References
1.
Donchin Y, Seagull FJ. The hostile environment of the intensive care unit. Current Opinion in Critical Care. 2002;8(4):316-320. doi:10.1097/00075198-200208000-00008
2.
Sendelbach S, Funk M. Alarm Fatigue. AACN Advanced Critical Care. 2013;24(4):378-386. doi:10.4037/nci.0b013e3182a903f9
3.
The joint commission. Published 2021. Accessed April 8, 2021. https://www.jointcommission.org
4.
Joint Commission. Sentinel event alert - Medical device alarm safety in hospitals. 2013;(50):1-3.
5.
The joint commission - national patient safety goals. Published 2021. Accessed April 8, 2021. https://www.jointcommission.org/standards/national-patient-safety-goals/hospital-national-patient-safety-goals/
6.
Clifford GD, Silva I, Moody B, et al. The PhysioNet/computing in cardiology challenge 2015: Reducing false arrhythmia alarms in the ICU. In: Computing in Cardiology.; 2015. doi:10.1109/cic.2015.7408639
7.
Lawless ST. Crying wolf: False alarms in a pediatric intensive care unit. Critical care medicine. 1994;22(6):981-985.
8.
Chambrin MC. Alarms in the intensive care unit: How can the number of false alarms be reduced? Critical care (London, England). 2001;5(4):184-188. doi:10.1186/cc1021
9.
Parthasarathy S, Tobin MJ. Sleep in the intensive care unit. Intensive Care Medicine. 2004;30(2):197-206. doi:10.1007/s00134-003-2030-6
10.
Research compendium. Published 2019. Accessed April 8, 2021. https://research-compendium.science
11.
Wilkinson MD, Dumontier M, Aalbersberg IjJ, et al. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data. 2016;3(1). doi:10.1038/sdata.2016.18
12.
The CodeMeta project. Published 2017. Accessed January 10, 2022. https://codemeta.github.io/
13.
Landau W, Landau W, Warkentin MT, et al. Ropensci/Targets, Dynamic Function-Oriented ’Make’-Like Declarative Workflows. Zenodo; 2021. doi:10.5281/ZENODO.4062936
14.
Franzbischoff/false.alarm: Reproducible reports. Published 2021. Accessed April 8, 2021. https://franzbischoff.github.io/false.alarm
15.
Blischak JD, Carbonetto P, Stephens M. Creating and sharing reproducible research code the workflowr way [version 1; peer review: 3 approved]. F1000Research. 2019;8(1749). doi:10.12688/f1000research.20843.1
16.
Kuhn M. Building predictive models in r using the caret package. Journal of Statistical Software, Articles. 2008;28(5):1-26. doi:10.18637/jss.v028.i05
17.
Kuhn M, Wickham H. Tidymodels: A Collection of Packages for Modeling and Machine Learning Using Tidyverse Principles.; 2020. https://www.tidymodels.org
18.
Thompson J. On not using tidymodels. Published October 2020. Accessed January 5, 2022. https://staffblogs.le.ac.uk/teachingr/2020/10/05/on-not-using-tidymodels/
19.
Bischoff F. GitHub false.alarm repository. Accessed July 14, 2021. https://github.com/franzbischoff/false.alarm
20.
GitHub Actions. Accessed July 14, 2021. https://github.com/features/actions
21.
Zenhub roadmap. Accessed January 27, 2022. https://app.zenhub.com/workspaces/phd-thesis-5eb2ce34f5f30b3aed0a35af/roadmap
22.
Yeh C-CM, Zhu Y, Ulanova L, et al. Matrix profile i: All pairs similarity joins for time series: A unifying view that includes motifs, discords and shapelets. In: 2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE; 2016:1317-1322. doi:10.1109/ICDM.2016.0179
23.
De Paepe D, Vanden Hautte S, Steenwinckel B, et al. A generalized matrix profile framework with support for contextual series analysis. Engineering Applications of Artificial Intelligence. 2020;90(January):103487. doi:10.1016/j.engappai.2020.103487
24.
Feremans L, Vercruyssen V, Cule B, Meert W, Goethals B. Pattern-Based Anomaly Detection in Mixed-Type Time Series. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol 11906 LNAI.; 2020:240-256. doi:10.1007/978-3-030-46150-8_15
25.
