Last updated: 2021-11-05

Checks: 7 0

Knit directory: bgc_argo_r_argodata/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211008) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 395f3ec. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    output/

Untracked files:
    Untracked:  code/creating_dataframe.R
    Untracked:  code/creating_map.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/coverage_timeseries.Rmd) and HTML (docs/coverage_timeseries.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 395f3ec pasqualina-vonlanthendinenna 2021-11-05 added total profile count
html a103f60 pasqualina-vonlanthendinenna 2021-11-05 Build site.
Rmd 31576f9 pasqualina-vonlanthendinenna 2021-11-05 changed QC flag maps
html fbd5bac pasqualina-vonlanthendinenna 2021-11-04 Build site.
html 68977a1 pasqualina-vonlanthendinenna 2021-10-26 Build site.
Rmd 062b272 pasqualina-vonlanthendinenna 2021-10-26 added ggsave
html b57291a pasqualina-vonlanthendinenna 2021-10-26 Build site.
html bba33bf pasqualina-vonlanthendinenna 2021-10-26 Build site.
Rmd 4bc1859 pasqualina-vonlanthendinenna 2021-10-26 run with full data
html cabaa10 jens-daniel-mueller 2021-10-22 Build site.
Rmd e2a1f9e jens-daniel-mueller 2021-10-22 code revision
html f7ef44f jens-daniel-mueller 2021-10-22 Build site.
Rmd ee2b3f3 jens-daniel-mueller 2021-10-22 code revision
html aa7280d jens-daniel-mueller 2021-10-22 Build site.
Rmd ca7ba6b jens-daniel-mueller 2021-10-22 adding revised code
html d84c904 pasqualina-vonlanthendinenna 2021-10-22 Build site.
html 8ecdb43 pasqualina-vonlanthendinenna 2021-10-22 Build site.
Rmd 2b22099 pasqualina-vonlanthendinenna 2021-10-22 edited text
html c81f21c pasqualina-vonlanthendinenna 2021-10-21 Build site.
html b55928d pasqualina-vonlanthendinenna 2021-10-21 Build site.
Rmd 58c24b6 pasqualina-vonlanthendinenna 2021-10-21 timeseries attempt 2, added description
html 62d8519 pasqualina-vonlanthendinenna 2021-10-20 Build site.
html b8feac2 pasqualina-vonlanthendinenna 2021-10-20 Build site.
Rmd b7b1806 pasqualina-vonlanthendinenna 2021-10-20 adding revised code
html 701fffa pasqualina-vonlanthendinenna 2021-10-20 Build site.
Rmd b88a839 pasqualina-vonlanthendinenna 2021-10-20 adding revised code

Task

Count the number of bgc-argo profiles, and plot their evolution over time.

Load data

Read the files created in loading_data.html:

path_argo_preprocessed <- paste0(path_argo, "/preprocessed_bgc_data")

bgc_metadata <-
  read_rds(file = paste0(path_argo_preprocessed, "/bgc_metadata.rds"))
basinmask <-
  read_csv(paste(path_emlr_utilities,
                 "basin_mask_WOA18.csv",
                 sep = ""),
           col_types = cols("MLR_basins" = col_character()))

basinmask <- basinmask %>% 
  filter(MLR_basins == unique(basinmask$MLR_basins)[1]) %>% 
  select(lon, lat, basin_AIP)

map <-
  read_rds(paste(path_emlr_utilities,
                 "map_landmask_WOA18.rds",
                 sep = ""))

QC flags

QC flags for values (‘flag’ column) are between 1 and 8, where:

  • 1 is ‘good’ data
  • 2 is ‘probably good’ data,
  • 3 is ‘probably bad’ data,
  • 4 is ‘bad’ data,
  • 5 is ‘value changed’,
  • 8 is ‘estimated value’,
  • 9 is ‘missing value’.
  • (6 and 7 are not used)

Profile QC flags (‘profile_flag’ column) are QC codes attributed to the entire profile, and indicate the number of depth levels (in %) where the value is considered to be good data (QC flags of 1, 2, 5, and 8):

  • ‘A’ means 100% of profile levels contain good data,
  • ‘B’ means 75-<100% of profile levels contain good data,
  • ‘C’ means 50-75% of profile levels contain good data,
  • ‘D’ means 25-50% of profile levels contain good data,
  • ‘E’ means >0-50% of profile levels contain good data,
  • ‘F’ means 0% of profile levels contain good data.

