Last updated: 2022-06-15
Checks: 7 0
Knit directory: rotation2/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20220607) was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version d999122. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish or
wflow_git_commit). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Unstaged changes:
Modified: .RData
Modified: .Rhistory
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/project_1.Rmd) and HTML
(docs/project_1.html) files. If you’ve configured a remote
Git repository (see ?wflow_git_remote), click on the
hyperlinks in the table below to view the files as they were in that
past version.
| File | Version | Author | Date | Message |
|---|---|---|---|---|
| Rmd | d999122 | chenh19 | 2022-06-15 | wflow_publish("./analysis/*.Rmd") |
| html | 0aff555 | chenh19 | 2022-06-15 | Build site. |
| Rmd | eda2d56 | chenh19 | 2022-06-15 | wflow_publish("./analysis/*.Rmd") |
| html | a4e1e73 | chenh19 | 2022-06-15 | Build site. |
| Rmd | 7229c17 | chenh19 | 2022-06-15 | wflow_publish("./analysis/*.Rmd") |
| html | f0e98f9 | chenh19 | 2022-06-14 | Build site. |
| Rmd | e0aa022 | chenh19 | 2022-06-14 | wflow_publish("./analysis/*.Rmd") |
| html | eafa16b | chenh19 | 2022-06-14 | Build site. |
| Rmd | 69b29f1 | chenh19 | 2022-06-14 | wflow_publish("./analysis/*.Rmd") |
| html | dfd60ce | chenh19 | 2022-06-14 | Build site. |
| Rmd | 49f1922 | chenh19 | 2022-06-14 | wflow_publish("./analysis/*.Rmd") |
| html | fd7271e | chenh19 | 2022-06-14 | Build site. |
| html | 1b4d12e | chenh19 | 2022-06-14 | Build site. |
| html | a6c402d | chenh19 | 2022-06-14 | Build site. |
| html | cedad99 | chenh19 | 2022-06-14 | Build site. |
| Rmd | 6b3f021 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
| html | e3b9788 | chenh19 | 2022-06-14 | Build site. |
| html | aed5eed | chenh19 | 2022-06-14 | Build site. |
| Rmd | c552123 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
| html | 45bb6ed | chenh19 | 2022-06-14 | Build site. |
| Rmd | 81fdf42 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
| html | c23765a | chenh19 | 2022-06-14 | Build site. |
| html | b5fb71c | chenh19 | 2022-06-14 | Build site. |
| Rmd | 10f6641 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
| html | 152325b | chenh19 | 2022-06-14 | Build site. |
| Rmd | 1739dd9 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
| html | 543ef4c | chenh19 | 2022-06-14 | Build site. |
| html | 9b6cb27 | chenh19 | 2022-06-14 | Build site. |
| Rmd | d8908c0 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
| html | 8674c8a | chenh19 | 2022-06-14 | Build site. |
| Rmd | 2972ce6 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
| html | ada4068 | chenh19 | 2022-06-14 | Build site. |
| Rmd | 7c5402e | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
| html | 0d08121 | chenh19 | 2022-06-14 | Build site. |
| Rmd | 6226526 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
| html | dd2046d | chenh19 | 2022-06-14 | Build site. |
| Rmd | 71f5d04 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
| html | 2c4cab1 | chenh19 | 2022-06-14 | Build site. |
