Last updated: 2024-06-06
Checks: 7 0
Knit directory:
bgc_argo_r_argodata/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211008)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version af4f63d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .RData
Ignored: .Rproj.user/
Untracked files:
Untracked: analysis/draft.Rmd
Untracked: load_argo_core_output.txt
Untracked: poster_profile_argo.png
Unstaged changes:
Deleted: analysis/MHWs_categorisation.Rmd
Modified: analysis/_site.yml
Modified: analysis/child/cluster_analysis_base.Rmd
Modified: analysis/coverage_maps_North_Atlantic.Rmd
Modified: analysis/load_broullon_DIC_TA_clim.Rmd
Modified: analysis/temp_core_align_climatology.Rmd
Modified: code/Workflowr_project_managment.R
Modified: code/start_background_job.R
Modified: code/start_background_job_load.R
Modified: code/start_background_job_partial.R
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/CESM_comparison.Rmd
) and
HTML (docs/CESM_comparison.html
) files. If you’ve
configured a remote Git repository (see ?wflow_git_remote
),
click on the hyperlinks in the table below to view the files as they
were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | af4f63d | mlarriere | 2024-06-06 | cleaning code |
html | dab83a4 | mlarriere | 2024-05-24 | Build site. |
Rmd | 61a27b0 | mlarriere | 2024-05-24 | Gaussian distribution |
html | b21e0e6 | mlarriere | 2024-05-20 | Build site. |
Rmd | d483896 | mlarriere | 2024-05-20 | final graph CESM- Argo comparison |
html | 7f729d4 | mlarriere | 2024-05-16 | Build site. |
Rmd | 1ad5dd9 | mlarriere | 2024-05-16 | monthly vertical anomalies and specific floats |
html | 0a71d56 | mlarriere | 2024-05-15 | Build site. |
Rmd | bbf732b | mlarriere | 2024-05-15 | CESM climatology |
html | 96d4b76 | mlarriere | 2024-05-14 | Build site. |
Rmd | 91e6028 | mlarriere | 2024-05-13 | adding subsection CESM comparison |
html | af6594f | mlarriere | 2024-05-13 | Build site. |
Rmd | 30f9250 | mlarriere | 2024-05-13 | Adding CESM subsection |
Heatwaves_RunA.nc - CESM outputs (run A) - variable of interest: thetao (seawater potential temperature [°C])
CESM_temp2023.rds - seawater potential temperature in 2023, output of the CESM CESM_temp_anomaly2023_clim2004-2019.rds - climatology of seawater potential temperature in the period 2004-2019, output of the CESM
#Area of interest: North Atlantic north west - lat:(60,30), lon:(-70,-30), North Atlantic east - lat:(0,40), lon:(-30,0)
chosen_extent <- list(
lat_min = 0, #30
lat_max = 40, #60
lon_min = -30, #-70
lon_max = 0 #-30
)
name_extent<- "East" #Northwest
#base map
world_coordinates <- map_data("world")
#year of interest
target_year<-2023
path_emlr_utilities <- "/nfs/kryo/work/jenmueller/emlr_cant/utilities/files/"
path_basin_mask <- "/nfs/kryo/work/datasets/gridded/ocean/interior/reccap2/supplementary/"
path_argo_core <- '/nfs/kryo/work/datasets/ungridded/3d/ocean/floats/core_argo_r_argodata_2024-03-13'
path_argo_core_preprocessed <- paste0(path_argo_core, "/preprocessed_core_data")
path_CESM<-"/nfs/kryo/work/loher/GlobalMarineHeatwaves/ETHZ_BEC/"
# Read NetCDF file containing CESM outputs (35 variables - 4dim: time, lat, lon, depth)
CESM_temp <- tidync(paste0(path_CESM, "Heatwaves_RunA.nc"))
CESM_temp <- CESM_temp %>%
hyper_tibble(select_var = "thetao", # thetao: seawater potential temperature [°C]
force = TRUE)
CESM_temp <- CESM_temp %>%
filter(thetao < 1e36) %>% # thetao ~ e36 because??