Lin J, Keogh E, Wei L, Lonardi S. Experiencing SAX: A novel symbolic representation of time series. Data Mining and Knowledge Discovery. 2007;15(2):107-144. doi:10.1007/s10618-007-0064-z
26.
UCR Matrix Profile Page. Accessed January 27, 2022. https://www.cs.ucr.edu/~eamonn/MatrixProfile.html
27.
Bischoff F, Rodrigues PP. tsmp: An R Package for Time Series with Matrix Profile. The R Journal. 2020;12(1):76-86. doi:10.32614/RJ-2020-021
28.
Matrix Profile Foundation. Accessed January 27, 2022. https://matrixprofile.org/
29.
Van Benschoten A, Ouyang A, Bischoff F, Marrs T. MPA: A novel cross-language API for time series analysis. Journal of Open Source Software. 2020;5(49):2179. doi:10.21105/joss.02179
30.
Reducing False Arrhythmia Alarms in the ICU - The PhysioNet Computing in Cardiology Challenge 2015. Published online March 24, 2021. doi:10.5281/zenodo.4634013
31.
Association for the Advancement of Medical Instrumentation. Cardiac monitors, heart rate meters, and alarms. Association for the Advancement of Medical Instrumentation; 2002.
32.
Plesinger F, Klimes P, Halamek J, Jurak P. False alarms in intensive care unit monitors: Detection of life-threatening arrhythmias using elementary algebra, descriptive statistics and fuzzy logic. In: IEEE; 2015. doi:10.1109/cic.2015.7408641
33.
Kalidas V, Tamil LS. Enhancing accuracy of arrhythmia classification by combining logical and machine learning techniques. In: IEEE; 2015. doi:10.1109/cic.2015.7411015
34.
Couto P, Ramalho R, Rodrigues R. Suppression of false arrhythmia alarms using ECG and pulsatile waveforms. In: IEEE; 2015. doi:10.1109/cic.2015.7411019
35.
Fallet S, Yazdani S, Vesin J-M. A multimodal approach to reduce false arrhythmia alarms in the intensive care unit. In: IEEE; 2015. doi:10.1109/cic.2015.7408640
36.
Hoog Antink C, Leonhardt S. Reducing false arrhythmia alarms using robust interval estimation and machine learning. In: IEEE; 2015. doi:10.1109/cic.2015.7408642
37.
Akosa JS. Predictive accuracy: A misleading performance measure for highly imbalanced data. SAS Global Forum. 2017;942:1-12.
38.
Wu R, Keogh E. Current Time Series Anomaly Detection Benchmarks are Flawed and are Creating the Illusion of Progress. IEEE Transactions on Knowledge and Data Engineering. Published online September 2021. doi:10.1109/TKDE.2021.3112126
39.
Bakeman R, Quera V. Sequential Analysis and Observational Methods for the Behavioral Sciences. Cambridge University Press; 2011:1-183. doi:10.1017/CBO9781139017343
40.
Sim J, Wright CC. The Kappa Statistic in Reliability Studies: Use, Interpretation, and Sample Size Requirements. Physical Therapy. 2005;85(3):257-268. doi:10.1093/ptj/85.3.257
41.
Bakeman R, McArthur D, Quera V, Robinson BF. Detecting sequential patterns and determining their reliability with fallible observers. Psychological Methods. 1997;2(4):357-370. doi:10.1037/1082-989X.2.4.357
42.
Morgan S. Research Methodology and Statistical Methods.; 2019:300.
43.
SparkFun Electronics. AD8232 single lead heart rate monitor. Published 2014. Accessed July 14, 2021. https://www.sparkfun.com/products/12650
44.
Analog Devices. AD8232 Single-Lead, Heart Rate Monitor Front End. Published online 2014. Accessed July 14, 2021. https://www.analog.com/media/en/technical-documentation/data-sheets/ad8232.pdf
45.
Arduino. Arduino. Published 2008. Accessed July 14, 2021. https://www.arduino.cc/
46.
Eerikainen LM, Vanschoren J, Rooijakkers MJ, Vullings R, Aarts RM. Decreasing the false alarm rate of arrhythmias in intensive care using a machine learning approach. In: IEEE; 2015. doi:10.1109/cic.2015.7408644
47.
Del Rio BAS, Lopetegi T, Romero I. Assessment of different methods to estimate electrocardiogram signal quality. Computing in Cardiology. 2011;38:609-612.
48.
