<<<<<<< HEAD Last updated: 2022-08-04 ======= Last updated: 2022-07-19 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838

Checks: 7 0

Knit directory: rotation2/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20220607) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Repository version: 3576593

>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 class="panel-collapse collapse">

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

<<<<<<< HEAD The results in this page were generated with repository version 3da8afa. ======= The results in this page were generated with repository version 3576593. >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


<<<<<<< HEAD
Unstaged changes:
    Modified:   .RData
    Modified:   .Rhistory
=======
Ignored files:
    Ignored:    data/
>>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/project_1.Rmd) and HTML (docs/project_1.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html <<<<<<< HEAD 3da8afa Hang Chen 2022-08-04 Build site.
html 37d15c9 ======= 8f6816e >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-19 Build site.
html <<<<<<< HEAD 8f6816e chenh19 2022-07-19 Build site.
html 4a94b94 ======= 4a94b94 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-19 Build site.
Rmd <<<<<<< HEAD a18fc1f ======= a18fc1f >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-19 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 870115f ======= 870115f >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-19 Build site.
Rmd <<<<<<< HEAD 6307f5c ======= 6307f5c >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-19 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 9241fe6 ======= 9241fe6 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-08 Build site.
Rmd <<<<<<< HEAD abd8a0c ======= abd8a0c >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-08 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 0a7633b ======= 0a7633b >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-07 Build site.
Rmd <<<<<<< HEAD 06d53d1 ======= 06d53d1 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-07 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 63535ad ======= 63535ad >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-07 Build site.
Rmd <<<<<<< HEAD fe2a82b ======= fe2a82b >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-07 wflow_publish("./analysis/*.Rmd")
Rmd <<<<<<< HEAD 9898acd ======= 9898acd >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-07 update
html <<<<<<< HEAD feb5923 ======= feb5923 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-07 Build site.
Rmd <<<<<<< HEAD 9eae283 ======= 9eae283 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-07 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD c849244 ======= c849244 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-07 Build site.
Rmd <<<<<<< HEAD 29eb161 ======= 29eb161 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-07 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 7ab5d71 ======= 7ab5d71 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-07 Build site.
Rmd <<<<<<< HEAD 2baffc8 ======= 2baffc8 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-07 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 625e7ca ======= 625e7ca >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-07 Build site.
Rmd <<<<<<< HEAD bb3e1aa ======= bb3e1aa >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-07 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 0e1d92d ======= 0e1d92d >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-07 Build site.
Rmd <<<<<<< HEAD 138b4fe ======= 138b4fe >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-07 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 24d6bcf ======= 24d6bcf >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-07 Build site.
Rmd <<<<<<< HEAD 941e24b ======= 941e24b >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-07 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 3a14766 ======= 3a14766 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-07 Build site.
Rmd <<<<<<< HEAD d425ac9 ======= d425ac9 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-07 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD ca77db2 ======= ca77db2 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-07 Build site.
Rmd <<<<<<< HEAD 608cdf8 ======= 608cdf8 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-07 wflow_publish("./analysis/*.Rmd")
Rmd <<<<<<< HEAD c639389 ======= c639389 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-07-06 update
html <<<<<<< HEAD e0cb7a2 ======= e0cb7a2 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-28 Build site.
Rmd <<<<<<< HEAD ac33ff0 ======= ac33ff0 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-28 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD bf05c98 ======= bf05c98 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-28 Build site.
Rmd <<<<<<< HEAD 1c8bb9a ======= 1c8bb9a >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-28 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 7cfb685 ======= 7cfb685 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-28 Build site.
Rmd <<<<<<< HEAD 82fce8f ======= 82fce8f >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-28 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 43dad9c ======= 43dad9c >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-28 Build site.
Rmd <<<<<<< HEAD 20718e9 ======= 20718e9 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-28 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 7aa3172 ======= 7aa3172 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-28 Build site.