rename(temp = thetao)
gc()
#Transformations
#--time
CESM_temp <- CESM_temp %>%
mutate(time = ymd_hms("1980-01-01 00:00:00") + days(time))
gc()
CESM_temp$year <- year(CESM_temp$time)
CESM_temp$month <- month(CESM_temp$time)
gc()
#--longitude
CESM_temp <- CESM_temp %>%
mutate(lon = ifelse(lon > 180, lon - 360, lon))
#Select 2023
CESM_temp_2023 <- CESM_temp %>%
filter(year==target_year)
gc()
#Write CESM outputs for 2023 to file
write_rds(CESM_temp_2023,
file = paste0(path_argo_core_preprocessed,"/", "CESM_temp", target_year,".rds"))
CESM_temp_2023<- read_rds(file = paste0(path_argo_core_preprocessed,"/", "CESM_temp", target_year,".rds"))
# Visualization
CESM_temp_2023 %>%
filter(depth == 5) %>%
ggplot(aes(lon, lat, fill = temp)) +
geom_raster() +
geom_map(data = world_coordinates, map = world_coordinates, aes(long, lat, map_id = region), fill = "grey") +
scale_fill_viridis_c(option = "plasma") +
labs(title = "Monthly visualisation of CESM seawater potential temperature",
subtitle = paste0("depth=5m, year: ", target_year))+
coord_quickmap(expand = 0)+
theme(legend.key.width = unit(0.5, "cm"),
legend.key.height = unit(2, "cm"))+
facet_wrap(~month, nrow = 3)
# CESM_temp_2023 %>%
# filter(lat == -50.5) %>%
# ggplot(aes(lon, depth, z = temp)) +
# geom_contour_filled(breaks = seq(-10,40,2)) +
# scale_y_reverse(limits = c(3000, 0)) +
# coord_cartesian(expand = 0) +
# labs(title = "Visualisation of CESM seawater potential temperature",
# subtitle = paste0( "transect section -- lat: 30.5, Period: 2023"))+
# scale_fill_viridis_d(option = "magma")+
# facet_wrap(~month, nrow = 3)
We calculate the temperature climatology of CESM over the period 2004-2019 (to match with Argo climatology)
#Climatology of CESM temp output over the period 2004-2019 (to match with argo climatology)
CESM_temp_2004_2019<- CESM_temp %>%
filter(year>=2004, year<=2019)
CESM_temp_2004_2019<-CESM_temp_2004_2019 %>%
fgroup_by(lat, lon, depth, month) %>%
fsummarize(mean_temp=mean(temp, na.rm=TRUE))
# Visualization
CESM_temp_2004_2019 %>%
filter(depth == 5) %>%
ggplot(aes(lon, lat, fill = mean_temp)) +
geom_raster() +
scale_fill_viridis_c(option = "magma") +
labs(title = "Mean CESM seawater potential temperature",
subtitle = paste0("depth=5m, Period: 2004-2019"))+
coord_quickmap(expand = 0)+
facet_wrap(~month, nrow = 3)
# Temperature anomaly
CESM_anomaly_2023 <- inner_join(CESM_temp_2023, CESM_temp_2004_2019, by = c("month", "lat", "lon", "depth"))
# Calculate temperature anomaly
CESM_anomaly_2023 <- CESM_anomaly_2023 %>%
fmutate(temp_anomaly = temp - mean_temp)
#Write
write_rds(CESM_anomaly_2023,
file = paste0(path_argo_core_preprocessed,"/", "CESM_temp_anomaly", target_year,"_clim2004-2019.rds"))
rm(CESM_anomaly_2023, CESM_temp_2004_2019)
gc()
# Read data
CESM_anomaly_2023<-read_rds(file =paste0(path_argo_core_preprocessed,"/", "CESM_temp_anomaly", target_year,"_clim2004-2019.rds"))
# Visualization
CESM_anomaly_2023 %>%
filter(depth == 5) %>%
ggplot(aes(lon, lat, fill = temp_anomaly)) +
geom_raster() +
geom_map(data = world_coordinates, map = world_coordinates, aes(long, lat, map_id = region), fill = "grey") +
scale_fill_gradient2(name='T°C anomaly', low = "darkblue", high = "darkred")+
labs(title = "CESM temperature anomalies - 2023",
subtitle = paste0("depth=5m, clim: 2004-2019, extent: ", name_extent))+
coord_quickmap(expand = 0)+