| Rmd | 6e73c04 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
| html | d46eaab | chenh19 | 2022-06-14 | Build site. |
| Rmd | be56d9d | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
| html | 02a0c26 | chenh19 | 2022-06-14 | Build site. |
| Rmd | e2c15c0 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
| html | abad46e | chenh19 | 2022-06-14 | Build site. |
| Rmd | 68948e3 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
| html | 741027b | chenh19 | 2022-06-14 | Build site. |
| Rmd | 065d7e9 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
| html | bb15812 | chenh19 | 2022-06-14 | Build site. |
| Rmd | b6e0993 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
| html | 93a27ae | chenh19 | 2022-06-14 | Build site. |
| Rmd | b4a7331 | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
| html | 27121a9 | chenh19 | 2022-06-14 | Build site. |
| Rmd | fce1ffd | chenh19 | 2022-06-14 | wflow_publish("analysis/*.Rmd") |
| html | 44517c1 | chenh19 | 2022-06-13 | Build site. |
| Rmd | cc6a40a | chenh19 | 2022-06-13 | wflow_publish("analysis/*.Rmd") |
| html | da08f11 | chenh19 | 2022-06-13 | Build site. |
| Rmd | 05ccc35 | chenh19 | 2022-06-13 | wflow_publish("analysis/*.Rmd") |
| html | 572f6ba | chenh19 | 2022-06-13 | Build site. |
| html | b8870d3 | chenh19 | 2022-06-13 | Build site. |
| html | 719925e | chenh19 | 2022-06-13 | Build site. |
| html | e7541fa | chenh19 | 2022-06-13 | Build site. |
| html | 9d9615d | chenh19 | 2022-06-13 | Build site. |
| Rmd | 04feaa7 | chenh19 | 2022-06-13 | wflow_publish("analysis/*.Rmd") |
| html | bbd8978 | chenh19 | 2022-06-13 | Build site. |
| Rmd | 0ec2bfa | chenh19 | 2022-06-13 | wflow_publish("analysis/*.Rmd") |
| html | e5a5b52 | chenh19 | 2022-06-13 | Build site. |
| Rmd | c43ae1f | chenh19 | 2022-06-13 | wflow_publish("analysis/*.Rmd") |
| html | 4d8bd72 | chenh19 | 2022-06-13 | Build site. |
| html | 3373521 | chenh19 | 2022-06-13 | Build site. |
| html | af21ea8 | chenh19 | 2022-06-13 | Build site. |
| Rmd | 6e56d75 | chenh19 | 2022-06-13 | wflow_publish("analysis/*.Rmd") |
| html | f653f7b | chenh19 | 2022-06-13 | Build site. |
| Rmd | 2723e7f | chenh19 | 2022-06-13 | wflow_publish("analysis/*.Rmd") |
| html | d69c892 | chenh19 | 2022-06-13 | Build site. |
| html | 34d877d | chenh19 | 2022-06-13 | Build site. |
| html | e72400b | chenh19 | 2022-06-13 | Build site. |
| html | c411223 | chenh19 | 2022-06-13 | Build site. |
| html | 1daccd2 | chenh19 | 2022-06-13 | Build site. |
| Rmd | 63f46d2 | chenh19 | 2022-06-13 | wflow_publish("analysis/*.Rmd") |
| html | 26adb45 | chenh19 | 2022-06-13 | Build site. |
| html | a6022a8 | chenh19 | 2022-06-13 | Build site. |
| Rmd | 1215832 | chenh19 | 2022-06-13 | wflow_publish("analysis/*.Rmd") |
| html | 9abc4b8 | chenh19 | 2022-06-13 | Build site. |
| Rmd | 7efcfe0 | chenh19 | 2022-06-13 | wflow_publish("analysis/*.Rmd") |
| html | f18d385 | chenh19 | 2022-06-13 | Build site. |
| Rmd | a7c1ce0 | chenh19 | 2022-06-13 | wflow_publish("analysis/*.Rmd") |
| html | e991f56 | chenh19 | 2022-06-13 | Build site. |
| html | 3c9b1d9 | chenh19 | 2022-06-13 | Build site. |
