site.
html 2846b2e cfcforever 2021-09-28 Build site.
html 08db2ac cfcforever 2021-09-27 Build site.
Rmd 5ff2790 cfcforever 2021-09-27 some changes
html 180545c cfcforever 2021-09-27 Build site.
Rmd a78cc3d cfcforever 2021-09-27 make changes

load data.json

today = "2021-09-25"
cat("data on:", today, "\n")
data on: 2021-09-25 
json_data = fromJSON(file = paste0("data/json/", today, "/position.json"))
cat("Total collected positions: ", length(json_data), "\n")
Total collected positions:  1373090 
tagId_seq = unlist(lapply(json_data, function(x){x["tag_id"][[1]]}))
tagId = unique(tagId_seq)
nb_tag = length(tagId)

cat("Tags are: ", tagId, "\n")
Tags are:  0db4 2f77 2b9c 19ab 2c57 0da6 28d2 0d82 2c5d 0baf 2e55 2a51 2e5b 2f40 2f7b 2e8d 
table(tagId_seq)
tagId_seq
  0baf   0d82   0da6   0db4   19ab   28d2   2a51   2b9c   2c57   2c5d   2e55 
  1449   1673   1659 427804  85427   1628   1547 422391   3012   1019   1573 
  2e5b   2e8d   2f40   2f77   2f7b 
  1416    770   1511 418595   1616 

general analysis

dat <- data.frame(tag = unlist(lapply(json_data, function(x){x["tag_id"][[1]]})),
                  x = unlist(lapply(json_data, function(x){x["x"][[1]]})),
                  y = unlist(lapply(json_data, function(x){x["y"][[1]]})),
                  record_timestamp = unlist(lapply(json_data, function(x){x["record_timestamp"][[1]]})))
dat = dat[order(dat$record_timestamp),]
dat = cbind.data.frame(dat, convert_date(dat$record_timestamp))
dat$x = as.numeric(dat$x)
dat$y = as.numeric(dat$y)

names_tag <- read.table(file = "data/tag_names_20210924.txt", header = T, sep = "\t")
names_tag = names_tag[names_tag$id%in%tagId, ]

tagId = names_tag$id
nb_tag = length(tagId)

dat = dat[dat$tag%in%tagId,]
dat$label = factor(dat$tag, levels = names_tag$id, labels = names_tag$label)

list_tag <- split(dat, dat$tag)

quality of collecting data

table_tag <- data.frame(tag = names_tag$id, label = names_tag$label)
table_tag$first_record = NA
table_tag$last_record = NA
table_tag$number = NA
table_tag$number_NA = NA
table_tag$ratio_non_NA = NA
table_tag$freq_1Q = NA
table_tag$freq_median = NA
table_tag$freq_3Q = NA


for (k in 1:nb_tag){
  tag = table_tag$tag[k]
  temp = list_tag[tag][[1]]
  temp$diff_ts = c(0, temp$record_timestamp[-1]-temp$record_timestamp[-nrow(temp)])
  
  table_tag$first_record[k] = head(as.character(temp$date),1)
  table_tag$last_record[k] = tail(as.character(temp$date),1)
  table_tag$number[k] = nrow(temp)
  table_tag$number_NA[k] = sum(is.na(temp$x))
  table_tag$ratio_non_NA[k] = round(1-table_tag$number_NA[k]/table_tag$number[k],2)
  table_tag$freq_1Q[k] = round(quantile(temp$diff_ts, 0.25), 3)
  table_tag$freq_median[k] = round(quantile(temp$diff_ts, 0.5), 3)
  table_tag$freq_3Q[k] = round(quantile(temp$diff_ts, 0.75), 3)
}

