Last updated: 2021-10-19
Checks: 7 0
Knit directory: bgc_argo_r_argodata/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211008)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version f460b9a. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Unstaged changes:
Modified: code/Workflowr_project_managment.R
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/map_observations.Rmd
) and HTML (docs/map_observations.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | f460b9a | jens-daniel-mueller | 2021-10-19 | code review jens |
html | 830edff | pasqualina-vonlanthendinenna | 2021-10-15 | Build site. |
Rmd | b19b3cf | pasqualina-vonlanthendinenna | 2021-10-15 | fixed subtitle |
html | 2420353 | pasqualina-vonlanthendinenna | 2021-10-15 | Build site. |
Rmd | c8c1bd5 | pasqualina-vonlanthendinenna | 2021-10-15 | changed fontsize in mapping titles |
html | 2979534 | pasqualina-vonlanthendinenna | 2021-10-15 | Build site. |
Rmd | 895351d | pasqualina-vonlanthendinenna | 2021-10-15 | changed fontsize in mapping titles |
html | 83724a0 | pasqualina-vonlanthendinenna | 2021-10-14 | Build site. |
Rmd | 6a2a266 | pasqualina-vonlanthendinenna | 2021-10-14 | added map observations page |
Map the location of oxygen, pH, and nitrate observations recorded by BGC-Argo floats
library(tidyverse, quiet = TRUE)
── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
✓ ggplot2 3.3.5 ✓ purrr 0.3.4
✓ tibble 3.1.3 ✓ dplyr 1.0.5
✓ tidyr 1.1.3 ✓ stringr 1.4.0
✓ readr 1.4.0 ✓ forcats 0.5.0
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
library(argodata, quiet = TRUE)
library(ggplot2, quiet = TRUE)
library(lubridate, quiet = TRUE)
Attaching package: 'lubridate'
The following objects are masked from 'package:base':
date, intersect, setdiff, union
library(sf, quiet = TRUE)
Linking to GEOS 3.6.2, GDAL 3.0.4, PROJ 7.0.0
library(rnaturalearth, quiet = TRUE)
library(rnaturalearthdata, quiet = TRUE)
# load in coastline data (uses sf and rnaturalearthdata packages)
world = ne_coastline(scale = 'medium', returnclass = 'sf')
Read the files created in loading_data.html:
path_argo_preprocessed <- paste0(path_argo, "/preprocessed_bgc_data")
bgc_subset <-
read_rds(file = paste0(path_argo_preprocessed, "/bgc_subset.rds"))
bgc_metadata <-
read_rds(file = paste0(path_argo_preprocessed, "/bgc_metadata.rds"))
bgc_data <-
read_rds(file = paste0(path_argo_preprocessed, "/bgc_data.rds"))
bgc_merge <-
read_rds(file = paste0(path_argo_preprocessed, "/bgc_merge.rds"))
# Set the cache directory using argo_set_cache_dir():
argo_set_cache_dir('/nfs/kryo/work/updata/bgc_argo_r_argodata')
argo_update_global(max_global_cache_age = Inf)
argo_update_data(max_data_cache_age = Inf)
bgc_subset = argo_global_synthetic_prof() %>%
argo_filter_data_mode(data_mode = 'delayed') %>%
argo_filter_date(date_min = '2013-01-01',
date_max = '2015-12-31') # download the indexes of synthetic files of delayed-mode data (BGC and core argo data)
# check the dates
# max(bgc_subset$date, na.rm = TRUE)
# min(bgc_subset$date, na.rm = TRUE)
bgc_data = argo_prof_levels(bgc_subset, vars = c('PRES_ADJUSTED','PRES_ADJUSTED_QC',
'PSAL_ADJUSTED', 'PSAL_ADJUSTED_QC',
'TEMP_ADJUSTED','TEMP_ADJUSTED_QC',
'DOXY_ADJUSTED', 'DOXY_ADJUSTED_QC',
'NITRATE_ADJUSTED', 'NITRATE_ADJUSTED_QC',
'PH_IN_SITU_TOTAL_ADJUSTED', 'PH_IN_SITU_TOTAL_ADJUSTED_QC'), quiet = TRUE)
# read in the profiles (takes a while)
bgc_metadata = argo_prof_prof(bgc_subset) # load in the corresponding metadata
bgc_merge = left_join(bgc_data, bgc_metadata, by = c('file', 'n_prof'))
# joins the metadata to the data and creates one data frame
Create separate dataframes for each variable, with longitude, latitude, date, value, cycle number, and float ID
oxy = data.frame(bgc_merge$longitude, bgc_merge$latitude, bgc_merge$date,
bgc_merge$doxy_adjusted) # add longitude, latitude, date and oxygen to the dataframe
colnames(oxy) = c('longitude','latitude','date', 'doxy_adjusted') # rename columns
oxy = oxy %>%
mutate(date.simple = as.Date(date), # create one date and one time column
time = format(date, '%H:%M:%S'),
cycle = bgc_merge$cycle_number, # add cycle number and float ID
float_ID = bgc_merge$float_serial_no)
oxy.no.na = oxy %>%
filter(!is.na(doxy_adjusted)) # remove the NA values
location_obs_oxy = oxy.no.na %>%
group_by(round(longitude, digits = 0), round(latitude, digits = 0)) %>%
summarise(Count = n()) # count the number of data points per longitude/latitude pair, rounded to the nearest integer
`summarise()` has grouped output by 'round(longitude, digits = 0)'. You can override using the `.groups` argument.