Number of profiles

Per parameter

# count the number of profiles per parameter 

bgc_profile_counts <- bgc_metadata %>% 
  select(platform_number, cycle_number, date,
         profile_doxy_qc, profile_ph_in_situ_total_qc, profile_nitrate_qc) %>% 
  pivot_longer(cols = profile_doxy_qc:profile_nitrate_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date),
         month = month(date)) %>% 
  count(year, month, parameter, profile_flag) %>%   # count the number of occurrences of unique flags for each parameter, in each month of each year 
  filter(!is.na(profile_flag),
         profile_flag != "")

# the 'parameter' column contains character strings of either 'doxy_qc', 'ph_in_situ_total_qc', or 'nitrate_qc', with the corresponding profile QC flag in the 'profile_flag' column

# count the total number of profiles for each parameter and each flag:
bgc_profile_counts_total <- bgc_metadata %>% 
  select(platform_number, cycle_number, date,
         profile_doxy_qc, profile_ph_in_situ_total_qc, profile_nitrate_qc) %>% 
  pivot_longer(cols = profile_doxy_qc:profile_nitrate_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date),
         month = month(date)) %>% 
  count(parameter, profile_flag) %>%   # count the number of occurrences of flags for each parameter
  filter(!is.na(profile_flag),
         profile_flag != "")

Total number of profiles

# count the total number of profiles, regardless of QC flag 
total_data_count <- bgc_metadata %>% 
  select(platform_number, cycle_number, date,
         profile_doxy_qc, profile_ph_in_situ_total_qc, profile_nitrate_qc) %>% 
  pivot_longer(cols = profile_doxy_qc:profile_nitrate_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date),
         month = month(date)) %>% 
  count(parameter, profile_flag) %>%   # count the number of occurrences of flags for each parameter
  filter(!is.na(profile_flag),
         profile_flag != "") %>% 
  group_by(parameter) %>% 
  summarise(n = sum(n))

knitr::kable(total_data_count, caption = 'total number of profiles', format = 'markdown')
total number of profiles
parameter n
doxy_qc 124368
nitrate_qc 38861
ph_in_situ_total_qc 24424
# count the number of profiles which have QC flags of A, B, C, D, or E (profiles which contain data that can be used)
usable_data_count <- bgc_metadata %>% 
  select(platform_number, cycle_number, date,
         profile_doxy_qc, profile_ph_in_situ_total_qc, profile_nitrate_qc) %>% 
  pivot_longer(cols = profile_doxy_qc:profile_nitrate_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date),
         month = month(date)) %>% 
  count(parameter, profile_flag) %>%   # count the number of occurrences of flags for each parameter
  filter(!is.na(profile_flag),
         profile_flag != "",
         profile_flag != 'F') %>% 
  group_by(parameter) %>% 
  summarise(n = sum(n)) 

knitr::kable(usable_data_count, 
             caption = 'total number of profiles with QC flags A, B, C, D, E', 
             format = 'markdown')
total number of profiles with QC flags A, B, C, D, E
parameter n
doxy_qc 105365
nitrate_qc 34099
ph_in_situ_total_qc 11404
# count the number of profiles with QC flag A 
A_data_count <- bgc_metadata %>% 
  select(platform_number, cycle_number, date,
         profile_doxy_qc, profile_ph_in_situ_total_qc, profile_nitrate_qc) %>% 
  pivot_longer(cols = profile_doxy_qc:profile_nitrate_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date),
         month = month(date)) %>% 
  count(parameter, profile_flag) %>%   # count the number of occurrences of flags for each parameter
  filter(!is.na(profile_flag),
         profile_flag != "",
         profile_flag == 'A') %>% 
  group_by(parameter) %>% 
  summarise(n = sum(n)) 

knitr::kable(A_data_count, 
             caption = 'total number of profiles with QC flag A',
             format = 'markdown')
total number of profiles with QC flag A
parameter n
doxy_qc 79573
nitrate_qc 32165
ph_in_situ_total_qc 9633
# count the number of profiles with QC Flag F (not usable data)
F_data_count <- bgc_metadata %>% 
  select(platform_number, cycle_number, date,
         profile_doxy_qc, profile_ph_in_situ_total_qc, profile_nitrate_qc) %>% 
  pivot_longer(cols = profile_doxy_qc:profile_nitrate_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date),
         month = month(date)) %>% 
  count(parameter, profile_flag) %>%   # count the number of occurrences of flags for each parameter
  filter(!is.na(profile_flag),
         profile_flag != "",
         profile_flag == 'F') %>% 
  group_by(parameter) %>% 
  summarise(n = sum(n)) 

knitr::kable(F_data_count, 
             caption = 'total number of profiles with QC flag F',
             format = 'markdown')
total number of profiles with QC flag F
parameter n
doxy_qc 19003
nitrate_qc 4762
ph_in_situ_total_qc 13020

