Last updated: 2021-09-30

Checks: 7 0

Knit directory: Test/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210926) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version ef2dd32. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/json/
    Ignored:    data/plan/
    Ignored:    workflowr.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/09-28.Rmd) and HTML (docs/09-28.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html f4989ba cfcforever 2021-09-30 some changes
html 8cd6144 cfcforever 2021-09-29 Build site.
Rmd 3ebdc7c cfcforever 2021-09-28 some changes
html 5aceb7a cfcforever 2021-09-28 Build site.
Rmd dadeb32 cfcforever 2021-09-28 some changes
html 6289c69 cfcforever 2021-09-28 Build site.
html f8288b3 cfcforever 2021-09-28 Build site.
Rmd cc39597 cfcforever 2021-09-28 some changes

load data.json

today = "2021-09-28"
cat("data on:", today, "\n")
data on: 2021-09-28 
json_data = fromJSON(file = paste0("data/json/", today, "/position.json"))
cat("Total collected positions: ", length(json_data), "\n")
Total collected positions:  443484 
tagId_seq = unlist(lapply(json_data, function(x){x["tag_id"][[1]]}))
tagId = unique(tagId_seq)
nb_tag = length(tagId)

cat("Tags are: ", tagId, "\n")
Tags are:  28d2 2f77 2a51 2e55 2c57 0da6 0baf 2f40 2b9c 0db4 0d82 2f7b 19ab 2e8d 
table(tagId_seq)
tagId_seq
 0baf  0d82  0da6  0db4  19ab  28d2  2a51  2b9c  2c57  2e55  2e8d  2f40  2f77 
35991 36012 35844 35516  7158 35543 35860 35859 35981 36013  6688 35828 35344 
 2f7b 
35847 

general analysis

dat <- data.frame(tag = unlist(lapply(json_data, function(x){x["tag_id"][[1]]})),
                  x = unlist(lapply(json_data, function(x){x["x"][[1]]})),
                  y = unlist(lapply(json_data, function(x){x["y"][[1]]})),
                  record_timestamp = unlist(lapply(json_data, function(x){x["record_timestamp"][[1]]})))
dat = dat[order(dat$record_timestamp),]
dat = cbind.data.frame(dat, convert_date(dat$record_timestamp))
dat$x = as.numeric(dat$x)
dat$y = as.numeric(dat$y)

names_tag <- read.table(file = "data/tag_names_20210924.txt", header = T, sep = "\t")
names_tag = names_tag[names_tag$id%in%tagId, ]

tagId = names_tag$id
nb_tag = length(tagId)

dat = dat[dat$tag%in%tagId,]
dat$label = factor(dat$tag, levels = names_tag$id, labels = names_tag$label)

list_tag <- split(dat, dat$tag)

quality of collecting data

table_tag <- data.frame(tag = names_tag$id, label = names_tag$label)
table_tag$first_record = NA
table_tag$last_record = NA
table_tag$number = NA
table_tag$number_NA = NA
table_tag$ratio_non_NA = NA
table_tag$freq_1Q = NA
table_tag$freq_median = NA
table_tag$freq_3Q = NA


for (k in 1:nb_tag){
  tag = table_tag$tag[k]
  temp = list_tag[tag][[1]]
  temp$diff_ts = c(0, temp$record_timestamp[-1]-temp$record_timestamp[-nrow(temp)])
  
  table_tag$first_record[k] = head(as.character(temp$date),1)
  table_tag$last_record[k] = tail(as.character(temp$date),1)
  table_tag$number[k] = nrow(temp)
  table_tag$number_NA[k] = sum(is.na(temp$x))
  table_tag$ratio_non_NA[k] = round(1-table_tag$number_NA[k]/table_tag$number[k],2)
  table_tag$freq_1Q[k] = round(quantile(temp$diff_ts, 0.25), 3)
  table_tag$freq_median[k] = round(quantile(temp$diff_ts, 0.5), 3)
  table_tag$freq_3Q[k] = round(quantile(temp$diff_ts, 0.75), 3)
}