colnames(location_obs_oxy) = c('longitude', 'latitude', 'Count') # rename columns
Map the location of the oxygen observations
ggplot() +
geom_tile(data = location_obs_oxy, aes(x = longitude, y = latitude, fill = Count))+
geom_sf(data = world, fill = 'grey')+
scale_fill_gradientn(colors = rev(rainbow(10)))+
theme_bw()+
labs(x = 'longitude', y = 'latitude', fill = 'number of obs',
title = 'location of delayed-mode adjusted oxygen observations')
Warning: Removed 1 rows containing missing values (geom_tile).
Version | Author | Date |
---|---|---|
83724a0 | pasqualina-vonlanthendinenna | 2021-10-14 |
ph = data.frame(bgc_merge$longitude, bgc_merge$latitude, bgc_merge$date,
bgc_merge$ph_in_situ_total_adjusted) # add longitude, latitude, date, and pH to a dataframe
colnames(ph) = c('longitude','latitude','date', 'ph_in_situ_total') #rename columns
ph = ph %>%
mutate(date.simple = as.Date(date), # create one date and one time columns
time = format(date, '%H:%M:%S'),
cycle = bgc_merge$cycle_number, # add cycle number and float ID
float_ID = bgc_merge$float_serial_no)
ph.no.na = ph %>%
filter(!is.na(ph_in_situ_total)) # remove NA values
location_obs_ph = ph.no.na %>%
group_by(round(longitude, digits = 0), round(latitude, digits = 0)) %>%
summarise(Count = n()) # count the number of pH observations for each longitude/latitude pair rounded to the nearest integer
`summarise()` has grouped output by 'round(longitude, digits = 0)'. You can override using the `.groups` argument.
colnames(location_obs_ph) = c('longitude', 'latitude', 'Count') # rename columns
Map the location of pH observations
ggplot() +
geom_sf(data = world, fill = 'grey')+
geom_tile(data = location_obs_ph, aes(x = longitude, y = latitude, fill = Count))+
scale_fill_gradientn(colors = rev(rainbow(10)))+
theme_bw()+
labs(x = 'longitude', y = 'latitude', fill = 'number of obs',
title = 'location of delayed-mode adjusted pH observations')
Version | Author | Date |
---|---|---|
83724a0 | pasqualina-vonlanthendinenna | 2021-10-14 |
nitrate = data.frame(bgc_merge$longitude, bgc_merge$latitude, bgc_merge$date,
bgc_merge$nitrate_adjusted) # create a dataframe with longitude, latitude, date, and nitrate values
colnames(nitrate) = c('longitude','latitude', 'date', 'nitrate_adjusted') # rename columns
nitrate = nitrate %>%
mutate(date.simple = as.Date(date), # separate date and time into two columns
time = format(date, '%H:%M:%S'),
cycle = bgc_merge$cycle_number, # add cycle number and float ID
float_ID = bgc_merge$float_serial_no)
nitrate.no.na = nitrate %>%
filter(!is.na(nitrate_adjusted)) # remove NA values
location_obs_nitrate = nitrate.no.na %>%
group_by(round(longitude, digits = 0), round(latitude, digits = 0)) %>%
summarise(Count = n()) # count the number of nitrate observations for each longitude/latitude pair rounded to the nearest integer
`summarise()` has grouped output by 'round(longitude, digits = 0)'. You can override using the `.groups` argument.
colnames(location_obs_nitrate) = c('longitude', 'latitude', 'Count') # rename columns
Map the location of nitrate observations
ggplot() +
geom_tile(data = location_obs_nitrate, aes(x = longitude, y = latitude, fill = Count))+
geom_sf(data = world, fill = 'grey')+
scale_fill_gradientn(colors = rev(rainbow(10)))+
theme_bw()+
labs(x = 'longitude', y = 'latitude', fill = 'number of obs',
title = 'location of delayed-mode adjusted nitrate observations')
Warning: Removed 1 rows containing missing values (geom_tile).