theme(legend.key.width = unit(0.5, "cm"),
legend.key.height = unit(2, "cm"))+
facet_wrap(~month, nrow = 3)
#Area of interest: eastern north atlantic
CESM_natlantic_2023_subset <- CESM_anomaly_2023 %>%
filter(lat > chosen_extent$lat_min, lat < chosen_extent$lat_max,
lon > chosen_extent$lon_min, lon < chosen_extent$lon_max)
CESM_natlantic_2023_subset$month<- factor(format(CESM_natlantic_2023_subset$time, "%m"))
# Visualization of the sea surface temperature anomalies in the chosen region
ggplot() +
geom_raster(data= CESM_natlantic_2023_subset %>% filter(depth == 5), aes(lon, lat, fill = temp_anomaly)) +
geom_map(data = world_coordinates, map = world_coordinates, aes(long, lat, map_id = region), fill = "grey") +
lims(x = c(chosen_extent$lon_min, chosen_extent$lon_max), y=c(chosen_extent$lat_min, chosen_extent$lat_max)) +
scale_fill_gradient2(name='T°C anomaly', low = "darkblue", high = "darkred")+
labs(title = paste0("CESM temperature anomaly in ", target_year),
subtitle = paste0("depth=5m, climatological period: 2004-2019"))+
coord_quickmap(expand = 0)+
facet_wrap(~month, nrow = 3)+
theme(legend.key.width = unit(0.5, "cm"),
legend.key.height = unit(2, "cm"))
#dataset with the CESM output with Argo extent, i.e. where Argo are present temporally and spatially
CESM_argo_extent <- CESM_natlantic_2023_subset %>%
right_join(core_anomaly_2023_natlantic_subset %>% distinct(lat, lon, month, platform_number, cycle_number),
by = c("lat", "lon", "month"))
# Float coverage -- subset north atlantic over 2023
platform_counts <- aggregate(platform_number ~ month, data = CESM_argo_extent, FUN = function(x) length(unique(x)))
cycle_count_per_platform_month <- CESM_argo_extent %>%
group_by(month, platform_number) %>%
summarise(cycle_count = n_distinct(cycle_number))
#CESM surface (5m) temperatue anomalies
CESM_SSTanomaly_mean2023<- CESM_natlantic_2023_subset %>%
filter(depth == 5) %>%
group_by(lat, lon) %>%
summarise(yearly_SSTanomaly= mean(temp_anomaly, na.rm = TRUE))
#Number of platform present in each lat/lon location per month
float_monthly_count <- CESM_argo_extent %>%
group_by(lon, lat) %>%
summarise(months_present = n_distinct(month)) %>%
ungroup()
#Plots
SST_2023_plot <- ggplot()+
geom_raster(data=CESM_SSTanomaly_mean2023, aes(lon, lat, fill = yearly_SSTanomaly)) +
geom_map(data = world_coordinates, map = world_coordinates, aes(long, lat, map_id = region), fill = "grey") +
lims(x = c(chosen_extent$lon_min, chosen_extent$lon_max), y=c(chosen_extent$lat_min, chosen_extent$lat_max)) +
scale_fill_viridis_c(option = "magma") +
labs(title = "SST anomaly, annual average 2023",
subtitle = "Resolution: 1°x1°",
fill = "SST \nanomalies [°C]")+
coord_quickmap(expand = 0)+
theme(plot.title = element_text(size = 18),
plot.subtitle = element_text(size = 15),
legend.text = element_text(size = 13),
legend.title = element_text(size = 15),
legend.key.width = unit(0.3, "cm"),
legend.key.height = unit(2, "cm")
)
float_distrib <- ggplot() +
geom_point(data = float_monthly_count, aes(x = lon, y = lat, color = months_present)) +
geom_map(data = world_coordinates, map = world_coordinates, aes(long, lat, map_id = region), fill = "grey") +
lims(x = c(chosen_extent$lon_min, chosen_extent$lon_max), y=c(chosen_extent$lat_min, chosen_extent$lat_max)) +
labs(title = "Platform Locations",
subtitle = "Resolution: 1°x1°",
color = "Months \nwith float") +
