Last updated: 2020-07-18

Checks: 7 0

Knit directory: Cant_eMLR/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200707) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version d3032c7. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    data/GLODAPv2_2016b_MappedClimatologies/
    Ignored:    data/GLODAPv2_2020/
    Ignored:    data/World_Ocean_Atlas_2018/
    Ignored:    data/pCO2_atmosphere/
    Ignored:    dump/
    Ignored:    output/plots/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/read_GLODAPv2_2020.Rmd) and HTML (docs/read_GLODAPv2_2020.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd d3032c7 jens-daniel-mueller 2020-07-18 formating
html 22b588c jens-daniel-mueller 2020-07-18 Build site.
html 3964fd7 jens-daniel-mueller 2020-07-17 Build site.
Rmd 4685ad7 jens-daniel-mueller 2020-07-17 150m depth limit implemented
html 56c3ed9 jens-daniel-mueller 2020-07-14 Build site.
Rmd aed89af jens-daniel-mueller 2020-07-14 added Rmd for MappedClimatologies
html 74d4abd jens-daniel-mueller 2020-07-14 Build site.
html 1c511ce jens-daniel-mueller 2020-07-14 Build site.
Rmd e03016e jens-daniel-mueller 2020-07-14 split read in per data set

library(tidyverse)
library(lubridate)
library(patchwork)

1 Read master file

  • Data source: GLODAPv2.2020_Merged_Master_File.csv from glodap.info
GLODAP <- read_csv(here::here("data/GLODAPv2_2020/Merged_data_product",
                              "GLODAPv2.2020_Merged_Master_File.csv"),
                   na = "-9999",
                   col_types = cols(.default = col_double()))

# relevant columns
GLODAP <- GLODAP %>% 
  select(cruise:talkqc)

GLODAP <- GLODAP %>% 
  mutate(date = ymd(paste(year, month, day))) %>% 
         #decade = as.factor(floor(year / 10) * 10)) %>% 
  relocate(date)

GLODAP <- GLODAP %>% 
  select(-c(month:minute, 
            maxsampdepth, pressure,
            theta, sigma0:gamma,
            nitrate:nitritef))

2 Data cleaning

2.1 Define subsetting criteria

flag_f <- 2
flag_qc <- 1
min_depth <- 150

Only samples with all relevant parameters determined were selected. The following subsetting parameters were defined:

  • flag_f: 2

  • flag_qc: 1

  • min_depth: 150

  • summary statistics were calculated during cleaning process

2.2 Subset rows

GLODAP_stats <- GLODAP %>% 
  summarise(total = n())

GLODAP <- GLODAP %>% 
  filter(!is.na(tco2))

GLODAP <- GLODAP %>% 
  filter(tco2f == flag_f) %>% 
  select(-tco2f)

GLODAP <- GLODAP %>% 
  filter(tco2qc == flag_qc) %>% 
  select(-tco2qc)

GLODAP_stats_temp <- GLODAP %>% 
  summarise(tco2 = n())

GLODAP_stats <- cbind(GLODAP_stats, GLODAP_stats_temp)
rm(GLODAP_stats_temp)

##

GLODAP <- GLODAP %>% 
  filter(!is.na(talk))

GLODAP <- GLODAP %>% 
  filter(talkf == flag_f) %>% 
  select(-talkf)

GLODAP <- GLODAP %>% 
  filter(talkqc == flag_qc) %>% 
  select(-talkqc)

##

GLODAP <- GLODAP %>% 
  filter(!is.na(phosphate))

GLODAP <- GLODAP %>% 
  filter(phosphatef == flag_f) %>% 
  select(-phosphatef)

GLODAP <- GLODAP %>% 
  filter(phosphateqc == flag_qc) %>% 
  select(-phosphateqc)

GLODAP_stats_temp <- GLODAP %>% 
  summarise(C_star_variables = n())

GLODAP_stats <- cbind(GLODAP_stats, GLODAP_stats_temp)
rm(GLODAP_stats_temp)

##

GLODAP <- GLODAP %>% 
  filter(!is.na(temperature))

##
  
GLODAP <- GLODAP %>% 
  filter(!is.na(salinity))