Version | Author | Date |
---|---|---|
83724a0 | pasqualina-vonlanthendinenna | 2021-10-14 |
Map the location of observations for which a measurement of all three variables exists
# create a dataframe which contains longitude, latitude, date, cycle number, float ID, and all three bgc variables
bgc_co_located = data.frame(bgc_merge$longitude, bgc_merge$latitude,
bgc_merge$date,
bgc_merge$cycle_number,
bgc_merge$float_serial_no,
bgc_merge$doxy_adjusted,
bgc_merge$ph_in_situ_total_adjusted,
bgc_merge$nitrate_adjusted)
# rename columns:
colnames(bgc_co_located) = c('longitude', 'latitude',
'date',
'cycle',
'float_ID',
'doxy_adjusted',
'ph_in_situ_total_adjusted',
'nitrate_adjusted')
bgc_co_located = bgc_co_located %>% # change the date and time format
mutate(date.simple = as.Date(date),
time = format(date, '%H:%M:%S'))
bgc_co_located.no.na = bgc_co_located %>% # remove NA values for each variable
filter(!is.na(doxy_adjusted)) %>%
filter(!is.na(ph_in_situ_total_adjusted)) %>%
filter(!is.na(nitrate_adjusted))
location_obs_bgc = bgc_co_located.no.na %>%
group_by(round(longitude, digits = 0), round(latitude, digits = 0)) %>%
summarise(Count = n()) # count the number of observations for each longitude/latitude pair, rounded to the nearest integer
`summarise()` has grouped output by 'round(longitude, digits = 0)'. You can override using the `.groups` argument.
colnames(location_obs_bgc) = c('longitude', 'latitude', 'Count') # rename columns
Map the locations of BGC observations
ggplot() +
geom_tile(data = location_obs_bgc, aes(x = longitude, y = latitude, fill = Count))+
geom_sf(data = world, fill = 'grey')+
scale_fill_gradientn(colors = rev(rainbow(10)))+
theme_bw()+
labs(x = 'longitude', y = 'latitude', fill = 'number of obs',
title = 'location of delayed-mode adjusted BGC observations (oxygen, pH, and nitrate)')
Version | Author | Date |
---|---|---|
83724a0 | pasqualina-vonlanthendinenna | 2021-10-14 |
# count the number of oxygen profiles
prof_oxy = oxy.no.na %>%
group_by(float_ID, cycle, round(longitude, digits = 0), round(latitude, digits = 0)) %>%
summarise(num_obs = n()) # count the number of oxygen observations by float and cycle
`summarise()` has grouped output by 'float_ID', 'cycle', 'round(longitude, digits = 0)'. You can override using the `.groups` argument.
colnames(prof_oxy) = c('float_ID', 'cycle', 'longitude', 'latitude', 'num_obs') # rename columns
prof_oxy = prof_oxy %>%
mutate(prof = rep(1, length(cycle))) # repeat a vector of 1s for each individual cycle
location_prof_oxy = prof_oxy %>%
group_by(round(longitude, digits = 0), round(latitude, digits = 0)) %>%
summarise(count_prof = n()) # count the number of 1s (profiles) for each longitude/latitude pair, rounded to the nearest integer
`summarise()` has grouped output by 'round(longitude, digits = 0)'. You can override using the `.groups` argument.
colnames(location_prof_oxy) = c('longitude', 'latitude', 'Count')
Map the location of oxygen profiles
ggplot() +
geom_tile(data = location_prof_oxy, aes(x = longitude, y = latitude, fill = Count))+
geom_sf(data = world, fill = 'grey')+
scale_fill_gradientn(colors = rev(rainbow(10)))+
theme_bw()+
labs(x = 'longitude', y = 'latitude', fill = 'number of profiles',
title = 'location of delayed-mode adjusted oxygen profiles')
Warning: Removed 1 rows containing missing values (geom_tile).
