Last updated: 2021-10-26

Checks: 7 0

Knit directory: bgc_argo_r_argodata/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211008) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 4bc1859. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    output/figures/

Untracked files:
    Untracked:  code/creating_dataframe.R
    Untracked:  code/creating_map.R

Unstaged changes:
    Modified:   code/Workflowr_project_managment.R
    Deleted:    output/README.md

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/coverage_maps.Rmd) and HTML (docs/coverage_maps.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 4bc1859 pasqualina-vonlanthendinenna 2021-10-26 run with full data
html f7ef44f jens-daniel-mueller 2021-10-22 Build site.
Rmd ee2b3f3 jens-daniel-mueller 2021-10-22 code revision
html aa7280d jens-daniel-mueller 2021-10-22 Build site.
Rmd ca7ba6b jens-daniel-mueller 2021-10-22 adding revised code
html d84c904 pasqualina-vonlanthendinenna 2021-10-22 Build site.
html 8ecdb43 pasqualina-vonlanthendinenna 2021-10-22 Build site.
html c81f21c pasqualina-vonlanthendinenna 2021-10-21 Build site.
html 62d8519 pasqualina-vonlanthendinenna 2021-10-20 Build site.
html b8feac2 pasqualina-vonlanthendinenna 2021-10-20 Build site.
html 701fffa pasqualina-vonlanthendinenna 2021-10-20 Build site.
Rmd b88a839 pasqualina-vonlanthendinenna 2021-10-20 adding revised code

Task

Map the location of oxygen, pH, and nitrate observations recorded by BGC-Argo floats

Load data

Read the metadata file created in loading_data.html:

path_argo_preprocessed <- paste0(path_argo, "/preprocessed_bgc_data")

bgc_metadata <-
  read_rds(file = paste0(path_argo_preprocessed, "/bgc_metadata.rds"))
basinmask <-
  read_csv(paste(path_emlr_utilities,
                 "basin_mask_WOA18.csv",
                 sep = ""),
           col_types = cols("MLR_basins" = col_character()))

basinmask <- basinmask %>% 
  filter(MLR_basins == unique(basinmask$MLR_basins)[1]) %>% 
  select(lon, lat, basin_AIP)

map <-
  read_rds(paste(path_emlr_utilities,
                 "map_landmask_WOA18.rds",
                 sep = ""))

Spatial data coverage

Count profiles

bgc_metadata <- inner_join(
  bgc_metadata,
  basinmask
)
Joining, by = c("lat", "lon")
bgc_profile_counts_year <- bgc_metadata %>% 
  select(platform_number, cycle_number, date, lon, lat,
         profile_doxy_qc, profile_ph_in_situ_total_qc, profile_nitrate_qc) %>% 
  pivot_longer(profile_doxy_qc:profile_nitrate_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date)) %>% 
  filter(!is.na(profile_flag),
         profile_flag != "") %>% 
  count(lat, lon, year, parameter) # count the number of profiles per year in each lon/lat grid for each parameter 


bgc_profile_counts_flag <- bgc_metadata %>% 
  select(platform_number, cycle_number, date, lon, lat,
         profile_doxy_qc, profile_ph_in_situ_total_qc, profile_nitrate_qc) %>% 
  pivot_longer(profile_doxy_qc:profile_nitrate_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date)) %>% 
  filter(!is.na(profile_flag),
         profile_flag != "") %>% 
  count(lat, lon, parameter, profile_flag)  # count the number of profiles for each profile QC flag in each lon/lat area and for each parameter 

by year

Map of profile locations for each parameter, per year

map +
  geom_tile(data = bgc_profile_counts_year,
              aes(lon, lat, fill = n)) +
  scale_fill_gradient(low = "blue", high = "red",
                      trans = "log10") +
  facet_grid(year ~ parameter)


# bgc_profile_counts_year %>%
#   ggplot() +
#   geom_sf(data = ne_countries(returnclass = "sf"),
#           fill = "gray90",
#           color = NA) +
#   geom_sf(data = ne_coastline(returnclass = "sf")) +
#   geom_tile(aes(x = lon, y = lat, fill = n)) +
#   scale_fill_gradient(low="blue", high="red",
#                       trans = "log10") +
#   theme_bw() +
#   facet_grid(year ~ parameter)
# map the location of profiles for each parameter in each year 
bgc_profile_counts_year %>%
  group_split(parameter) %>%
  map(
    ~ map +
      geom_tile(data = .x, aes(
        x = lon, y = lat, fill = n
      )) +
      scale_fill_gradient(low = "blue", high = "red",
                          trans = "log10") +
      labs(
        x = 'lon',
        y = 'lat',
        fill = 'number of\nprofiles',
        title = paste('Parameter:', unique(.x$parameter))
      ) +
      theme(
        legend.position = "bottom",
        axis.text = element_blank(),
        axis.ticks = element_blank()
      ) +
      facet_wrap(~year, ncol = 3)
  )
[[1]]
Warning: Raster pixels are placed at uneven vertical intervals and will be
shifted. Consider using geom_tile() instead.