scale_color_scico(palette = "oslo", breaks = seq(1, 12, by = 1), limits = c(1, 12), direction=-1) +
coord_quickmap(expand = 0) +
theme(plot.title = element_text(size = 18),
plot.subtitle = element_text(size = 15),
legend.text = element_text(size = 13),
legend.title = element_text(size = 15),
legend.key.width = unit(0.3, "cm"),
legend.key.height = unit(2, "cm")
)
combined_plot <- SST_2023_plot + float_distrib + plot_layout(ncol = 2)
combined_plot
#CESM output
unique_platform_CEM<-CESM_argo_extent %>%
filter(platform_number==1902323)
#Argo
unique_platform_ARGO<-core_anomaly_2023_natlantic_subset %>%
filter(platform_number==1902323)
#Plots
CEM_singlfloat<- ggplot() +
geom_path(data=unique_platform_CEM, aes(x = temp_anomaly , y = depth, color = factor(month), group = cycle_number)) +
geom_vline(xintercept = 0) +
scale_y_reverse() +
coord_cartesian(xlim = c(-6, 6), ylim = c(200, 0)) +
scale_color_manual(values = colorRampPalette(c("#2796A5", "#F3712B", "#880D1E"))(12)) +
labs(subtitle = "CESM ocean model",
x = 'Temperature (°C)', y = 'Depth (m)', color = 'Months') +
theme(plot.title = element_text(size = 18),
plot.subtitle = element_text(size = 16),
axis.title.x = element_text(size = 15),
axis.title.y = element_text(size = 15),
axis.text.x = element_text(size = 15),
axis.text.y = element_text(size = 15),
legend.text = element_text(size = 14),
legend.title = element_text(size = 15, face = "bold"),
legend.key.height = unit(1, "cm")
# legend.background = element_rect(fill = "transparent", color='transparent'),
# legend.position=c(.82,.31),
)
ARGO_singlfloat<- ggplot() +
geom_path(data=unique_platform_ARGO, aes(x = anomaly , y = depth, color = factor(month), group = cycle_number)) +
geom_vline(xintercept = 0) +
scale_y_reverse() +
coord_cartesian(xlim = c(-6, 6), ylim = c(200, 0)) +
scale_color_manual(values = colorRampPalette(c("#2796A5", "#F3712B", "#880D1E"))(12)) +
labs(subtitle = "Argo floats",
x = 'Temperature (°C)', y = 'Depth (m)', color = 'Months') +
theme(plot.title = element_text(size = 18),
plot.subtitle = element_text(size = 16),
legend.text = element_text(size = 14),
axis.title.x = element_text(size = 15),
axis.title.y = element_text(size = 15),
axis.text.x = element_text(size = 15),
axis.text.y = element_text(size = 15),
legend.position = "none"
# legend.text = element_text(size = 12),
# legend.title = element_text(size = 14, face = "bold"),
# legend.background = element_rect(fill = "transparent", color='transparent'),
# legend.position=c(.91,.28),
)
combined_plot <- ARGO_singlfloat + CEM_singlfloat +
plot_layout(ncol = 2) +
plot_annotation(
title = 'SST anomalies propagation of a single float',
subtitle = 'Location: Canaries Islands (Eddies corridor)',
theme = theme(
plot.title = element_text(size = 25),
plot.subtitle = element_text(size = 20)
)
)
combined_plot
#Calculating monthly mean anomaly + std for each lat/lon pair of the area
anomaly_lat_lon <- CESM_argo_extent %>%
group_by(lat, lon, depth, month, platform_number, cycle_number) %>%
summarise(
temp_count = n(),
temp_anomaly_mean = mean(temp_anomaly, na.rm = TRUE)
)
# Longitude - gradient north-south
longitude<- ggplot(anomaly_lat_lon, aes(x = temp_anomaly_mean, y = depth, group = interaction(platform_number, cycle_number), color = as.numeric(lon))) +
geom_path() +
geom_vline(xintercept = 0) +
scale_y_reverse(limits = c(200, 0)) +