Rmd <<<<<<< HEAD e0425d8 ======= e0425d8 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-28 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 2254608 ======= 2254608 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-28 Build site.
Rmd <<<<<<< HEAD 754150e ======= 754150e >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-28 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 968a4b6 ======= 968a4b6 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-23 Build site.
html <<<<<<< HEAD 229f924 ======= 229f924 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-23 Build site.
Rmd <<<<<<< HEAD c7847bd ======= c7847bd >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-23 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 9750134 ======= 9750134 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-23 Build site.
Rmd <<<<<<< HEAD 0064ff3 ======= 0064ff3 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-23 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 4b38bf6 ======= 4b38bf6 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-23 Build site.
Rmd <<<<<<< HEAD 4eb11c9 ======= 4eb11c9 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-23 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 8a7980d ======= 8a7980d >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-23 Build site.
html <<<<<<< HEAD 3e1478e ======= 3e1478e >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-22 Build site.
html <<<<<<< HEAD 5258612 ======= 5258612 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-22 Build site.
Rmd <<<<<<< HEAD ecfd58d ======= ecfd58d >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-22 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 2382868 ======= 2382868 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-22 Build site.
Rmd <<<<<<< HEAD 694470f ======= 694470f >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-22 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 1144127 ======= 1144127 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-22 Build site.
html <<<<<<< HEAD da2c0fe ======= da2c0fe >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 Build site.
html <<<<<<< HEAD 8aa5960 ======= 8aa5960 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 Build site.
Rmd <<<<<<< HEAD 3dea9b1 ======= 3dea9b1 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 6783fa3 ======= 6783fa3 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 Build site.
Rmd <<<<<<< HEAD 6699b8f ======= 6699b8f >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD d9be701 ======= d9be701 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 Build site.
Rmd <<<<<<< HEAD f93179d ======= f93179d >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 82e6e50 ======= 82e6e50 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 Build site.
Rmd <<<<<<< HEAD f753baa ======= f753baa >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD d376ad0 ======= d376ad0 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 Build site.
Rmd <<<<<<< HEAD 4a9db6a ======= 4a9db6a >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 325a212 ======= 325a212 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 Build site.
Rmd <<<<<<< HEAD d54cc77 ======= d54cc77 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD e14c55c ======= e14c55c >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 Build site.
Rmd <<<<<<< HEAD 2ab041a ======= 2ab041a >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD f971bbd ======= f971bbd >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 Build site.
html <<<<<<< HEAD dca882f ======= dca882f >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 Build site.
html <<<<<<< HEAD 3a80eaf ======= 3a80eaf >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 Build site.
Rmd <<<<<<< HEAD b6fb1d2 ======= b6fb1d2 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 33829a5 ======= 33829a5 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 Build site.
Rmd <<<<<<< HEAD a949aec ======= a949aec >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 5b446cf ======= 5b446cf >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 Build site.
Rmd <<<<<<< HEAD c4ad45d ======= c4ad45d >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 28a06ee ======= 28a06ee >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 Build site.
Rmd <<<<<<< HEAD 53f2292 ======= 53f2292 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD d5b4ff0 ======= d5b4ff0 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 Build site.
Rmd <<<<<<< HEAD e982ac7 ======= e982ac7 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 16400a7 ======= 16400a7 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 Build site.
Rmd <<<<<<< HEAD d6aa5b2 ======= d6aa5b2 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD a324166 ======= a324166 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 Build site.
Rmd <<<<<<< HEAD ab8cbc3 ======= ab8cbc3 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 27a4d51 ======= 27a4d51 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 Build site.
Rmd <<<<<<< HEAD 624e791 ======= 624e791 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD f765024 ======= f765024 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 Build site.
html <<<<<<< HEAD bc55dbb ======= bc55dbb >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 Build site.
Rmd <<<<<<< HEAD 8b66c3b ======= 8b66c3b >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 update
html <<<<<<< HEAD b3b7ed6 ======= b3b7ed6 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 Build site.
Rmd <<<<<<< HEAD 405116a ======= 405116a >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 update