Version Author Date
f7ef44f jens-daniel-mueller 2021-10-22
aa7280d jens-daniel-mueller 2021-10-22
701fffa pasqualina-vonlanthendinenna 2021-10-20

[[2]]
Warning: Raster pixels are placed at uneven vertical intervals and will be
shifted. Consider using geom_tile() instead.

Version Author Date
f7ef44f jens-daniel-mueller 2021-10-22
aa7280d jens-daniel-mueller 2021-10-22
701fffa pasqualina-vonlanthendinenna 2021-10-20

[[3]]
Warning: Raster pixels are placed at uneven vertical intervals and will be
shifted. Consider using geom_tile() instead.

Version Author Date
f7ef44f jens-daniel-mueller 2021-10-22
aa7280d jens-daniel-mueller 2021-10-22
701fffa pasqualina-vonlanthendinenna 2021-10-20
# ggsave("output/figures/maps_per_year.png",
#        width = 7,
#        height = 4)

# bgc_profile_counts_year %>%
#   group_split(parameter) %>% 
#   map( 
#   ~ ggplot() +
#   geom_sf(data = ne_countries(returnclass = "sf"),
#           fill = "gray90",
#           color = NA) +
#   geom_sf(data = ne_coastline(returnclass = "sf")) +
#   geom_tile(data = .x, aes(x = lon, y = lat, fill = n)) +
#   scale_fill_gradient(low="blue", high="red",
#                       trans = "log10") +
#   theme_bw() +
#   labs(x = 'lon', y = 'lat', fill = 'number of profiles', 
#        title = paste('Parameter:', unique(.x$parameter)))+
#   facet_grid(. ~ year)
#   )

by qc flag

Map the profile locations for each profile QC flag of each parameter

bgc_profile_counts_flag %>%
  ggplot() +
  geom_sf(data = ne_countries(returnclass = "sf"),
          fill = "gray90",
          color = NA) +
  geom_sf(data = ne_coastline(returnclass = "sf")) +
  geom_tile(aes(x = lon, y = lat, fill = n)) +
  scale_fill_gradient(low="blue", high="red",
                      trans = "log10") +
  theme_bw() +
  facet_grid(profile_flag ~ parameter)
# create a separate plot for each QC flag (instead of multiple panels in one plot) 

bgc_profile_counts_flag %>%
  group_split(profile_flag) %>%
  map(
    ~ map +
      geom_tile(data = .x, aes(
        x = lon, y = lat, fill = n
      )) +
      scale_fill_gradient(low = "blue", high = "red",
                          trans = "log10") +
      labs(
        x = 'lon',
        y = 'lat',
        fill = 'number of\nprofiles',
        title = paste('Profile QC flag', unique(.x$profile_flag))
      ) +
      theme(
        legend.position = "bottom",
        axis.text = element_blank(),
        axis.ticks = element_blank()
      ) +
      facet_grid(parameter ~ .)
  )
[[1]]
Warning: Raster pixels are placed at uneven vertical intervals and will be
shifted. Consider using geom_tile() instead.

Version Author Date
f7ef44f jens-daniel-mueller 2021-10-22
aa7280d jens-daniel-mueller 2021-10-22
701fffa pasqualina-vonlanthendinenna 2021-10-20

[[2]]
Warning: Raster pixels are placed at uneven vertical intervals and will be
shifted. Consider using geom_tile() instead.

Version Author Date
f7ef44f jens-daniel-mueller 2021-10-22
aa7280d jens-daniel-mueller 2021-10-22
701fffa pasqualina-vonlanthendinenna 2021-10-20

[[3]]
Warning: Raster pixels are placed at uneven vertical intervals and will be
shifted. Consider using geom_tile() instead.

Version Author Date
f7ef44f jens-daniel-mueller 2021-10-22
aa7280d jens-daniel-mueller 2021-10-22
701fffa pasqualina-vonlanthendinenna 2021-10-20

[[4]]
Warning: Raster pixels are placed at uneven vertical intervals and will be
shifted. Consider using geom_tile() instead.