Version | Author | Date |
---|---|---|
83724a0 | pasqualina-vonlanthendinenna | 2021-10-14 |
# count the number of pH profiles
prof_ph = ph.no.na %>%
group_by(float_ID, cycle, round(longitude, digits = 0), round(latitude, digits = 0)) %>%
summarise(num_obs = n()) # count the number of ph observations by float and cycle
`summarise()` has grouped output by 'float_ID', 'cycle', 'round(longitude, digits = 0)'. You can override using the `.groups` argument.
colnames(prof_ph) = c('float_ID', 'cycle', 'longitude', 'latitude', 'num_obs') # rename columns
prof_ph = prof_ph %>%
mutate(prof = rep(1, length(cycle))) # repeat a vector of 1s for each individual cycle
location_prof_ph = prof_ph %>%
group_by(round(longitude, digits = 0), round(latitude, digits = 0)) %>%
summarise(count_prof = n()) # count the number of 1s (profiles) for each longitude/latitude pair, rounded to the nearest integer
`summarise()` has grouped output by 'round(longitude, digits = 0)'. You can override using the `.groups` argument.
colnames(location_prof_ph) = c('longitude', 'latitude', 'Count') # rename columns
Map the location of pH profiles
ggplot() +
geom_tile(data = location_prof_ph, aes(x = longitude, y = latitude, fill = Count))+
geom_sf(data = world, fill = 'grey')+
scale_fill_gradientn(colors = rev(rainbow(10)))+
theme_bw()+
labs(x = 'longitude', y = 'latitude', fill = 'number of profiles',
title = 'location of delayed-mode adjusted pH profiles')
Version | Author | Date |
---|---|---|
83724a0 | pasqualina-vonlanthendinenna | 2021-10-14 |
# count the number of nitrate profiles
prof_nitrate = nitrate.no.na %>%
group_by(float_ID, cycle, round(longitude, digits = 0), round(latitude, digits = 0)) %>%
summarise(num_obs = n()) # count the number of nitrate observations by float and cycle
`summarise()` has grouped output by 'float_ID', 'cycle', 'round(longitude, digits = 0)'. You can override using the `.groups` argument.
colnames(prof_nitrate) = c('float_ID', 'cycle', 'longitude', 'latitude', 'num_obs') # rename columns
prof_nitrate = prof_nitrate %>%
mutate(prof = rep(1, length(cycle))) # repeat a vector of 1s for each individual cycle
location_prof_nitrate = prof_nitrate %>%
group_by(round(longitude, digits = 0), round(latitude, digits = 0)) %>%
summarise(count_prof = n()) # count the number of 1s (profiles) for each longitude/latitude pair, rounded to the nearest integer
`summarise()` has grouped output by 'round(longitude, digits = 0)'. You can override using the `.groups` argument.
colnames(location_prof_nitrate) = c('longitude', 'latitude', 'Count') # rename columns
Map the location of nitrate profiles
ggplot() +
geom_tile(data = location_prof_nitrate, aes(x = longitude, y = latitude, fill = Count))+
geom_sf(data = world, fill = 'grey')+
scale_fill_gradientn(colors = rev(rainbow(10)))+
theme_bw()+
labs(x = 'longitude', y = 'latitude', fill = 'number of profiles',
title = 'location of delayed-mode adjusted nitrate profiles')
Warning: Removed 1 rows containing missing values (geom_tile).
Version | Author | Date |
---|---|---|
83724a0 | pasqualina-vonlanthendinenna | 2021-10-14 |
# count the number of bgc profiles
prof_bgc = bgc_co_located.no.na %>%
group_by(float_ID, cycle, round(longitude, digits = 0), round(latitude, digits = 0)) %>%
summarise(num_obs = n()) # count the number of nitrate observations by float and cycle
`summarise()` has grouped output by 'float_ID', 'cycle', 'round(longitude, digits = 0)'. You can override using the `.groups` argument.
colnames(prof_bgc) = c('float_ID', 'cycle', 'longitude', 'latitude', 'num_obs') # rename columns
prof_bgc = prof_bgc %>%
mutate(prof = rep(1, length(cycle))) # repeat a vector of 1s for each individual cycle
location_prof_bgc = prof_bgc %>%
group_by(round(longitude, digits = 0), round(latitude, digits = 0)) %>%
summarise(count_prof = n()) # count the number of 1s (profiles) for each longitude/latitude pair, rounded to the nearest integer
`summarise()` has grouped output by 'round(longitude, digits = 0)'. You can override using the `.groups` argument.