html <<<<<<< HEAD 405d57e ======= 405d57e >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 Build site.
Rmd <<<<<<< HEAD bbbaab0 ======= bbbaab0 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD c10a1a8 ======= c10a1a8 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 Build site.
Rmd <<<<<<< HEAD a8f7999 ======= a8f7999 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 2443e38 ======= 2443e38 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 Build site.
Rmd <<<<<<< HEAD 8e0c8ad ======= 8e0c8ad >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 5d192d2 ======= 5d192d2 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 Build site.
Rmd <<<<<<< HEAD 356550c ======= 356550c >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 21e9501 ======= 21e9501 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 Build site.
Rmd <<<<<<< HEAD 4a8f7ee ======= 4a8f7ee >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-21 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD b002776 ======= b002776 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-20 Build site.
Rmd <<<<<<< HEAD 6d78198 ======= 6d78198 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-20 wflow_publish("./analysis/*.Rmd")
Rmd <<<<<<< HEAD 0e1817a ======= 0e1817a >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-19 update
html <<<<<<< HEAD 6211c60 ======= 6211c60 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-15 Build site.
Rmd <<<<<<< HEAD 46e8cc3 ======= 46e8cc3 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-15 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 0da18e2 ======= 0da18e2 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-15 Build site.
Rmd <<<<<<< HEAD d999122 ======= d999122 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-15 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD 0aff555 ======= 0aff555 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-15 Build site.
Rmd <<<<<<< HEAD eda2d56 ======= eda2d56 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-15 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD a4e1e73 ======= a4e1e73 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-15 Build site.
Rmd <<<<<<< HEAD 7229c17 ======= 7229c17 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-15 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD f0e98f9 ======= f0e98f9 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 Build site.
Rmd <<<<<<< HEAD e0aa022 ======= e0aa022 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD eafa16b ======= eafa16b >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 Build site.
Rmd <<<<<<< HEAD 69b29f1 ======= 69b29f1 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD dfd60ce ======= dfd60ce >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 Build site.
Rmd <<<<<<< HEAD 49f1922 ======= 49f1922 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 wflow_publish("./analysis/*.Rmd")
html <<<<<<< HEAD fd7271e ======= fd7271e >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 Build site.
html <<<<<<< HEAD 1b4d12e ======= 1b4d12e >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 Build site.
html <<<<<<< HEAD a6c402d ======= a6c402d >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 Build site.
html <<<<<<< HEAD cedad99 ======= cedad99 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 Build site.
Rmd <<<<<<< HEAD 6b3f021 ======= 6b3f021 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD e3b9788 ======= e3b9788 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 Build site.
html <<<<<<< HEAD aed5eed ======= aed5eed >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 Build site.
Rmd <<<<<<< HEAD c552123 ======= c552123 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD 45bb6ed ======= 45bb6ed >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 Build site.
Rmd <<<<<<< HEAD 81fdf42 ======= 81fdf42 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD c23765a ======= c23765a >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 Build site.
html <<<<<<< HEAD b5fb71c ======= b5fb71c >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 Build site.
Rmd <<<<<<< HEAD 10f6641 ======= 10f6641 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD 152325b ======= 152325b >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 Build site.
Rmd <<<<<<< HEAD 1739dd9 ======= 1739dd9 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD 543ef4c ======= 543ef4c >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 Build site.
html <<<<<<< HEAD 9b6cb27 ======= 9b6cb27 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 Build site.
Rmd <<<<<<< HEAD d8908c0 ======= d8908c0 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD 8674c8a ======= 8674c8a >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 Build site.
Rmd <<<<<<< HEAD 2972ce6 ======= 2972ce6 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD ada4068 ======= ada4068 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 Build site.
Rmd <<<<<<< HEAD 7c5402e ======= 7c5402e >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD 0d08121 ======= 0d08121 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 Build site.
Rmd <<<<<<< HEAD 6226526 ======= 6226526 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD dd2046d ======= dd2046d >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 Build site.
Rmd <<<<<<< HEAD 71f5d04 ======= 71f5d04 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD 2c4cab1 ======= 2c4cab1 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 Build site.