kable(table_tag) %>%
  kable_styling(bootstrap_options = "striped", full_width = F)
tag label first_record last_record number number_NA ratio_non_NA freq_1Q freq_median freq_3Q
2a51 BLA 2021-09-25 00:00:55 2021-09-25 23:59:13 1547 2 1.00 59.998 60.000 60.001
0da6 BRA1 2021-09-25 00:00:59 2021-09-25 23:59:42 1659 58 0.97 59.951 59.999 60.002
2f7b BRA2 2021-09-25 00:00:46 2021-09-25 23:59:01 1616 144 0.91 59.952 60.000 60.002
2f40 BRA4 2021-09-25 00:00:31 2021-09-25 23:59:02 1511 53 0.96 59.987 60.000 60.002
2f77 BRP1 2021-09-25 00:00:00 2021-09-25 23:59:59 418595 5617 0.99 0.199 0.200 0.201
2b9c BRP2 2021-09-25 00:00:00 2021-09-25 23:59:59 422391 1548 1.00 0.198 0.200 0.201
0d82 CDS1 2021-09-25 00:00:33 2021-09-25 23:59:33 1673 28 0.98 59.952 60.000 60.002
2c57 DYN1 2021-09-25 00:00:18 2021-09-25 23:59:44 3012 278 0.91 0.198 0.299 60.000
2e8d DYN3 2021-09-25 01:11:22 2021-09-25 23:37:30 770 87 0.89 0.197 0.245 59.950
0baf ELC 2021-09-25 00:00:53 2021-09-25 23:59:22 1449 3 1.00 59.999 60.000 60.001
0db4 FAU 2021-09-25 00:00:00 2021-09-25 23:59:59 427804 9626 0.98 0.198 0.200 0.201
28d2 ORD 2021-09-25 00:00:21 2021-09-25 23:59:41 1628 136 0.92 59.953 60.000 60.002
2e55 SCO 2021-09-25 00:00:06 2021-09-25 23:59:13 1573 13 0.99 59.991 60.000 60.002

plot with NAs

timestamp_breaks = as.numeric(as.POSIXct(paste0(today, " ", sprintf("%02d", 0:23), ":00:00 CEST"))) + 3600*6
p <- ggplot(dat) + theme_bw() + 
  geom_point(aes(x=record_timestamp, y=label, col=label)) +
  scale_x_continuous(breaks = timestamp_breaks, labels = 0:23) +
  coord_cartesian(xlim = c(timestamp_breaks[1], timestamp_breaks[23]+3600)) +
  theme(legend.position = "None") +
  labs(x = "hour", y = "", title = today)
print(p)

Version Author Date
9105b39 cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29

plot without NAs

x_na = which(is.na(dat$x))
y_na = which(is.na(dat$y))
cat("if x_na = y_na:", identical(x_na, y_na), "\n")
if x_na = y_na: TRUE 
cat("number of NA positions:", length(x_na), "/", length(tagId_seq), "(=", 
    length(x_na)/length(tagId_seq)*100, "%)", "\n")
number of NA positions: 17593 / 1373090 (= 1.281271 %) 
if (length(x_na)!=0){
  dat = dat[-x_na,]
}
timestamp_breaks = as.numeric(as.POSIXct(paste0(today, " ", sprintf("%02d", 0:23), ":00:00 CEST"))) + 3600*6
p <- ggplot(dat) + theme_bw() + 
  geom_point(aes(x=record_timestamp, y=label, col=label)) +
  scale_x_continuous(breaks = timestamp_breaks, labels = 0:23) +
  coord_cartesian(xlim = c(timestamp_breaks[1], timestamp_breaks[23]+3600)) +
  theme(legend.position = "None") +
  labs(x = "hour", y = "", title = today)
print(p)

Version Author Date
9105b39 cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29
list_tag <- split(dat, dat$tag)

for (tag in names(list_tag)){
  if (!is.null(list_tag[tag][[1]])){
    dd = list_tag[tag][[1]]
    dd[,c("x","y")] = dd[,c("x","y")]/100
    rownames(dd) = 1:nrow(dd)
    dd$num = 1:nrow(dd)
    dd$timediff = c(0, dd$record_timestamp[-1] - dd$record_timestamp[-nrow(dd)])
    
    list_tag[tag][[1]] = dd
  }
}
dat = do.call(rbind.data.frame, list_tag)