kable(table_tag) %>%
  kable_styling(bootstrap_options = "striped", full_width = F)
tag label first_record last_record number number_NA ratio_non_NA freq_1Q freq_median freq_3Q
2a51 BLA 2021-09-28 00:00:00 2021-09-28 06:05:48 35860 4572 0.87 0.544 0.593 0.651
0da6 BRA1 2021-09-28 00:00:00 2021-09-28 06:05:17 35844 6 1.00 0.583 0.594 0.639
2f7b BRA2 2021-09-28 00:00:00 2021-09-28 06:04:42 35847 203 0.99 0.544 0.593 0.649
2f40 BRA4 2021-09-28 00:00:00 2021-09-28 06:04:50 35828 680 0.98 0.539 0.593 0.680
2f77 BRP1 2021-09-28 00:00:00 2021-09-28 06:05:50 35344 830 0.98 0.556 0.595 0.644
2b9c BRP2 2021-09-28 00:00:00 2021-09-28 06:04:47 35859 1751 0.95 0.550 0.593 0.646
0d82 CDS1 2021-09-28 00:00:00 2021-09-28 06:04:44 36012 846 0.98 0.542 0.594 0.652
2c57 DYN1 2021-09-28 00:00:00 2021-09-28 06:05:18 35981 8000 0.78 0.550 0.594 0.644
2e8d DYN3 2021-09-28 00:00:00 2021-09-28 05:54:56 6688 14 1.00 0.585 0.639 0.699
0baf ELC 2021-09-28 00:00:00 2021-09-28 06:05:16 35991 24 1.00 0.548 0.593 0.647
0db4 FAU 2021-09-28 00:00:00 2021-09-28 06:04:45 35516 3038 0.91 0.548 0.594 0.647
28d2 ORD 2021-09-28 00:00:00 2021-09-28 06:08:37 35543 4598 0.87 0.541 0.595 0.679
2e55 SCO 2021-09-28 00:00:00 2021-09-28 06:05:39 36013 93 1.00 0.552 0.594 0.644

plot with NAs

timestamp_breaks = as.numeric(as.POSIXct(paste0(today, " ", sprintf("%02d", 0:23), ":00:00 CEST"))) + 3600*6
p <- ggplot(dat) + theme_bw() + 
  geom_point(aes(x=record_timestamp, y=label, col=label)) +
  scale_x_continuous(breaks = timestamp_breaks, labels = 0:23) +
  coord_cartesian(xlim = c(timestamp_breaks[1], timestamp_breaks[23]+3600)) +
  theme(legend.position = "None") +
  labs(x = "hour", y = "", title = today)
print(p)

Version Author Date
f4989ba cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29
5aceb7a cfcforever 2021-09-28

plot without NAs

x_na = which(is.na(dat$x))
y_na = which(is.na(dat$y))
cat("if x_na = y_na:", identical(x_na, y_na), "\n")
if x_na = y_na: TRUE 
cat("number of NA positions:", length(x_na), "/", length(tagId_seq), "(=", 
    length(x_na)/length(tagId_seq)*100, "%)", "\n")
number of NA positions: 24655 / 443484 (= 5.559389 %) 
if (length(x_na)!=0){
  dat = dat[-x_na,]
}
timestamp_breaks = as.numeric(as.POSIXct(paste0(today, " ", sprintf("%02d", 0:23), ":00:00 CEST"))) + 3600*6
p <- ggplot(dat) + theme_bw() + 
  geom_point(aes(x=record_timestamp, y=label, col=label)) +
  scale_x_continuous(breaks = timestamp_breaks, labels = 0:23) +
  coord_cartesian(xlim = c(timestamp_breaks[1], timestamp_breaks[23]+3600)) +
  theme(legend.position = "None") +
  labs(x = "hour", y = "", title = today)
print(p)

Version Author Date
f4989ba cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29
5aceb7a cfcforever 2021-09-28
list_tag <- split(dat, dat$tag)

for (tag in names(list_tag)){
  if (!is.null(list_tag[tag][[1]])){
    dd = list_tag[tag][[1]]
    dd[,c("x","y")] = dd[,c("x","y")]/100
    rownames(dd) = 1:nrow(dd)
    dd$num = 1:nrow(dd)
    dd$timediff = c(0, dd$record_timestamp[-1] - dd$record_timestamp[-nrow(dd)])
    
    list_tag[tag][[1]] = dd
  }
}
dat = do.call(rbind.data.frame, list_tag)