Plot the evolution of the number of profiles over time

bgc_profile_counts %>% 
  ggplot(aes(x = month, y = n, col = profile_flag)) +
  geom_line() +
  geom_point() +
  facet_grid(parameter ~ year,
             scales = "free_y") +
  scale_x_continuous(breaks = seq(1,12,4))+
  labs(x = 'month', y = 'number of profiles', title = 'number of profiles per year')
# draw separate plots for the separate parameters

bgc_profile_counts %>%
  group_split(parameter) %>%   # creates a separate flag count for each parameter 
  map(
    ~ ggplot(data = .x,       # repeats the ggplot for each separate parameter 
             aes(
               x = month, y = n, col = profile_flag
             )) +
      geom_line() +
      geom_point() +
      facet_grid(. ~ year,
                 scales = "free_y") +
      labs(title = paste("Parameter: ", unique(.x$parameter)), 
           x = 'month', y = 'number of profiles') +
      scale_x_continuous(breaks = seq(1,12,4))
  )
[[1]]

Version Author Date
bba33bf pasqualina-vonlanthendinenna 2021-10-26
aa7280d jens-daniel-mueller 2021-10-22
b8feac2 pasqualina-vonlanthendinenna 2021-10-20
701fffa pasqualina-vonlanthendinenna 2021-10-20

[[2]]

Version Author Date
bba33bf pasqualina-vonlanthendinenna 2021-10-26
aa7280d jens-daniel-mueller 2021-10-22
b8feac2 pasqualina-vonlanthendinenna 2021-10-20
701fffa pasqualina-vonlanthendinenna 2021-10-20

[[3]]

Version Author Date
bba33bf pasqualina-vonlanthendinenna 2021-10-26
aa7280d jens-daniel-mueller 2021-10-22
b8feac2 pasqualina-vonlanthendinenna 2021-10-20
701fffa pasqualina-vonlanthendinenna 2021-10-20
ggsave("output/figures/time_series_profiles_per_parameter.png",
width = 7,
height = 4)

All flag A

# count the number of profiles which have a QC flag of A for all three BGC parameters
# the if_all(starts_with()) notation allows to filter over a range of columns simultaneously
# this new approach is identical to your previous solution
# except that it filters also the pres, temp, and sal flags
# (plotted below)

bgc_profile_counts_total_A <- bgc_metadata %>% 
  select(platform_number, cycle_number, date,
         profile_doxy_qc, profile_ph_in_situ_total_qc, profile_nitrate_qc) %>% 
  filter(if_all(starts_with("profile_"), ~. == 'A')) %>% 
  pivot_longer(cols = profile_doxy_qc:profile_nitrate_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date),
         month = month(date)) %>% 
  distinct(platform_number, cycle_number, year, month) %>% 
  count(year, month)
bgc_profile_counts_total_A %>% 
  ggplot(aes(x = month, y = n)) +
  geom_line() +
  geom_point() +
  facet_grid(. ~ year,
             scales = "free_y") +
  scale_x_continuous(breaks = seq(1,12,4)) +
  labs(x = 'month', y = 'number of profiles',
       title = "Number of profiles",
       subtitle = "All three BGC + core parameters (QC flag A)")

Version Author Date
bba33bf pasqualina-vonlanthendinenna 2021-10-26
cabaa10 jens-daniel-mueller 2021-10-22
aa7280d jens-daniel-mueller 2021-10-22
b55928d pasqualina-vonlanthendinenna 2021-10-21
b8feac2 pasqualina-vonlanthendinenna 2021-10-20
701fffa pasqualina-vonlanthendinenna 2021-10-20
ggsave("output/figures/time_series_flag_A_profiles.png",
width = 7,
height = 4)