Rmd <<<<<<< HEAD 6e73c04 ======= 6e73c04 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD d46eaab ======= d46eaab >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 Build site.
Rmd <<<<<<< HEAD be56d9d ======= be56d9d >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD 02a0c26 ======= 02a0c26 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 Build site.
Rmd <<<<<<< HEAD e2c15c0 ======= e2c15c0 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD abad46e ======= abad46e >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 Build site.
Rmd <<<<<<< HEAD 68948e3 ======= 68948e3 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD 741027b ======= 741027b >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 Build site.
Rmd <<<<<<< HEAD 065d7e9 ======= 065d7e9 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD bb15812 ======= bb15812 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 Build site.
Rmd <<<<<<< HEAD b6e0993 ======= b6e0993 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD 93a27ae ======= 93a27ae >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 Build site.
Rmd <<<<<<< HEAD b4a7331 ======= b4a7331 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD 27121a9 ======= 27121a9 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 Build site.
Rmd <<<<<<< HEAD fce1ffd ======= fce1ffd >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-14 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD 44517c1 ======= 44517c1 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
Rmd <<<<<<< HEAD cc6a40a ======= cc6a40a >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD da08f11 ======= da08f11 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
Rmd <<<<<<< HEAD 05ccc35 ======= 05ccc35 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD 572f6ba ======= 572f6ba >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
html <<<<<<< HEAD b8870d3 ======= b8870d3 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
html <<<<<<< HEAD 719925e ======= 719925e >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
html <<<<<<< HEAD e7541fa ======= e7541fa >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
html <<<<<<< HEAD 9d9615d ======= 9d9615d >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
Rmd <<<<<<< HEAD 04feaa7 ======= 04feaa7 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD bbd8978 ======= bbd8978 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
Rmd <<<<<<< HEAD 0ec2bfa ======= 0ec2bfa >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD e5a5b52 ======= e5a5b52 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
Rmd <<<<<<< HEAD c43ae1f ======= c43ae1f >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD 4d8bd72 ======= 4d8bd72 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
html <<<<<<< HEAD 3373521 ======= 3373521 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
html <<<<<<< HEAD af21ea8 ======= af21ea8 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
Rmd <<<<<<< HEAD 6e56d75 ======= 6e56d75 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD f653f7b ======= f653f7b >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
Rmd <<<<<<< HEAD 2723e7f ======= 2723e7f >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD d69c892 ======= d69c892 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
html <<<<<<< HEAD 34d877d ======= 34d877d >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
html <<<<<<< HEAD e72400b ======= e72400b >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
html <<<<<<< HEAD c411223 ======= c411223 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
html <<<<<<< HEAD 1daccd2 ======= 1daccd2 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
Rmd <<<<<<< HEAD 63f46d2 ======= 63f46d2 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD 26adb45 ======= 26adb45 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
html <<<<<<< HEAD a6022a8 ======= a6022a8 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
Rmd <<<<<<< HEAD 1215832 ======= 1215832 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD 9abc4b8 ======= 9abc4b8 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
Rmd <<<<<<< HEAD 7efcfe0 ======= 7efcfe0 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD f18d385 ======= f18d385 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
Rmd <<<<<<< HEAD a7c1ce0 ======= a7c1ce0 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD e991f56 ======= e991f56 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
html <<<<<<< HEAD 3c9b1d9 ======= 3c9b1d9 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
Rmd <<<<<<< HEAD ae1553a ======= ae1553a >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD 34e0d02 ======= 34e0d02 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
Rmd <<<<<<< HEAD e69aa83 ======= e69aa83 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD 9be31af ======= 9be31af >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
Rmd <<<<<<< HEAD ead84c2 ======= ead84c2 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 wflow_publish("analysis/*.Rmd")
html <<<<<<< HEAD 0f41de8 ======= 0f41de8 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
html <<<<<<< HEAD 31ad035 ======= 31ad035 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
html <<<<<<< HEAD bdf3b44 ======= bdf3b44 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
html <<<<<<< HEAD 8d0890c ======= 8d0890c >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 Build site.
Rmd <<<<<<< HEAD 26f455b ======= 26f455b >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 update
html <<<<<<< HEAD 26f455b ======= 26f455b >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838 chenh19 2022-06-13 update