GLODAP <- GLODAP %>% 
  filter(salinityf == flag_f) %>% 
  select(-salinityf)

GLODAP <- GLODAP %>% 
  filter(salinityqc == flag_qc) %>% 
  select(-salinityqc)

##
  
GLODAP <- GLODAP %>% 
  filter(!is.na(silicate))

GLODAP <- GLODAP %>% 
  filter(silicatef == flag_f) %>% 
  select(-silicatef)

GLODAP <- GLODAP %>% 
  filter(silicateqc == flag_qc) %>% 
  select(-silicateqc)

##
  
GLODAP <- GLODAP %>% 
  filter(!is.na(oxygen))

GLODAP <- GLODAP %>% 
  filter(oxygenf == flag_f) %>% 
  select(-oxygenf)

GLODAP <- GLODAP %>% 
  filter(oxygenqc == flag_qc) %>% 
  select(-oxygenqc)

##

GLODAP <- GLODAP %>% 
  filter(!is.na(aou))

GLODAP <- GLODAP %>% 
  filter(aouf == flag_f) %>% 
  select(-aouf)

GLODAP_stats_temp <- GLODAP %>% 
  summarise(eMLR_variables = n())

GLODAP_stats <- cbind(GLODAP_stats, GLODAP_stats_temp)
rm(GLODAP_stats_temp)

##

GLODAP <- GLODAP %>% 
  filter(depth >= min_depth)

GLODAP_stats_temp <- GLODAP %>% 
  summarise(eMLR_variables_150 = n())

GLODAP_stats <- cbind(GLODAP_stats, GLODAP_stats_temp)
rm(GLODAP_stats_temp)


GLODAP_stats_long <- GLODAP_stats %>% 
  pivot_longer(1:length(GLODAP_stats), names_to = "parameter", values_to = "n")

GLODAP_stats_long  %>%  write_csv(here::here("data/GLODAPv2_2020/_summarized_data_files",
                                             "GLODAPv2.2020_stats.csv"))

rm(GLODAP_stats_long, GLODAP_stats)

2.3 Assign reference eras

Samples were assigned to following eras:

JGOFS/WOCE 1981 - 1999

GO-SHIP 2000 - 2012

new_era 2013 - now

GLODAP <- GLODAP %>%
  filter(year >= 1981) %>% 
  mutate(era = "JGOFS/WOCE",
         era = if_else(year >= 2000, "GO-SHIP", era),
         era = if_else(year >= 2013, "new_era", era))

2.4 Write summary file

GLODAP  %>%  write_csv(here::here("data/GLODAPv2_2020/_summarized_data_files",
                                  "GLODAPv2.2020_clean.csv"))

3 Overview plots

Open clean data file.

GLODAP <- read_csv(here::here("data/GLODAPv2_2020/_summarized_data_files",
                              "GLODAPv2.2020_clean.csv"))

3.1 Assign spatial grid

For the following plots, observations were gridded spatially to 5°x5° intervals.

GLODAP <- GLODAP %>% 
  mutate(lat_grid = cut(latitude, seq(-90, 90, 5), seq(-87.5, 87.5, 5)),
         lat_grid = as.numeric(as.character(lat_grid)),
         lon_grid = cut(longitude, seq(-180, 180, 5), seq(-177.5, 177.5, 5)),
         lon_grid = as.numeric(as.character(lon_grid))) %>% 
  arrange(date)

3.2 Cleaning stats

GLODAP_stats_long <-  read_csv(here::here("data/GLODAPv2_2020/_summarized_data_files",
                                             "GLODAPv2.2020_stats.csv"))

GLODAP_stats_long <- GLODAP_stats_long %>%
  mutate(parameter = fct_reorder(parameter, n))

GLODAP_stats_long %>% 
  ggplot(aes(parameter, n/1000))+
  geom_col()+
  coord_flip()+
  labs(y="n (1000)")+
  theme(axis.title.y = element_blank())

rm(GLODAP_stats_long)

3.3 Histogram latitudes

GLODAP_histogram_lat <- GLODAP %>% 
  group_by(era, lat_grid) %>% 
  tally() %>% 
  ungroup()