| Rmd | ae1553a | chenh19 | 2022-06-13 | wflow_publish("analysis/*.Rmd") |
| html | 34e0d02 | chenh19 | 2022-06-13 | Build site. |
| Rmd | e69aa83 | chenh19 | 2022-06-13 | wflow_publish("analysis/*.Rmd") |
| html | 9be31af | chenh19 | 2022-06-13 | Build site. |
| Rmd | ead84c2 | chenh19 | 2022-06-13 | wflow_publish("analysis/*.Rmd") |
| html | 0f41de8 | chenh19 | 2022-06-13 | Build site. |
| html | 31ad035 | chenh19 | 2022-06-13 | Build site. |
| html | bdf3b44 | chenh19 | 2022-06-13 | Build site. |
| html | 8d0890c | chenh19 | 2022-06-13 | Build site. |
| Rmd | 26f455b | chenh19 | 2022-06-13 | update |
| html | 26f455b | chenh19 | 2022-06-13 | update |
Some key ideas:
Some data processing steps and results:
reference mapping? read more on the official
websiteI'll come back laterNote:
Yalamanchili et al. 2017: RNA-seq analysis pipeline
Protocol-1 (differential expression of genes):
Protocol-2 (differential usage of isoforms):
Protocol-3 (crypic splicing):
rsync -a hchen131@midway2.rcc.uchicago.edu:/project2/xuanyao/data/Morris_2021 ~/Desktop
# install fastqc
sudo apt-get update && sudo apt-get install fastqc -y
# run fastqc in parallel
cd ~/rotation2/
[ ! -d ../Morris_2021/fastqc_results/ ] && mkdir ../Morris_2021/fastqc_results/
fastqc --threads 16 ../Morris_2021/STINGseq_Morris_2021_raw/*.fastq.gz --outdir=../Morris_2021/fastqc_results/
SRR14141135:
SRR14141136:
SRR14141137:
SRR14141138:
SRR14141139:
SRR14141140:
SRR14141141:
SRR14141142:
SRR14141143:
SRR14141144:
SRR14141145:
SRR14141146:
A brief summary:
26bp or 57bp
(trimmed?)30-35x~40 bp)Install package: pip3 install kb:
# install via python3-pip (python3 is installed by default)
sudo apt-get update && sudo apt install python3-pip -y
sudo pip3 install kb-python
# run
kb
Side note: conda install kallisto (not necessary for kb):
# install anaconda
[ ! -d ./shscript/ ] && mkdir ./shscript/
wget -O ./shscript/Anaconda-latest-Linux-x86_64.sh https://repo.anaconda.com/archive/Anaconda3-2022.05-Linux-x86_64.sh
bash ./shscript/Anaconda-latest-Linux-x86_64.sh && sleep 3
conda update anaconda -y && conda update --all -y
conda config --add channels defaults
conda config --add channels bioconda
conda config --add channels conda-forge
conda install kallisto -y
conda config --set auto_activate_base false # disable auto activate base in terminal
#conda activate # activate base when needed
#rm -rf ~/anaconda3/ # uninstall anaconda
rm -rf ./shscript/
Note:
sudo apt-get update && sudo apt-get install libgeos-dev -y
sudo -i R
installe.packages("Seurat")
q()
Note: about sparse matrix
# load expression data
Expression <- Seurat::ReadMtx(mtx = "../Morris_2021/GSM5225857_cDNA.mtx",
features = "../Morris_2021/GSM5225857_cDNA.features.txt",
cells = "../Morris_2021/GSM5225857_cDNA.barcodes.txt",
cell.column=1,
feature.column=1,
mtx.transpose=T)
# load gRNA data
gRNA <- Seurat::ReadMtx(mtx = "../Morris_2021/GSM5225858_GDO.mtx",
features = "../Morris_2021/GSM5225858_GDO.features.txt",
cells = "../Morris_2021/GSM5225858_GDO.barcodes.txt",
cell.column=1,
feature.column=1,
mtx.transpose=T)
overall <- function(mtx){