coord_cartesian(xlim = c(-6, 6)) +
facet_wrap(~ month, ncol = 3) +
labs(title = "Anomaly Profiles for all longitudes",
subtitle = "All floats and cycles included",
x = "Temperature (°C)", y = "Depth (m)", color = "Longitude") +
scale_color_viridis_c()
# Latitude - gradient west-east
latitude<- ggplot(anomaly_lat_lon, aes(x = temp_anomaly_mean, y = depth, group = interaction(platform_number, cycle_number), color = as.numeric(lat))) +
geom_path() +
geom_vline(xintercept = 0) +
scale_y_reverse(limits = c(200, 0)) +
coord_cartesian(xlim = c(-6, 6)) +
facet_wrap(~ month, ncol = 3) +
labs(title = "Anomaly Profile for all latitudes",
subtitle = "All floats and cycles included",
x = "Temperature (°C)", y = "Depth (m)", color = "Latitude") +
scale_color_viridis_c()
combined_plot <- latitude + longitude + plot_layout(ncol = 2)
combined_plot
# Calculating monthly mean anomaly over the east area by averaging the anomaly of each float present
#---Argo extent of the CESM
CESM_argo_extent_anomaly<-CESM_argo_extent %>%
group_by(depth, month) %>%
summarise(temp_count = n(),
temp_anomaly_mean = mean(temp_anomaly , na.rm = TRUE),
temp_anomaly_sd = sd(temp_anomaly , na.rm = TRUE))
#---full extent of the CESM
CESM_full_extent_anomaly <- CESM_natlantic_2023_subset %>%
group_by(depth, month) %>%
summarise(temp_count = n(),
temp_anomaly_mean = mean(temp_anomaly , na.rm = TRUE),
temp_anomaly_sd = sd(temp_anomaly , na.rm = TRUE))
#---argo observations
argo_anomaly <- core_anomaly_2023_natlantic_subset %>%
group_by(depth, month) %>%
summarise(temp_count = n(),
temp_anomaly_mean = mean(anomaly , na.rm = TRUE),
temp_anomaly_sd = sd(anomaly , na.rm = TRUE))
# difference between argo vs full extent of the CESM
difference_extent<- merge(CESM_full_extent_anomaly, CESM_argo_extent_anomaly,
by = c("depth","month"), suffixes = c("_float", "_entire_extent")) %>%
as_tibble()
difference_extent$diff_temp_anomaly_mean <- difference_extent$temp_anomaly_mean_entire_extent - difference_extent$temp_anomaly_mean_float
#argo annual average (mean + std dev)
yearly_mean_anomaly_argo <- mean(core_anomaly_2023_natlantic_subset$anomaly, na.rm = TRUE)
yearly_std_anomaly_argo <- sd(core_anomaly_2023_natlantic_subset$anomaly, na.rm = TRUE)
argo_hist <-ggplot(core_anomaly_2023_natlantic_subset, aes(x=anomaly)) +
geom_histogram(aes(y=..density.., fill="Values"), bins=30, alpha=0.5) +
stat_function(fun=dnorm, args=list(mean=yearly_mean_anomaly_argo,
sd=yearly_std_anomaly_argo), aes(color="Gaussian"), size=1) +
scale_fill_manual(values = "blue", name = 'Legend') +
scale_color_manual(values = "red", name = 'Legend') +
theme(plot.subtitle = element_text(size = 15)
# legend.position = "none"
)+
labs(subtitle="Argo floats",
x="Temperature Anomaly",
y="Density")
#CESM - argo extent
yearly_mean_anomaly_cesm_argo_extent <- mean(CESM_argo_extent$temp_anomaly, na.rm = TRUE)
yearly_sd_anomaly_cesm_argo_extent <- sd(CESM_argo_extent$temp_anomaly, na.rm = TRUE)
cesm_hist<- ggplot(CESM_argo_extent, aes(x=temp_anomaly)) +
geom_histogram(aes(y=..density..), bins=30, fill="blue", alpha=0.5) +
stat_function(fun=dnorm, args=list(mean=yearly_mean_anomaly_cesm_argo_extent,
sd=yearly_sd_anomaly_cesm_argo_extent), aes(color="Gaussian"), size=1) +
scale_fill_manual(values = "blue", name = 'Legend') +
scale_color_manual(values = "red", name = 'Legend') +
labs(subtitle='CESM - Argo extent',