GLODAP_histogram_lat %>% 
  ggplot(aes(lat_grid, n, fill=era))+
  geom_col()+
  scale_x_continuous(breaks = seq(-87.5,90,10))+
  scale_fill_viridis_d()+
  coord_flip(expand = 0)

rm(GLODAP_histogram_lat)

3.4 Histogram year

GLODAP_histogram_year <- GLODAP %>% 
  group_by(era, year) %>% 
  tally() %>% 
  ungroup()

era_median_year <- GLODAP %>% 
  group_by(era) %>% 
  summarise(t_ref = median(year)) %>% 
  ungroup()

GLODAP_histogram_year %>% 
  ggplot(aes(year, n, fill=era))+
  geom_col()+
  geom_vline(data = era_median_year, aes(xintercept = t_ref))+
  coord_cartesian(expand = 0)

rm(GLODAP_histogram_year,
   era_median_year)

3.5 Hovmoeller (lat vs year)

GLODAP_hovmoeller_year <- GLODAP %>% 
  group_by(year, lat_grid) %>% 
  tally() %>% 
  ungroup()

GLODAP_hovmoeller_year %>% 
  ggplot(aes(year, lat_grid, fill=log10(n)))+
  geom_tile()+
  geom_vline(xintercept = c(1999.5, 2012.5))+
  scale_fill_viridis_c(option = "magma", direction = -1)

rm(GLODAP_hovmoeller_year)

3.6 Maps by era

mapWorld <- borders("world", colour="gray60", fill="gray60")

GLODAP_map_era <- GLODAP %>% 
  group_by(era, lat_grid, lon_grid) %>% 
  tally() %>% 
  ungroup()

GLODAP_map_era <- GLODAP_map_era %>% 
  mutate(era = factor(era, c("JGOFS/WOCE", "GO-SHIP", "new_era")))

GLODAP_map_era %>%
  ggplot(aes(lon_grid, lat_grid, fill=log10(n)))+
  mapWorld+
  geom_raster()+
  scale_fill_viridis_c(option = "magma", direction = -1)+
  scale_x_continuous(breaks = seq(-180, 180, 30))+
  scale_y_continuous(breaks = seq(-90, 90, 30))+
  coord_quickmap(expand = FALSE)+
  facet_wrap(~era, ncol=1)

rm(GLODAP_map_era,
   mapWorld)

4 Individual cruise sections

Zonal and meridional section plots are produce

cruises <- GLODAP %>% 
  group_by(cruise) %>% 
  summarise(date_mean = mean(date, na.rm = TRUE),
            n = n()) %>% 
  ungroup() %>% 
  arrange(date_mean)

GLODAP <- full_join(GLODAP, cruises)

mapWorld <- borders("world", colour="gray60", fill="gray60")

n <- 0
for (i_cruise in unique(cruises$cruise)) {

#i_cruise <- unique(cruises$cruise)[1]
n <- n+1
print(n)  
  
GLODAP_cruise <- GLODAP %>%
  filter(cruise == i_cruise) %>% 
  arrange(date)

cruises_cruise <- cruises %>%
  filter(cruise == i_cruise)
  
map <- GLODAP_cruise %>%
  ggplot(aes(longitude, latitude))+
  mapWorld+
  geom_point(aes(col=date))+
  geom_path()+
  coord_quickmap(expand = FALSE)+
  scale_color_viridis_c(trans = "date")+
  labs(title = paste("Mean date:", cruises_cruise$date_mean,
                     "| cruise:", cruises_cruise$cruise,
                     "| n(samples):", cruises_cruise$n))


lon_section <- GLODAP_cruise %>%
  ggplot(aes(longitude, depth))+
  scale_y_reverse()+
  scale_color_viridis_c()

lon_tco2 <- lon_section+
  geom_point(aes(col=tco2))

lon_talk <- lon_section+
  geom_point(aes(col=talk))

lon_phosphate <- lon_section+
  geom_point(aes(col=phosphate))


lat_section <- GLODAP_cruise %>%
  ggplot(aes(latitude, depth))+
  scale_y_reverse()+
  scale_color_viridis_c()

lat_tco2 <- lat_section+
  geom_point(aes(col=tco2))

lat_talk <- lat_section+
  geom_point(aes(col=talk))