1. Understand RNA-seq

a. Read about RNA-seq analysis

Yalamanchili et al. 2017: RNA-seq analysis pipeline

Some key points:

Protocol-1 (differential expression of genes):

  • demuxed raw reads (FastQC)
  • trimming reads (awk)
  • aligning reads (TopHat2)
  • counting reads (HTSeq; may filter out genes with low counts before next step)
  • detect DE using counted reads (DEseq2)
  • more QC (PCA/correlation heatmap)

Protocol-2 (differential usage of isoforms):

  • Protocol-1
  • counting isoforms (Kallisto, also check cell ranger)
  • detect DU using counted isoforms (Sleuth)
  • more QC (aslo PCA/correlation heatmap)

Protocol-3 (crypic splicing):

  • Protocol-1
  • detect differential junstions (CrypSplice)

b. Read more about RNA-seq analysis

Luecken et al. 2019: RNA-seq analysis pipeline
Supplementary code

Some key points:

c. Read the Morris paper

Morris et al. 2021: STING-Seq

Some key points:

Some key ideas:

  • STING-seq: Systematic Targeting and Inbition of Noncoding GWAS loci with scRNA-seq
  • prioritizes candidate cis-regulatory elements (cCREs, 1kb<distance to TSS<1Mb) using fine-mapped GWAS
  • selected 88 variants (in 56 loci) with enhancer activity
  • dual CRISPR inhibition: dCas9 as the GPS, MeCP2 and KRAB as the repressors
  • confirming dual CRISPRi efficacy: gRNAs target TSS of MRPS23, CTSB, FSCN1
  • CRIPSRi on the 88 variants: two gRNAs for each variant, both within 200bp of the variant
  • ECCITE-seq: captures gRNAs and epitopes

Some data processing steps and results:

  • QC: remove cells with low total reads or excessive mitochondrial reads, gRNA assignment UMI>5 (9,343 cells after QC)
  • Kallisto: counting read more on the official website
  • Seurat: QC and reference mapping? read more on the official website
  • SCEPTRE: gRNA_to_gene-expression pairwise test
  • non-targeting gRNA-gene pairs: not significant (negative ctrl)
  • TSS-targeting gRNA-gene pairs: expression significantly decreased (positive ctrl)
  • 37 of the 88 variants were significant
  • Trans-regulatory elements: I'll come back later

Note:

2. Prelim QC for raw STING-seq data

a. Download all data

Code: download.sh

b. Perform FastQC on all fastq files

Code: fastqc.sh

SRR14141135:

SRR14141136:

SRR14141137:

SRR14141138:

SRR14141139:

SRR14141140:

SRR14141141:

SRR14141142:

SRR14141143:

SRR14141144:

SRR14141145:

SRR14141146:

A brief summary:

  • length: 26bp or 57bp (trimmed?)
  • depth: 30-35x
  • overall quality: good (within ~40 bp)

d. Kallisto | bustools pipeline

Code: pip3-kb.sh
Code: anaconda_kallisto.sh

3. Analyze QC’ed STING-seq data

a. Install packages

Code: seurat.sh

b. Data overview

Code: overview.R
Note: about sparse matrix

The [Expression] matrix has: 
- 35,606 rows/genes/targets 
- 686,612 columns/barcodes/cells 
- 24,447,506,872 values in total 
- 82,507,471 values that are non-zero 
- 50,421,358 values that are 1 
- 32,086,113 values that are bigger than 1 
- 3,370,699 values that are bigger than 10 
- 259,734 values that are bigger than 100 
- 2,515 values that are bigger than 1,000 
- 0 values that are bigger than 10,000 
- 0 values that are bigger than 100,000 
 
The [gRNA] matrix has: 
- 210 rows/genes/targets 
- 137,347 columns/barcodes/cells 
- 28,842,870 values in total 
- 2,506,474 values that are non-zero 
- 1,510,919 values that are 1 
- 995,555 values that are bigger than 1 
- 121,554 values that are bigger than 10 
- 41,071 values that are bigger than 100 
- 2,232 values that are bigger than 1,000 
- 20 values that are bigger than 10,000 
- 0 values that are bigger than 100,000 
 