cat(paste0('The [', deparse(substitute(mtx)), '] matrix has: \n',
'- ', format(mtx@Dim[1], big.mark=",", scientific=FALSE),
' rows/genes/targets and \n',
'- ', format(mtx@Dim[2], big.mark=",", scientific=FALSE),
' columns/barcodes/cells \n',
'- ', format(length(mtx), big.mark=",", scientific=FALSE),
' values in total \n',
'- ', format(sum(mtx != 0), big.mark=",", scientific=FALSE),
' values that are non-zero \n',
'- ', format(sum(mtx == 1), big.mark=",", scientific=FALSE),
' values that are 1 \n',
'- ', format(sum(mtx > 1), big.mark=",", scientific=FALSE),
' values that are bigger than 1 \n',
'- ', format(sum(mtx > 10), big.mark=",", scientific=FALSE),
' values that are bigger than 10 \n',
'- ', format(sum(mtx > 100), big.mark=",", scientific=FALSE),
' values that are bigger than 100 \n',
'- ', format(sum(mtx > 1000), big.mark=",", scientific=FALSE),
' values that are bigger than 1,000 \n',
'- ', format(sum(mtx > 10000), big.mark=",", scientific=FALSE),
' values that are bigger than 10,000 \n',
'- ', format(sum(mtx > 100000), big.mark=",", scientific=FALSE),
' values that are bigger than 100,000 \n',
' \n'))
}
overall(Expression)
overall(gRNA)
> overall(Expression)
The [Expression] matrix has:
- 35,606 rows/genes/targets and
- 686,612 columns/barcodes/cells
- 24,447,506,872 values in total
- 82,507,471 values that are non-zero
- 50,421,358 values that are 1
- 32,086,113 values that are bigger than 1
- 3,370,699 values that are bigger than 10
- 259,734 values that are bigger than 100
- 2,515 values that are bigger than 1,000
- 0 values that are bigger than 10,000
- 0 values that are bigger than 100,000
> overall(gRNA)
The [gRNA] matrix has:
- 210 rows/genes/targets and
- 137,347 columns/barcodes/cells
- 28,842,870 values in total
- 2,506,474 values that are non-zero
- 1,510,919 values that are 1
- 995,555 values that are bigger than 1
- 121,554 values that are bigger than 10
- 41,071 values that are bigger than 100
- 2,232 values that are bigger than 1,000
- 20 values that are bigger than 10,000
- 0 values that are bigger than 100,000
try:
class(f_exp_matrix)
attributes(f_exp_matrix)
dim(f_exp_matrix)
f_exp_matrix[1,1]
summary(f_exp_matrix[,1])
col_num <- 199
test <- f_exp_matrix[,col_num]
sum(test !=0)
plot(test)
row_num <- 199
row_num <- 199
test <- f_exp_matrix[row_num,]
sum(test != 0)
plot(test)
sum(f_exp_matrix >= 1)
sum(f_exp_matrix > 1)
sum(f_exp_matrix == 1)
sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] workflowr_1.7.0
loaded via a namespace (and not attached):
[1] Rcpp_1.0.8.3 bslib_0.3.1 compiler_4.2.0 pillar_1.7.0
[5] later_1.3.0 git2r_0.30.1 jquerylib_0.1.4 tools_4.2.0
[9] getPass_0.2-2 digest_0.6.29 jsonlite_1.8.0 evaluate_0.15
[13] tibble_3.1.7 lifecycle_1.0.1 pkgconfig_2.0.3 rlang_1.0.2
[17] cli_3.3.0 rstudioapi_0.13 yaml_2.3.5 xfun_0.31
[21] fastmap_1.1.0 httr_1.4.3 stringr_1.4.0 knitr_1.39
[25] sass_0.4.1 fs_1.5.2 vctrs_0.4.1 rprojroot_2.0.3
[29] glue_1.6.2 R6_2.5.1 processx_3.6.0 fansi_1.0.3
[33] rmarkdown_2.14 callr_3.7.0 magrittr_2.0.3 whisker_0.4
[37] ps_1.7.0 promises_1.2.0.1 htmltools_0.5.2 ellipsis_0.3.2
[41] httpuv_1.6.5 utf8_1.2.2 stringi_1.7.6 crayon_1.5.1