x="Temperature Anomaly",
y="Density") +
theme(plot.subtitle = element_text(size = 15),
legend.position = "none"
)
#CESM - full
yearly_mean_anomaly_cesm_full <- mean(CESM_natlantic_2023_subset$temp_anomaly, na.rm = TRUE)
yearly_std_anomaly_cesm_full <- sd(CESM_natlantic_2023_subset$temp_anomaly, na.rm = TRUE)
cesm_hist_full<- ggplot(CESM_natlantic_2023_subset, aes(x=temp_anomaly)) +
geom_histogram(aes(y=..density..), bins=30, fill="blue", alpha=0.5) +
stat_function(fun=dnorm, args=list(mean=yearly_mean_anomaly_cesm_full,
sd=yearly_std_anomaly_cesm_full), aes(color="Gaussian"), size=1) +
scale_fill_manual(values = "blue", name = 'Legend') +
scale_color_manual(values = "red", name = 'Legend') +
theme(plot.subtitle = element_text(size = 15),
legend.text = element_text(size = 14),
legend.title = element_text(size = 15))+
labs(subtitle='CESM - full extent',
x="Temperature Anomaly",
y="Density")
combined_plot<-argo_hist+cesm_hist+ cesm_hist_full+
plot_layout(ncol = 3, guides = 'collect') +
plot_annotation(
title = 'Temperature Anomaly Distribution with Gaussian Curve',
theme = theme(
plot.title = element_text(size = 25))
)
combined_plot
# Defining period of 2months and calculating monthly mean anomaly and sdt dev over the area of interest
#---Argo extent of the CESM
CESM_2month_avg_argo_extent<-CESM_argo_extent %>%
mutate(period=(as.numeric(month)+1)%/%2)
CESM_2month_avg_argo_extent<-CESM_2month_avg_argo_extent %>%
group_by(depth, period) %>%
summarise(temp_count = n(),
temp_anomaly_mean = mean(temp_anomaly , na.rm = TRUE),
temp_anomaly_sd = sd(temp_anomaly , na.rm = TRUE))
#---argo observations
argo_2month_avg <- core_anomaly_2023_natlantic_subset %>%
mutate(period=(as.numeric(month)+1)%/%2)
argo_2month_avg<-argo_2month_avg %>%
group_by(depth, period) %>%
summarise(temp_count = n(),
temp_anomaly_mean = mean(anomaly , na.rm = TRUE),
temp_anomaly_sd = sd(anomaly , na.rm = TRUE))
#---full extent of the CESM
CESM_2month_avg_full_extent <- CESM_natlantic_2023_subset %>%
mutate(period=(as.numeric(month)+1)%/%2)
CESM_2month_avg_full_extent<-CESM_2month_avg_full_extent %>%
group_by(depth, period) %>%
summarise(temp_count = n(),
temp_anomaly_mean = mean(temp_anomaly , na.rm = TRUE),
temp_anomaly_sd = sd(temp_anomaly , na.rm = TRUE))
#difference between the CESM extents
diff_2month_avg_CESM<-difference_extent %>%
mutate(period=(as.numeric(month)+1)%/%2)%>%
group_by(depth, period) %>%
summarise(temp_count = n(),
temp_anomaly_mean = mean(diff_temp_anomaly_mean , na.rm = TRUE),
temp_anomaly_sd = sd(diff_temp_anomaly_mean , na.rm = TRUE))
#PLot
ggplot() +
#---ribbons
geom_ribbon(data=CESM_2month_avg_argo_extent, aes(xmax = temp_anomaly_mean + temp_anomaly_sd,
xmin = temp_anomaly_mean - temp_anomaly_sd,
y = depth), fill = "#E9BA20", alpha = 0.2) +
geom_ribbon(data=argo_2month_avg, aes(xmax = temp_anomaly_mean + temp_anomaly_sd,
xmin = temp_anomaly_mean - temp_anomaly_sd,
y = depth), fill = "#7FC6A4", alpha = 0.2) +
#---paths
geom_path(data=CESM_2month_avg_full_extent , aes(x = temp_anomaly_mean, y = depth, color = "3"), linetype="dashed")+ #diff_2month_avg_CESM
geom_path(data=argo_2month_avg, aes(x = temp_anomaly_mean, y = depth, color = "1"), linetype="solid")+
geom_path(data=CESM_2month_avg_argo_extent, aes(x = temp_anomaly_mean, y = depth, color = "2"), linetype="solid") +
#---settings (legend, ticks...)