The [Hashtag] matrix has: 
- 4 rows/genes/targets 
- 410,228 columns/barcodes/cells 
- 1,640,912 values in total 
- 739,820 values that are non-zero 
- 409,830 values that are 1 
- 329,990 values that are bigger than 1 
- 218,280 values that are bigger than 10 
- 8,155 values that are bigger than 100 
- 282 values that are bigger than 1,000 
- 46 values that are bigger than 10,000 
- 0 values that are bigger than 100,000 

d. Expression (cDNA) dataset

i) Expression barcodes

Code: Expression_barcode_dist_plot.R

Comment: The cell with highest overall detected gene expression

Comment: The cell with lowest overall detected gene expression

Comment: As Xuanyao said, this kind bar plot is too dense and can’t really see the overall distribution, the CDF plot below is more clear

Comment: From this CDF figure I kind of know why there were only ~9000 cells used after Qc’ing with UMI>=850 filter. Less than 10% cells have UMI>=850. But still, why exactly 850 is still a question for me to explore

Comment: Many zeros (consistent with the observation that the matrix was very sparse); UMI>850 is invisible in this plot. As Xuanyao said, I should exclude the outliers or add y-axis break

ii) Expression targets

Code: Expression_target_dist_plot.R

Comment: The highest (mean) expressed gene is WDR45-like (WDR45L) pseudogene (high UMI counts in all cells)

Comment: The lowest (mean) expressed gene is RP4-669L17.1 pseudogene (zero UMI counts in all cells)

Comment: Non-zero UMI counts for all genes (~35k, including mito genes; 686,612 cells intotal)

Comment: CDF plot: ~80% genes have < ~5000 UMI counts in all cells (not all genes captured in each cell, but I guess still a lot)

Comment: PDF plot: same conclusion as above

e. gRNA dataset

i) gRNA barcodes

Code: gRNA_barcode_dist_plot.R

Comment: The cell with highest overall (mean) gRNAs, and it has 15 highly expressed gRNAs

Comment: The cell with lowest overall (mean) gRNAs (transfection/transduction failed in this cell)

Comment: Non-zero UMI counts in all cells (I’d say the transfection/transduction relatively even across all cells)

Comment: CDF plot: ~80% cells have < ~40 UMI counts for each gRNA (note: the authors mentioned MOI ~ 10)

Comment: PDF plot: same conclusion as above

ii) gRNA targets

Code: gRNA_target_dist_plot.R

Comment: The highest (mean) gRNA in all cells (gRNA targeting PPIA-2, which is a control)

Comment: The lowest (mean) gRNA in all cells (likely it’s a low score gRNA site but the authors didn’t have better choices)

Comment: Non-zero UMI counst for all gRNAs (137,347 cells in total; I’d say the transfection/transduction efficiency varies among gRNAs. The authors designed all the gRNAs within 200bp of the targeted variants,there must be limitations in terms of gRNA options)

Comment: CDF plot: ~80% gRNAs have < ~20,000 UMI counts in all cells (137,347 cells in total, ~15% transfection/transduction success rate, acceptable)

Comment: PDF plot: same conclusion as above

f. Hashtag dataset

i) Hashtag barcodes

Code: Hashtag_barcode_dist_plot.R

Comment: The cell with highest (mean) Hashtags (note: the authors used only 4 Hashtags, I might check which antibodies they are when performing association)

Comment: The cell with lowest (mean) Hashtags (not tagged by any of the antibodies)

Comment: This figure is not an error. All cells have 1/2/3/4 UMI counts, and because many of them have 4, it looks like a block when it’s such dense

Comment: CDF plot: ~80% cells have < ~2 UMI counts for each Hashtag (It make sense to me because the authors are likely trying to label different cell types)

Comment: PDF plot: same conclusion as above

i) Hashtag targets

Code: Hashtag_target_dist_plot.R

Comment: The highest (mean) Hashtag (HTO23) in all cells (I would guess this is the relatively more common cell type, also, there were some non-specific antibody binding)