Batista GEAPA, Keogh EJ, Tataw OM, Souza VMA de. CID: an efficient complexity-invariant distance for time series. Data Mining and Knowledge Discovery. 2014;28(3):634-669. doi:10.1007/s10618-013-0312-3
49.
Gharghabi S, Yeh C-CM, Ding Y, et al. Domain agnostic online semantic segmentation for multi-dimensional time series. Data Mining and Knowledge Discovery. 2018;33(1):96-130. doi:10.1007/s10618-018-0589-3
50.
Aminikhanghahi S, Cook DJ. A survey of methods for time series change point detection. Knowledge and Information Systems. 2016;51(2):339-367. doi:10.1007/s10115-016-0987-z
51.
Matsubara Y, Sakurai Y, Faloutsos C. AutoPlait: Automatic mining of co-evolving time sequences. Proceedings of the ACM SIGMOD International Conference on Management of Data. Published online 2014:193-204. doi:10.1145/2588555.2588556
52.
Imani S, Madrid F, Ding W, Crouter S, Keogh E. Matrix profile XIII : Time series snippets : A new primitive for time series data mining. In: 2018 IEEE International Conference on Data Mining (ICDM).; 2018.
53.
Gharghabi S, Imani S, Bagnall A, Darvishzadeh A, Keogh E. Matrix profile XII: MPdist: A novel time series distance measure to allow data mining in more challenging scenarios. In: IEEE; 2018:965-970. doi:10.1109/ICDM.2018.00119
54.
Keogh E, Lin J. Clustering of time-series subsequences is meaningless: implications for previous and future research. Knowledge and Information Systems. 2005;8(2):154-177. doi:10.1007/s10115-004-0172-7
55.
Rakthanmanon T, Keogh E. Fast shapelets: A scalable algorithm for discovering time series shapelets. In: Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial; Applied Mathematics; 2013:668-676. doi:10.1137/1.9781611972832.74
56.
Mercer R, Alaee S, Abdoli A, Singh S, Murillo A, Keogh E. Matrix profile XXIII: Contrast profile: A novel time series primitive that allows real world classification. In: ICDM 2021. IEEE; 2021:10.
57.
Bischl B, Mersmann O, Trautmann H, Weihs C. Resampling Methods for Meta-Model Validation with Recommendations for Evolutionary Computation. Evolutionary Computation. 2012;20(2):249-275. doi:10.1162/EVCO_a_00069
58.
Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer; 2009. doi:10.1007/978-0-387-84858-7
59.
Bekkar M, Djemaa HK, Alitouche TA. Evaluation Measures for Models Assessment over Imbalanced Data Sets. Journal of Information Engineering and Applications. 2013;3(10):27-38. http://www.iiste.org/Journals/index.php/JIEA/article/view/7633
60.
Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics. 2020;21(1):6. doi:10.1186/s12864-019-6413-7
61.
Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure. 1975;405(2):442-451. doi:10.1016/0005-2795(75)90109-9
62.
Bifet A, de Francisci Morales G, Read J, Holmes G, Pfahringer B. Efficient Online Evaluation of Big Data Stream Classifiers. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Vol 2015-Augus. ACM; 2015:59-68. doi:10.1145/2783258.2783372
63.
Dubey A, Tarar S. Evaluation of approximate rank-order clustering using matthews correlation coefficient. International Journal of Engineering and Advanced Technology. 2018;8(2):106-113.
64.
Delgado R, Tibau X-A. Why Cohen’s Kappa should be avoided as performance measure in classification. Gu Q, ed. PLOS ONE. 2019;14(9):e0222916. doi:10.1371/journal.pone.0222916
65.
PlatformIO, a professional collaborative platform for embedded development. Accessed January 5, 2022. https://platformio.org/
66.
Zhu Y, Zimmerman Z, Senobari NS, et al. 2016 IEEE 16th international conference on data mining (ICDM). In: IEEE; 2016. doi:10.1109/icdm.2016.0085
67.
Zhu Y, Yeh C-CM, Zimmerman Z, Kamgar K, Keogh E. 2018 IEEE international conference on data mining (ICDM). In: IEEE; 2018. doi:10.1109/icdm.2018.00099
68.
Bischoff F. RPubs - MatrixProfileR - benchmarks. Published 2021. Accessed January 12, 2022. https://rpubs.com/franzbischoff/matrixprofiler