geom_vline(xintercept = 0) +
scale_y_reverse() +
coord_cartesian(xlim = c(-4, 4), ylim = c(200, 0)) +
labs(title = paste('Propagation of SST anomalies in the water column'),
subtitle = paste0("Extent: ", name_extent, " North Atlantic bassin in 2023"),
x = 'Temperature (°C)', y = 'Depth (m)') +
theme(plot.title = element_text(size = 16),
plot.subtitle = element_text(size = 13),
axis.title.x = element_text(size = 15),
axis.title.y = element_text(size = 15),
axis.text.x = element_text(size = 15),
axis.text.y = element_text(size = 15),
strip.text = element_text(size = 15),
legend.position = "bottom",
legend.title = element_blank(),
legend.key.height = unit(5, "lines"),
legend.text = element_text(size = 13)) +
scale_color_manual(values = c("1" = "#4CA97C",
"2" = "#F3712B", #822E81
"3" = "#880D1E"), #black
labels = c( "ARGO", "CESM (ARGO extent)","CESM (full extent)")) + #CESM extents difference (full -ARGO)
facet_wrap(~period, labeller = labeller(period = c("1"="Jan-Feb",
"2"="Mar-Apr",
"3"="May-Jun",
"4"="Jul-Aug",
"5"="Sep-Oct",
"6"="Nov-Dec")), nrow=2)+
guides(color = guide_legend(nrow = 1, override.aes = list(linetype = c("solid", "solid", "dashed"))))
sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.5
Matrix products: default
BLAS: /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] scico_1.3.1 patchwork_1.1.2 collapse_2.0.13 tidync_0.3.0
[5] marelac_2.1.10 shape_1.4.6 RColorBrewer_1.1-3 stars_0.6-0
[9] sf_1.0-9 abind_1.4-5 paletteer_1.6.0 cluster_2.1.6
[13] gridExtra_2.3 viridis_0.6.2 viridisLite_0.4.1 lubridate_1.9.0
[17] timechange_0.1.1 forcats_0.5.2 stringr_1.5.0 dplyr_1.1.3
[21] purrr_1.0.2 readr_2.1.3 tidyr_1.3.0 tibble_3.2.1
[25] ggplot2_3.4.4 tidyverse_1.3.2 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] googledrive_2.0.0 colorspace_2.0-3 ellipsis_0.3.2
[4] class_7.3-20 rprojroot_2.0.3 fs_1.5.2
[7] rstudioapi_0.15.0 proxy_0.4-27 farver_2.1.1
[10] fansi_1.0.3 xml2_1.3.3 ncdf4_1.22
[13] cachem_1.0.6 knitr_1.41 jsonlite_1.8.3
[16] gsw_1.1-1 broom_1.0.5 dbplyr_2.2.1
[19] compiler_4.2.2 httr_1.4.4 backports_1.4.1
[22] assertthat_0.2.1 fastmap_1.1.0 gargle_1.2.1
[25] cli_3.6.1 later_1.3.0 htmltools_0.5.8.1
[28] tools_4.2.2 gtable_0.3.1 glue_1.6.2
[31] maps_3.4.1 Rcpp_1.0.10 cellranger_1.1.0
[34] jquerylib_0.1.4 RNetCDF_2.6-1 vctrs_0.6.4
[37] lwgeom_0.2-10 xfun_0.35 ps_1.7.2
[40] rvest_1.0.3 lifecycle_1.0.3 ncmeta_0.3.5
[43] googlesheets4_1.0.1 oce_1.7-10 getPass_0.2-2
[46] scales_1.2.1 hms_1.1.2 promises_1.2.0.1
[49] parallel_4.2.2 rematch2_2.1.2 yaml_2.3.6
[52] sass_0.4.4 stringi_1.7.8 highr_0.9
[55] e1071_1.7-12 rlang_1.1.1 pkgconfig_2.0.3
[58] evaluate_0.18 SolveSAPHE_2.1.0 labeling_0.4.2
[61] processx_3.8.0 tidyselect_1.2.0 seacarb_3.3.1
[64] magrittr_2.0.3 R6_2.5.1 generics_0.1.3
[67] DBI_1.2.2 pillar_1.9.0 haven_2.5.1
[70] whisker_0.4 withr_2.5.0 units_0.8-0
[73] modelr_0.1.10 crayon_1.5.2 KernSmooth_2.23-20
[76] utf8_1.2.2 tzdb_0.3.0 rmarkdown_2.18
[79] grid_4.2.2 readxl_1.4.1 callr_3.7.3
[82] git2r_0.30.1 reprex_2.0.2 digest_0.6.30
[85] classInt_0.4-8 httpuv_1.6.6 munsell_0.5.0
[88] bslib_0.4.1