lat_phosphate <- lat_section+
  geom_point(aes(col=phosphate))

map /
((lat_tco2 / lat_talk / lat_phosphate) |
(lon_tco2 / lon_talk / lon_phosphate))

ggsave(here::here("output/plots/data/all_cruises_clean",
                  paste("GLODAP_cruise_date",
                        cruises_cruise$date_mean,
                        "n",
                        cruises_cruise$n,
                        "cruise",
                        cruises_cruise$cruise,
                        ".png",
                        sep = "_")),
                  width = 9, height = 9)

rm(map,
   lon_section, lat_section,
   lat_tco2, lat_talk, lat_phosphate, lon_tco2, lon_talk, lon_phosphate,
   GLODAP_cruise, cruises_cruise)

}


# library("rnaturalearth")
# library("rnaturalearthdata")
# library("sf")
# 
# world <- ne_countries(scale = "small", returnclass = "sf")
# class(world)
# 
# GLODAP_map <- GLODAP %>% 
#   group_by(lat_grid, lon_grid) %>% 
#   tally() %>% 
#   ungroup()
# 
# ggplot() +
#   geom_raster(data = GLODAP_map, aes(lon_grid, lat_grid))+
#   geom_sf(data = world)+
#   coord_sf(crs = "+proj=robin +lat_0=0 +lon_0=0 +x0=0 +y0=0")


# https://gist.github.com/clauswilke/783e1a8ee3233775c9c3b8bfe531e28a
# https://twitter.com/clauswilke/status/1066024436208406529
# https://www.r-spatial.org/r/2018/10/25/ggplot2-sf.html

5 Open tasks

  • remove marginal seas and data north of 65°N
  • move A16 cruises from new_era to GO-SHIP era

6 Questions

  • exclude coastal area in general?

sessionInfo()
R version 3.6.3 (2020-02-29)
Platform: i386-w64-mingw32/i386 (32-bit)
Running under: Windows 10 x64 (build 18363)

Matrix products: default

locale:
[1] LC_COLLATE=English_Germany.1252  LC_CTYPE=English_Germany.1252   
[3] LC_MONETARY=English_Germany.1252 LC_NUMERIC=C                    
[5] LC_TIME=English_Germany.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] patchwork_1.0.1 lubridate_1.7.9 forcats_0.5.0   stringr_1.4.0  
 [5] dplyr_1.0.0     purrr_0.3.4     readr_1.3.1     tidyr_1.1.0    
 [9] tibble_3.0.3    ggplot2_3.3.2   tidyverse_1.3.0 workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] jsonlite_1.7.0    rstudioapi_0.11   generics_0.0.2    magrittr_1.5     
 [5] farver_2.0.3      gtable_0.3.0      rmarkdown_2.3     vctrs_0.3.1      
 [9] fs_1.4.2          hms_0.5.3         xml2_1.3.2        pillar_1.4.6     
[13] htmltools_0.5.0   haven_2.3.1       later_1.1.0.1     broom_0.7.0      
[17] cellranger_1.1.0  tidyselect_1.1.0  knitr_1.29        git2r_0.27.1     
[21] whisker_0.4       lifecycle_0.2.0   pkgconfig_2.0.3   R6_2.4.1         
[25] digest_0.6.25     xfun_0.15         colorspace_1.4-1  rprojroot_1.3-2  
[29] stringi_1.4.6     yaml_2.2.1        evaluate_0.14     labeling_0.3     
[33] fansi_0.4.1       httr_1.4.1        compiler_3.6.3    here_0.1         
[37] cli_2.0.2         withr_2.2.0       backports_1.1.5   munsell_0.5.0    
[41] DBI_1.1.0         modelr_0.1.8      Rcpp_1.0.5        readxl_1.3.1     
[45] maps_3.3.0        dbplyr_1.4.4      ellipsis_0.3.1    assertthat_0.2.1 
[49] blob_1.2.1        tools_3.6.3       reprex_0.3.0      viridisLite_0.3.0
[53] httpuv_1.5.4      scales_1.1.1      crayon_1.3.4      glue_1.4.1       
[57] rlang_0.4.7       rvest_0.3.5       promises_1.1.1    grid_3.6.3