Comment: The lowest (mean) Hashtag (HTO25) in all cells (I would guess this is the relatively less common cell type, also, it dosen’t seem to overlap with HTO25, which is a good thing)

Comment: Non-zero UMI counts for the 4 Hashtags (I’d say the 4 cell types are relatively even)

Comment: CDF plot: ~80% Hashtags have < ~200,000 UMI counts in all cells (410,228 cells in total, I thinking the antibody binding efficiency is pretty good)

Comment: PDF plot: same conclusion as above

g. QC filtering

  • After preliminary filtering, the authors got 14,775 cells with 3,875 median genes per cell.

Previous question:

  1. why percent-mito < 20%?
  2. why UMI > 850?
  3. why no UMI upper limit?

My understanding:

  1. Previously, 5% was usually the default threshold. But a recent paper did systematic evaluation and proposed a default cutoff of 10% for human cells. Also, according to Luecken et al. 2019, we can use a relatively loose QC cutoff at the beginning. Since the percent-mito was just in the first QC filtering step and the author further filtered by HTO and GDO, I think 20% makes sense.
  2. Again, according to Luecken et al. 2019, the dying/dead cells would be a small peak with low UMI counts. By the zoomed-in plot below, we can see 850 is a reasonable cutoff to remove the entire peak.
  3. Doublets was not filtered out by UMI, but by HTO demuxing, therefore the authors didn’t set an upper limit.

Notes:

  • In the original cDNA feature txt file, there are only Ensembl gene IDs. To calculate percent-mito, I tried to convert the IDs to symbols using both this web tool and biomaRT package in R.
  • If I directly use the gene symbols from these two methods and the same filters by Nikita, I get exactly the same results as Nikita (14,813 cells retained).
  • However, after taking a closer look at the converted gene lists, there are still many “Mitochondrially Encoded” genes starting with “MT” rather than “MT-”, so I wrote a script to convert all these genes.
  • Then I performed filtering again and got 14,675 cells with 3,917 median genes per cell.
  • I don’t think we’ll know exactly how the authors filtered the cells unless they release their code.
  • After QC filtering, there were 9,391 cells retained (9,343 cells by the authors in comparison,
  • I did cross comparison. There are 508 cells from authors’ list not in my list.

Code: QC_filter.R
Code: UMI_plot.R

Before UMI count filtering:

1
2

After UMI count filtering:

3
4

Before percent-mito filtering (generated by Seurat):

5
6
7

After percent-mito filtering (generated by Seurat):

8
9
10

Barcodes comparison:

Code: QC_compare.R
QC_by_author.txt
QC_by_hang.txt

Comparison result:

[1] "There are 508 cells filtered out in comparison to authors' list."

g2. PDF y axis issue

Previous question:

  1. Is the small values in the Y-axis of the previous PDF plot wrong?
My understanding: probably NOT wrong.

Point 1: similar results by a package for epdf

Plotted with base R:

hist(barcode_dist, freq=F, breaks=150, main="PDF: UMI counts in each barcode (cell)", xlab="UMI counts in each barcode (cell)", ylab="PDF")

Plotted with EnvStats package:

EnvStats::epdfPlot(barcode_dist, epdf.col = "red")

Point 2: area of the plot is ~1 by eye

Didn’t bother to do calculus, just very roughly calculated 1.5e-04 x 7000 = 1.05

h. zero-inflated plot & regression

Ref: Kim et al. 2020

Code: zero-flated.R

1
2

regression summary

summary(glm(zero_prop ~ target_mean, family = poisson, data = whichmodel_10)) # poisson
Call:
glm(formula = zero_prop ~ target_mean, family = poisson, data = whichmodel_10)

Deviance Residuals: 
     Min        1Q    Median        3Q       Max  
-0.13432  -0.00250   0.01255   0.01294   1.08289  

Coefficients:
             Estimate Std. Error z value Pr(>|z|)    
(Intercept) -0.012969   0.005915  -2.193   0.0283 *  
target_mean -0.672805   0.019706 -34.141   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 2256.629  on 35374  degrees of freedom
Residual deviance:   88.113  on 35373  degrees of freedom
AIC: Inf