Version Author Date
f7ef44f jens-daniel-mueller 2021-10-22
aa7280d jens-daniel-mueller 2021-10-22
701fffa pasqualina-vonlanthendinenna 2021-10-20

[[5]]
Warning: Raster pixels are placed at uneven vertical intervals and will be
shifted. Consider using geom_tile() instead.

Version Author Date
f7ef44f jens-daniel-mueller 2021-10-22
aa7280d jens-daniel-mueller 2021-10-22
701fffa pasqualina-vonlanthendinenna 2021-10-20

[[6]]
Warning: Raster pixels are placed at uneven vertical intervals and will be
shifted. Consider using geom_tile() instead.

Version Author Date
f7ef44f jens-daniel-mueller 2021-10-22
aa7280d jens-daniel-mueller 2021-10-22
701fffa pasqualina-vonlanthendinenna 2021-10-20
# ggsave("output/figures/maps_per_flag.png",
#        width = 7,
#        height = 4)
ph_profile_counts_year <- bgc_metadata %>%      # count the number of A-flag pH profiles 
  select(platform_number, cycle_number, date, lon, lat,
        profile_ph_in_situ_total_qc) %>% 
  pivot_longer(profile_ph_in_situ_total_qc,
               names_to = "parameter",
               values_to = "profile_flag",
               names_prefix = "profile_") %>% 
  mutate(year = year(date)) %>% 
  filter(profile_flag == "A") %>% 
  count(lat, lon, year, parameter)

# map the location of pH profiles with QC flag A each year
ph_profile_counts_year %>%
  group_split(parameter) %>%
  map(
    ~ map +
      geom_tile(data = .x, aes(
        x = lon, y = lat, fill = n
      )) +
      scale_fill_gradient(low = "blue", high = "red",
                          trans = "log10") +
      labs(
        x = 'lon',
        y = 'lat',
        fill = 'number of\nprofiles',
        title = paste('Parameter:', unique(.x$parameter), 'flag A')
      ) +
      theme(
        legend.position = "bottom",
        axis.text = element_blank(),
        axis.ticks = element_blank()
      ) +
      facet_wrap(~year, ncol = 3)
  )
[[1]]
Warning: Raster pixels are placed at uneven vertical intervals and will be
shifted. Consider using geom_tile() instead.

# ggsave("output/figures/map_pH_flag_A_per_year.png",
#        width = 7,
#        height = 4)

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.2

Matrix products: default
BLAS:   /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] lubridate_1.7.9     argodata_0.0.0.9000 forcats_0.5.0      
 [4] stringr_1.4.0       dplyr_1.0.5         purrr_0.3.4        
 [7] readr_1.4.0         tidyr_1.1.3         tibble_3.1.3       
[10] ggplot2_3.3.5       tidyverse_1.3.0     workflowr_1.6.2    

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.7        assertthat_0.2.1  rprojroot_2.0.2   digest_0.6.27    
 [5] utf8_1.2.2        R6_2.5.1          cellranger_1.1.0  backports_1.1.10 
 [9] reprex_0.3.0      evaluate_0.14     highr_0.8         httr_1.4.2       
[13] pillar_1.6.2      rlang_0.4.11      readxl_1.3.1      rstudioapi_0.13  
[17] whisker_0.4       jquerylib_0.1.4   blob_1.2.1        rmarkdown_2.10   
[21] labeling_0.4.2    munsell_0.5.0     broom_0.7.9       compiler_4.0.3   
[25] httpuv_1.6.2      modelr_0.1.8      xfun_0.25         pkgconfig_2.0.3  
[29] htmltools_0.5.1.1 tidyselect_1.1.0  fansi_0.5.0       crayon_1.4.1     
[33] dbplyr_1.4.4      withr_2.4.2       later_1.3.0       grid_4.0.3       
[37] jsonlite_1.7.2    gtable_0.3.0      lifecycle_1.0.0   DBI_1.1.1        
[41] git2r_0.27.1      magrittr_2.0.1    scales_1.1.1      cli_3.0.1        
[45] stringi_1.5.3     farver_2.1.0      fs_1.5.0          promises_1.2.0.1 
[49] xml2_1.3.2        bslib_0.2.5.1     ellipsis_0.3.2    generics_0.1.0   
[53] vctrs_0.3.8       tools_4.0.3       glue_1.4.2        RNetCDF_2.4-2    
[57] hms_0.5.3         yaml_2.2.1        colorspace_2.0-2  rvest_0.3.6      
[61] knitr_1.33        haven_2.3.1       sass_0.4.0