plot

plan <- read_excel("data/plan/Wall_lignes_firminy.xlsx")
plan = as.data.frame(plan)
plan$`Start X` <- as.numeric(plan$`Start X`)/100
plan$`Start Y` <- as.numeric(plan$`Start Y`)/100
plan$`End X` <- as.numeric(plan$`End X`)/100
plan$`End Y` <- as.numeric(plan$`End Y`)/100
colnames(plan) = c("Name", "Length", "Linetype Scale", "Angle", "Delta X",
                   "Delta Y", "Delta Z", "EndX", "EndY", "EndZ", 
                   "StartX", "StartY", "StartZ")
p <- ggplot(plan) + theme_bw() + 
  geom_segment(aes(x=StartX, y=StartY, xend=EndX, yend=EndY))
for (k in 1:nb_tag){
  tag = names_tag$id[k]
  label = names_tag$label[k]
  cat("\n")
  cat("## ", label, "\n")
  dd = list_tag[tag][[1]]
  q <- p + 
    geom_point(data = dd, aes(x=x,y=y), col="red", size = 1) +
    coord_equal(ratio = 1, xlim = c(-35,5), ylim = c(-60,5)) + 
    labs(x = "", y = "", title = paste0(tag, " - ", names_tag$Matériel[names_tag$id==tag]))
  print(q)
  cat("\n")
}

BLA

Version Author Date
9105b39 cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29

BRA1

Version Author Date
9105b39 cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29

BRA2

Version Author Date
9105b39 cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29

BRA4

Version Author Date
9105b39 cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29

BRP1

Version Author Date
9105b39 cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29

BRP2

Version Author Date
9105b39 cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29

CDS1

Version Author Date
9105b39 cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29

DYN1

Version Author Date
9105b39 cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29

DYN3

Version Author Date
9105b39 cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29

ELC

Version Author Date
9105b39 cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29

FAU

Version Author Date
9105b39 cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29

ORD

Version Author Date
9105b39 cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29

SCO

Version Author Date
9105b39 cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29

sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.6

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] fr_FR.UTF-8/fr_FR.UTF-8/fr_FR.UTF-8/C/fr_FR.UTF-8/fr_FR.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.3.1     lubridate_1.7.10 dplyr_1.0.6      nnet_7.3-14     
 [5] kableExtra_1.1.0 rjson_0.2.20     cowplot_1.1.0    gganimate_1.0.7 
 [9] ggplot2_3.3.3    workflowr_1.6.2 

loaded via a namespace (and not attached):
 [1] progress_1.2.2    tidyselect_1.1.0  xfun_0.25         purrr_0.3.4      
 [5] colorspace_1.4-1  vctrs_0.3.8       generics_0.1.0    viridisLite_0.3.0
 [9] htmltools_0.5.0   yaml_2.2.1        utf8_1.1.4        rlang_0.4.11     
[13] later_1.1.0.1     pillar_1.6.0      glue_1.4.1        withr_2.4.2      
[17] DBI_1.1.1         tweenr_1.0.1      lifecycle_1.0.0   stringr_1.4.0    
[21] cellranger_1.1.0  munsell_0.5.0     gtable_0.3.0      rvest_1.0.0      
[25] evaluate_0.14     labeling_0.3      knitr_1.33        httpuv_1.5.4     
[29] fansi_0.4.1       gifski_0.8.6      highr_0.8         Rcpp_1.0.5       
[33] readr_1.4.0       promises_1.1.1    scales_1.1.1      backports_1.1.8  
[37] webshot_0.5.2     farver_2.0.3      fs_1.5.0          hms_1.0.0        
[41] digest_0.6.25     stringi_1.4.6     grid_4.0.2        rprojroot_1.3-2  
[45] tools_4.0.2       magrittr_2.0.1    tibble_3.1.1      crayon_1.4.1     
[49] whisker_0.4       pkgconfig_2.0.3   ellipsis_0.3.1    xml2_1.3.2       
[53] prettyunits_1.1.1 httr_1.4.2        rstudioapi_0.13   assertthat_0.2.1 
[57] rmarkdown_2.10    R6_2.4.1          git2r_0.28.0      compiler_4.0.2