Number of Fisher Scoring iterations: 5
summary(glm.nb(zero_prop ~ target_mean, data = whichmodel_10)) # negative binomial
Call:
glm.nb(formula = zero_prop ~ target_mean, data = whichmodel_10, 
    init.theta = 18539.38634, link = log)

Deviance Residuals: 
     Min        1Q    Median        3Q       Max  
-0.86791  -0.31620   0.01294   0.06140   1.32706  

Coefficients:
             Estimate Std. Error z value Pr(>|z|)    
(Intercept) -0.012969   0.005915  -2.193   0.0283 *  
target_mean -0.672803   0.019707 -34.141   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for Negative Binomial(18539.39) family taken to be 1)

    Null deviance: 6991.6  on 35374  degrees of freedom
Residual deviance: 4823.2  on 35373  degrees of freedom
AIC: 66516

Number of Fisher Scoring iterations: 1


              Theta:  18539 
          Std. Err.:  7723 
Warning while fitting theta: iteration limit reached 

 2 x log-likelihood:  -66509.53 

Note: negative binomial regression doesn’t seem to allow zeros.


sessionInfo()
R version 4.2.1 (2022-06-23)
Platform: x86_64-pc-linux-gnu (64-bit)
<<<<<<< HEAD
Running under: Ubuntu 22.04.1 LTS
=======
Running under: Ubuntu 22.04 LTS
>>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] workflowr_1.7.0

loaded via a namespace (and not attached):
<<<<<<< HEAD
 [1] Rcpp_1.0.9       compiler_4.2.1   pillar_1.8.0     bslib_0.4.0     
 [5] later_1.3.0      git2r_0.30.1     jquerylib_0.1.4  tools_4.2.1     
 [9] getPass_0.2-2    digest_0.6.29    jsonlite_1.8.0   evaluate_0.15   
[13] tibble_3.1.8     lifecycle_1.0.1  pkgconfig_2.0.3  rlang_1.0.4     
[17] cli_3.3.0        rstudioapi_0.13  yaml_2.3.5       xfun_0.31       
[21] fastmap_1.1.0    httr_1.4.3       stringr_1.4.0    knitr_1.39      
[25] fs_1.5.2         vctrs_0.4.1      sass_0.4.2       rprojroot_2.0.3 
[29] glue_1.6.2       R6_2.5.1         processx_3.7.0   fansi_1.0.3     
[33] rmarkdown_2.14   callr_3.7.1      magrittr_2.0.3   whisker_0.4     
[37] ps_1.7.1         promises_1.2.0.1 htmltools_0.5.3  httpuv_1.6.5    
[41] utf8_1.2.2       stringi_1.7.8    cachem_1.0.6    
======= [1] Rcpp_1.0.9 compiler_4.2.1 pillar_1.8.0 bslib_0.3.1 [5] later_1.3.0 git2r_0.30.1 jquerylib_0.1.4 tools_4.2.1 [9] getPass_0.2-2 digest_0.6.29 jsonlite_1.8.0 evaluate_0.15 [13] tibble_3.1.7 lifecycle_1.0.1 pkgconfig_2.0.3 rlang_1.0.4 [17] cli_3.3.0 rstudioapi_0.13 yaml_2.3.5 xfun_0.31 [21] fastmap_1.1.0 httr_1.4.3 stringr_1.4.0 knitr_1.39 [25] sass_0.4.1 fs_1.5.2 vctrs_0.4.1 rprojroot_2.0.3 [29] glue_1.6.2 R6_2.5.1 processx_3.6.1 fansi_1.0.3 [33] rmarkdown_2.14 callr_3.7.0 magrittr_2.0.3 whisker_0.4 [37] ps_1.7.1 promises_1.2.0.1 htmltools_0.5.2 ellipsis_0.3.2 [41] httpuv_1.6.5 utf8_1.2.2 stringi_1.7.6 >>>>>>> 37d15c9e90ebd440e24cbf0e45836e069685a838