By region

# bgc_metadata <- bgc_metadata %>%
#   mutate(
#     lat = cut(lat, seq(-90, 90, 1), seq(-89.5, 89.5, 1)),
#     lat = as.numeric(as.character(lat)),
#     lon = cut(lon, seq(20, 380, 1), seq(20.5, 379.5, 1)),
#     lon = as.numeric(as.character(lon))
#   )

bgc_grid <- bgc_metadata %>%
  distinct(lat, lon)

bgc_grid <- inner_join(
  basinmask, bgc_grid
)
Joining, by = c("lon", "lat")
map +
  geom_raster(data = basinmask,
              aes(lon, lat, fill = basin_AIP)) +
  geom_raster(data = bgc_grid,
              aes(lon, lat)) +
  scale_fill_brewer(palette = "Dark2")
Warning: Raster pixels are placed at uneven vertical intervals and will be
shifted. Consider using geom_tile() instead.

Version Author Date
bba33bf pasqualina-vonlanthendinenna 2021-10-26
aa7280d jens-daniel-mueller 2021-10-22
rm(bgc_grid)
bgc_profile_counts_total_A_region <-
  inner_join(bgc_metadata,
             basinmask) %>% 
  select(platform_number, cycle_number, date,
         profile_doxy_qc, profile_ph_in_situ_total_qc, profile_nitrate_qc,
         basin_AIP) %>% 
  filter(if_all(starts_with("profile_"), ~. == 'A')) %>% 
  pivot_longer(cols = profile_doxy_qc:profile_nitrate_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date),
         month = month(date)) %>% 
  distinct(platform_number, cycle_number, year, month, basin_AIP) %>% 
  count(year, month, basin_AIP)
Joining, by = c("lat", "lon")
bgc_profile_counts_total_A_region %>% 
  ggplot(aes(x = month, y = n, col = basin_AIP)) +
  geom_line() +
  geom_point() +
  facet_grid(. ~ year,
             scales = "free_y") +
  scale_x_continuous(breaks = seq(1,12,2)) +
  labs(x = 'month', y = 'number of profiles',
       title = "Number of profiles",
       subtitle = "All three BGC + core parameters (QC flag A)")

Version Author Date
bba33bf pasqualina-vonlanthendinenna 2021-10-26
cabaa10 jens-daniel-mueller 2021-10-22
aa7280d jens-daniel-mueller 2021-10-22
ggsave("output/figures/time_series_profiles_per_region.png",
       width = 7,
       height = 4)

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.2

Matrix products: default
BLAS:   /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] lubridate_1.7.9     argodata_0.0.0.9000 forcats_0.5.0      
 [4] stringr_1.4.0       dplyr_1.0.5         purrr_0.3.4        
 [7] readr_1.4.0         tidyr_1.1.3         tibble_3.1.3       
[10] ggplot2_3.3.5       tidyverse_1.3.0     workflowr_1.6.2    

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.7         assertthat_0.2.1   rprojroot_2.0.2    digest_0.6.27     
 [5] utf8_1.2.2         R6_2.5.1           cellranger_1.1.0   backports_1.1.10  
 [9] reprex_0.3.0       evaluate_0.14      highr_0.8          httr_1.4.2        
[13] pillar_1.6.2       rlang_0.4.11       readxl_1.3.1       rstudioapi_0.13   
[17] whisker_0.4        jquerylib_0.1.4    blob_1.2.1         rmarkdown_2.10    
[21] labeling_0.4.2     munsell_0.5.0      broom_0.7.9        compiler_4.0.3    
[25] httpuv_1.6.2       modelr_0.1.8       xfun_0.25          pkgconfig_2.0.3   
[29] htmltools_0.5.1.1  tidyselect_1.1.0   fansi_0.5.0        crayon_1.4.1      
[33] dbplyr_1.4.4       withr_2.4.2        later_1.3.0        grid_4.0.3        
[37] jsonlite_1.7.2     gtable_0.3.0       lifecycle_1.0.0    DBI_1.1.1         
[41] git2r_0.27.1       magrittr_2.0.1     scales_1.1.1       cli_3.0.1         
[45] stringi_1.5.3      farver_2.1.0       fs_1.5.0           promises_1.2.0.1  
[49] xml2_1.3.2         bslib_0.2.5.1      ellipsis_0.3.2     generics_0.1.0    
[53] vctrs_0.3.8        RColorBrewer_1.1-2 tools_4.0.3        glue_1.4.2        
[57] RNetCDF_2.4-2      hms_0.5.3          yaml_2.2.1         colorspace_2.0-2  
[61] rvest_0.3.6        knitr_1.33         haven_2.3.1        sass_0.4.0