plot

plan <- read_excel("data/plan/Wall_lignes_firminy.xlsx")
plan = as.data.frame(plan)
plan$`Start X` <- as.numeric(plan$`Start X`)/100
plan$`Start Y` <- as.numeric(plan$`Start Y`)/100
plan$`End X` <- as.numeric(plan$`End X`)/100
plan$`End Y` <- as.numeric(plan$`End Y`)/100
colnames(plan) = c("Name", "Length", "Linetype Scale", "Angle", "Delta X",
                   "Delta Y", "Delta Z", "EndX", "EndY", "EndZ", 
                   "StartX", "StartY", "StartZ")
p <- ggplot(plan) + theme_bw() + 
  geom_segment(aes(x=StartX, y=StartY, xend=EndX, yend=EndY))
for (k in 1:nb_tag){
  tag = names_tag$id[k]
  label = names_tag$label[k]
  cat("\n")
  cat("## ", label, "\n")
  dd = list_tag[tag][[1]]
  q <- p + 
    geom_point(data = dd, aes(x=x,y=y), col="red", size = 1) +
    coord_equal(ratio = 1, xlim = c(-35,5), ylim = c(-60,5)) + 
    labs(x = "", y = "", title = paste0(tag, " - ", names_tag$Matériel[names_tag$id==tag]))
  print(q)
  cat("\n")
}

BLA

Version Author Date
f4989ba cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29

BRA1

Version Author Date
f4989ba cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29

BRA2

Version Author Date
f4989ba cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29

BRA4

Version Author Date
f4989ba cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29

BRP1

Version Author Date
f4989ba cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29

BRP2

Version Author Date
f4989ba cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29

CDS1

Version Author Date
f4989ba cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29

DYN1

Version Author Date
f4989ba cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29

DYN3

Version Author Date
f4989ba cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29

ELC

Version Author Date
f4989ba cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29

FAU

Version Author Date
f4989ba cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29

ORD

Version Author Date
f4989ba cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29

SCO

Version Author Date
f4989ba cfcforever 2021-09-30
8cd6144 cfcforever 2021-09-29

sessionInfo()
R version 4.0.5 (2021-03-31)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] zh_CN.UTF-8/zh_CN.UTF-8/zh_CN.UTF-8/C/zh_CN.UTF-8/zh_CN.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.3.1     lubridate_1.7.10 dplyr_1.0.5      nnet_7.3-15     
 [5] kableExtra_1.3.4 rjson_0.2.20     cowplot_1.1.1    gganimate_1.0.7 
 [9] ggplot2_3.3.3    workflowr_1.6.2 

loaded via a namespace (and not attached):
 [1] progress_1.2.2    tidyselect_1.1.0  xfun_0.22         bslib_0.2.4      
 [5] purrr_0.3.4       colorspace_2.0-0  vctrs_0.3.7       generics_0.1.0   
 [9] viridisLite_0.4.0 htmltools_0.5.1.1 yaml_2.2.1        utf8_1.2.1       
[13] rlang_0.4.10      jquerylib_0.1.3   later_1.1.0.1     pillar_1.6.0     
[17] glue_1.4.2        withr_2.4.1       tweenr_1.0.2      lifecycle_1.0.0  
[21] stringr_1.4.0     cellranger_1.1.0  munsell_0.5.0     gtable_0.3.0     
[25] rvest_1.0.0       evaluate_0.14     labeling_0.4.2    knitr_1.32       
[29] httpuv_1.5.5      fansi_0.4.2       highr_0.8         Rcpp_1.0.6       
[33] promises_1.2.0.1  scales_1.1.1      webshot_0.5.2     jsonlite_1.7.2   
[37] systemfonts_1.0.1 farver_2.1.0      fs_1.5.0          hms_1.0.0        
[41] digest_0.6.27     stringi_1.5.3     grid_4.0.5        rprojroot_2.0.2  
[45] tools_4.0.5       magrittr_2.0.1    sass_0.3.1        tibble_3.1.0     
[49] crayon_1.4.1      whisker_0.4       pkgconfig_2.0.3   ellipsis_0.3.1   
[53] xml2_1.3.2        prettyunits_1.1.1 svglite_2.0.0     rmarkdown_2.10   
[57] httr_1.4.2        rstudioapi_0.13   R6_2.5.0          git2r_0.28.0     
[61] compiler_4.0.5