colnames(location_prof_bgc) = c('longitude', 'latitude', 'Count') # rename columns
Map the location of profiles containing all three BGC variables
ggplot() +
geom_tile(data = location_prof_bgc, aes(x = longitude, y = latitude, fill = Count))+
geom_sf(data = world, fill = 'grey')+
scale_fill_gradientn(colors = rev(rainbow(10)))+
theme_bw()+
labs(x = 'longitude', y = 'latitude', fill = 'number of profiles',
title = 'location of delayed-mode adjusted BGC profiles')
Version | Author | Date |
---|---|---|
83724a0 | pasqualina-vonlanthendinenna | 2021-10-14 |
bgc_profile_counts_year <- bgc_metadata %>%
select(platform_number, cycle_number, date, longitude, latitude,
profile_doxy_qc, profile_ph_in_situ_total_qc, profile_nitrate_qc) %>%
pivot_longer(profile_doxy_qc:profile_nitrate_qc,
names_to = "profile_qc",
values_to = "flag",
names_prefix = "profile_") %>%
mutate(year = year(date),
latitude = round(latitude, digits = 0),
longitude = round(longitude, digits = 0)) %>%
filter(!is.na(flag),
flag != "") %>%
count(latitude, longitude, year, profile_qc)
bgc_profile_counts_flag <- bgc_metadata %>%
select(platform_number, cycle_number, date, longitude, latitude,
profile_doxy_qc, profile_ph_in_situ_total_qc, profile_nitrate_qc) %>%
pivot_longer(profile_doxy_qc:profile_nitrate_qc,
names_to = "profile_qc",
values_to = "flag",
names_prefix = "profile_") %>%
mutate(year = year(date),
latitude = round(latitude, digits = 0),
longitude = round(longitude, digits = 0)) %>%
filter(!is.na(flag),
flag != "") %>%
count(latitude, longitude, profile_qc, flag)
Plot the evolution of the number of profiles over time
bgc_profile_counts_year %>%
ggplot() +
geom_sf(data = ne_countries(returnclass = "sf"),
fill = "gray90",
color = NA) +
geom_sf(data = ne_coastline(returnclass = "sf")) +
geom_tile(aes(x = longitude, y = latitude, fill = n)) +
scale_fill_gradient(low="blue", high="red",
trans = "log10") +
theme_bw() +
facet_grid(year ~ profile_qc)
Warning: Removed 4 rows containing missing values (geom_tile).
bgc_profile_counts_flag %>%
ggplot() +
geom_sf(data = ne_countries(returnclass = "sf"),
fill = "gray90",
color = NA) +
geom_sf(data = ne_coastline(returnclass = "sf")) +
geom_tile(aes(x = longitude, y = latitude, fill = n)) +
scale_fill_gradient(low="blue", high="red",
trans = "log10") +
theme_bw() +
facet_grid(flag ~ profile_qc)
Warning: Removed 5 rows containing missing values (geom_tile).
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.2
Matrix products: default
BLAS: /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] rnaturalearthdata_0.1.0 rnaturalearth_0.1.0 sf_0.9-8
[4] lubridate_1.7.9 argodata_0.0.0.9000 forcats_0.5.0
[7] stringr_1.4.0 dplyr_1.0.5 purrr_0.3.4
[10] readr_1.4.0 tidyr_1.1.3 tibble_3.1.3
[13] ggplot2_3.3.5 tidyverse_1.3.0 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] httr_1.4.2 sass_0.4.0 jsonlite_1.7.1 modelr_0.1.8
[5] bslib_0.2.5.1 assertthat_0.2.1 sp_1.4-4 highr_0.8
[9] blob_1.2.1 cellranger_1.1.0 yaml_2.2.1 pillar_1.6.2
[13] backports_1.1.10 lattice_0.20-41 glue_1.4.2 digest_0.6.27
[17] promises_1.1.1 rvest_0.3.6 colorspace_2.0-2 htmltools_0.5.1.1
[21] httpuv_1.5.4 pkgconfig_2.0.3 broom_0.7.9 haven_2.3.1
[25] scales_1.1.1 whisker_0.4 later_1.2.0 git2r_0.27.1
[29] generics_0.1.0 farver_2.0.3 ellipsis_0.3.2 withr_2.3.0
[33] cli_3.0.1 magrittr_1.5 crayon_1.3.4 readxl_1.3.1
[37] evaluate_0.14 fs_1.5.0 fansi_0.4.1 xml2_1.3.2
[41] class_7.3-17 tools_4.0.3 hms_0.5.3 lifecycle_1.0.0
[45] munsell_0.5.0 reprex_0.3.0 compiler_4.0.3 jquerylib_0.1.4
[49] e1071_1.7-4 RNetCDF_2.4-2 rlang_0.4.11 classInt_0.4-3
[53] units_0.6-7 grid_4.0.3 rstudioapi_0.13 labeling_0.4.2
[57] rmarkdown_2.10 gtable_0.3.0 DBI_1.1.0 R6_2.5.0
[61] knitr_1.33 rgeos_0.5-5 utf8_1.1.4 rprojroot_2.0.2
[65] KernSmooth_2.23-17 stringi_1.5.3 Rcpp_1.0.5 vctrs_0.3.8
[69] dbplyr_1.4.4 tidyselect_1.1.0 xfun_0.25